A Molecular and Morphological Re-Examination of the Generic Limits of Truffles in the Tarzetta-Geopyxis Lineage E Densocarpa, Hydnocystis, and Paurocotylis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chorioactidaceae: a New Family in the Pezizales (Ascomycota) with Four Genera
mycological research 112 (2008) 513–527 journal homepage: www.elsevier.com/locate/mycres Chorioactidaceae: a new family in the Pezizales (Ascomycota) with four genera Donald H. PFISTER*, Caroline SLATER, Karen HANSENy Harvard University Herbaria – Farlow Herbarium of Cryptogamic Botany, Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA article info abstract Article history: Molecular phylogenetic and comparative morphological studies provide evidence for the Received 15 June 2007 recognition of a new family, Chorioactidaceae, in the Pezizales. Four genera are placed in Received in revised form the family: Chorioactis, Desmazierella, Neournula, and Wolfina. Based on parsimony, like- 1 November 2007 lihood, and Bayesian analyses of LSU, SSU, and RPB2 sequence data, Chorioactidaceae repre- Accepted 29 November 2007 sents a sister clade to the Sarcosomataceae, to which some of these taxa were previously Corresponding Editor: referred. Morphologically these genera are similar in pigmentation, excipular construction, H. Thorsten Lumbsch and asci, which mostly have terminal opercula and rounded, sometimes forked, bases without croziers. Ascospores have cyanophilic walls or cyanophilic surface ornamentation Keywords: in the form of ridges or warts. So far as is known the ascospores and the cells of the LSU paraphyses of all species are multinucleate. The six species recognized in these four genera RPB2 all have limited geographical distributions in the northern hemisphere. Sarcoscyphaceae ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Sarcosomataceae SSU Introduction indicated a relationship of these taxa to the Sarcosomataceae and discussed the group as the Chorioactis clade. Only six spe- The Pezizales, operculate cup-fungi, have been put on rela- cies are assigned to these genera, most of which are infre- tively stable phylogenetic footing as summarized by Hansen quently collected. -
Biological Diversity
From the Editors’ Desk….. Biodiversity, which is defined as the variety and variability among living organisms and the ecological complexes in which they occur, is measured at three levels – the gene, the species, and the ecosystem. Forest is a key element of our terrestrial ecological systems. They comprise tree- dominated vegetative associations with an innate complexity, inherent diversity, and serve as a renewable resource base as well as habitat for a myriad of life forms. Forests render numerous goods and services, and maintain life-support systems so essential for life on earth. India in its geographical area includes 1.8% of forest area according to the Forest Survey of India (2000). The forests cover an actual area of 63.73 million ha (19.39%) and consist of 37.74 million ha of dense forests, 25.51 million ha of open forest and 0.487 million ha of mangroves, apart from 5.19 million ha of scrub and comprises 16 major forest groups (MoEF, 2002). India has a rich and varied heritage of biodiversity covering ten biogeographical zones, the trans-Himalayan, the Himalayan, the Indian desert, the semi-arid zone(s), the Western Ghats, the Deccan Peninsula, the Gangetic Plain, North-East India, and the islands and coasts (Rodgers; Panwar and Mathur, 2000). India is rich at all levels of biodiversity and is one of the 12 megadiversity countries in the world. India’s wide range of climatic and topographical features has resulted in a high level of ecosystem diversity encompassing forests, wetlands, grasslands, deserts, coastal and marine ecosystems, each with a unique assemblage of species (MoEF, 2002). -
Pezizales, Pyronemataceae), Is Described from Australia Pamela S
Swainsona 31: 17–26 (2017) © 2017 Board of the Botanic Gardens & State Herbarium (Adelaide, South Australia) A new species of small black disc fungi, Smardaea australis (Pezizales, Pyronemataceae), is described from Australia Pamela S. Catcheside a,b, Samra Qaraghuli b & David E.A. Catcheside b a State Herbarium of South Australia, GPO Box 1047, Adelaide, South Australia 5001 Email: [email protected] b School of Biological Sciences, Flinders University, PO Box 2100, Adelaide, South Australia 5001 Email: [email protected], [email protected] Abstract: A new species, Smardaea australis P.S.Catches. & D.E.A.Catches. (Ascomycota, Pezizales, Pyronemataceae) is described and illustrated. This is the first record of the genus in Australia. The phylogeny of Smardaea and Marcelleina, genera of violaceous-black discomycetes having similar morphological traits, is discussed. Keywords: Fungi, discomycete, Pezizales, Smardaea, Marcelleina, Australia Introduction has dark coloured apothecia and globose ascospores, but differs morphologically from Smardaea in having Small black discomycetes are often difficult or impossible dark hairs on the excipulum. to identify on macro-morphological characters alone. Microscopic examination of receptacle and hymenial Marcelleina and Smardaea tissues has, until the relatively recent use of molecular Four genera of small black discomycetes with purple analysis, been the method of species and genus pigmentation, Greletia Donad., Pulparia P.Karst., determination. Marcelleina and Smardaea, had been separated by characters in part based on distribution of this Between 2001 and 2014 five collections of a small purple pigmentation, as well as on other microscopic black disc fungus with globose spores were made in characters. -
Curriculum Vitae Rosaria Ann Healy, Ph.D. Assistant Scientist Dept. Of
Curriculum Vitae Rosaria Ann Healy, Ph.D. Assistant Scientist Dept. of Plant Pathology, University of Florida 2517 Fifield Hall, Gainesville, FL 32611 515-231-2562, [email protected] Education 2013 Ph.D. University of Minnesota, St. Paul, MN Co-Advisors: Dr. David McLaughlin and Dr. Imke Schmitt 2002 M.S. Iowa State University, Ames, IA Advisor: Dr. Lois H. Tiffany 1977 B.S. College of St. Benedict, St. Joseph, MN Research Experience 2016 to present Assistant Research Scientist, University of Florida, Gainesville, FL 2015 Post Doctoral Research University of Florida, Gainesville, FL Supervisor: Dr. Matthew E. Smith 2013-2015 Post Doctoral Research Harvard University, Cambridge, MA Advisor: Dr. Donald H. Pfister 2011-2012 Research Assistant University of Minnesota, St. Paul, MN Advisor: Dr. David McLaughlin: Assembling the Fungal Tree of Life 1999-2005 Research Associate Iowa State University, Ames, IA Advisor: Dr. Harry T. Horner Publications • 2021 Orihara, T, R Healy, A Corrales, ME Smith. Multi-locus phylogenies reveal three new truffle-like taxa and the traces of interspecific hybridization in Octaviania Healy CV 2 (Boletales). Submitted to IMA Fungus • 2021 Castellano, MA, CD Crabtree, D Mitchell, RA Healy. Eight new Elaphomyces species (Elaphomycetaceae, Eurotiales, Ascomycota) from eastern North America. Fungal Systematics and Evolution 7:113-131. • 2020 Kraisitudomsook N, RA Healy, DH Pfister, C Truong, E Nouhra, F Kuhar, AB Mujic, JM Trappe, ME Smith. Resurrecting the genus Geomorium: Systematic study of fungi in the genera Underwoodia and Gymnohydnotrya (Pezizales) with the description of three new South American species. Persoonia 44: 98-112. • 2019 Grupe AG II, N Kraisitudomsook, R Healy, D Zelmanovich, C Anderson, G Guevara, J Trappe, ME Smith. -
New Records of Aspergillus Allahabadii and Penicillium Sizovae
MYCOBIOLOGY 2018, VOL. 46, NO. 4, 328–340 https://doi.org/10.1080/12298093.2018.1550169 RESEARCH ARTICLE Four New Records of Ascomycete Species from Korea Thuong T. T. Nguyen, Monmi Pangging, Seo Hee Lee and Hyang Burm Lee Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea ABSTRACT ARTICLE HISTORY While evaluating fungal diversity in freshwater, grasshopper feces, and soil collected at Received 3 July 2018 Dokdo Island in Korea, four fungal strains designated CNUFC-DDS14-1, CNUFC-GHD05-1, Revised 27 September 2018 CNUFC-DDS47-1, and CNUFC-NDR5-2 were isolated. Based on combination studies using Accepted 28 October 2018 phylogenies and morphological characteristics, the isolates were confirmed as Ascodesmis KEYWORDS sphaerospora, Chaetomella raphigera, Gibellulopsis nigrescens, and Myrmecridium schulzeri, Ascomycetes; fecal; respectively. This is the first records of these four species from Korea. freshwater; fungal diversity; soil 1. Introduction Paraphoma, Penicillium, Plectosphaerella, and Stemphylium [7–11]. However, comparatively few Fungi represent an integral part of the biomass of any species of fungi have been described [8–10]. natural environment including soils. In soils, they act Freshwater nourishes diverse habitats for fungi, as agents governing soil carbon cycling, plant nutri- such as fallen leaves, plant litter, decaying wood, tion, and pathology. Many fungal species also adapt to aquatic plants and insects, and soils. Little -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
(With (Otidiaceae). Annellospores, The
PERSOONIA Published by the Rijksherbarium, Leiden Volume Part 6, 4, pp. 405-414 (1972) Imperfect states and the taxonomy of the Pezizales J.W. Paden Department of Biology, University of Victoria Victoria, B. C., Canada (With Plates 20-22) Certainly only a relatively few species of the Pezizales have been studied in culture. I that this will efforts in this direction. hope paper stimulatemore A few patterns are emerging from those species that have been cultured and have produced conidia but more information is needed. Botryoblasto- and found in cultures of spores ( Oedocephalum Ostracoderma) are frequently Peziza and Iodophanus (Pezizaceae). Aleurospores are known in Peziza but also in other like known in genera. Botrytis- imperfect states are Trichophaea (Otidiaceae). Sympodulosporous imperfect states are known in several families (Sarcoscyphaceae, Sarcosomataceae, Aleuriaceae, Morchellaceae) embracing both suborders. Conoplea is definitely tied in with Urnula and Plectania, Nodulosporium with Geopyxis, and Costantinella with Morchella. Certain types of conidia are not presently known in the Pezizales. Phialo- and few other have spores, porospores, annellospores, blastospores a types not been reported. The absence of phialospores is of special interest since these are common in the Helotiales. The absence of conidia in certain e. Helvellaceae and Theleboleaceae also be of groups, g. may significance, and would aid in delimiting these taxa. At the species level critical com- of taxonomic and parison imperfect states may help clarify problems supplement other data in distinguishing between closely related species. Plectania and of where such Peziza, perhaps Sarcoscypha are examples genera studies valuable. might prove One of the Pezizales in need of in culture large group desparate study are the few of these have been cultured. -
Pyronemataceae, Pezizales) Based on Molecular and Morphological Data
Mycol Progress (2012) 11:699–710 DOI 10.1007/s11557-011-0779-5 ORIGINAL ARTICLE The taxonomic position of the genus Heydenia (Pyronemataceae, Pezizales) based on molecular and morphological data Adrian Leuchtmann & Heinz Clémençon Received: 12 May 2011 /Revised: 19 July 2011 /Accepted: 21 July 2011 /Published online: 9 August 2011 # German Mycological Society and Springer 2011 Abstract Molecular and morphological data indicate that easily becomes accepted as true, without proof, in the the genus Heydenia is closely related to the cleistothecial mycological literature. One case of such questionable ascomycete Orbicula (Pyronemataceae, Pezizales). Obser- reasoning is exemplified by the genus Heydenia. vations on the disposition and the immediate surroundings Since fungi with fruiting bodies of unusual or misleading of immature spores within the spore capsule suggest that form are difficult to fit into a classification based on the Heydenia fruiting bodies are teleomorphs producing morphology alone, many genera were left unclassified early evanescent asci in stipitate cleistothecia. The once («incertae sedis») or were assigned by guesswork to a advocated identity of Heydenia with Onygena is refuted on taxonomic group until more objective criteria based on molecular grounds. Onygena arietina E. Fischer is trans- analyses of DNA sequences indicated a firm phylogenetic ferred to Heydenia. relationship. Examples of such genera are Torrendia (stipitate gasteromycete-like, Hallen et al. 2004), Thaxter- Keywords Ascomycota . Beta tubulin . Cleistothecium . ogaster (stipitate sequestrate, Peintner et al. 2002)and Histology. nuLSU . Orbicula . Phylogeny Physalacria (columnar hollow, Wilson and Desjardin 2005) among the basidiomycetes, and Neolecta (columnar, Landvik et al. 2001), Trichocoma (cup-shaped with a Introduction protruding tuft, Berbee et al. -
Les Morilles En Franche-Comté
ANNEE 2016 - n° 25 - 16 - 46 TITRE DE LA THESE LES MORILLES EN FRANCHE-COMTE : Biologie, monographies, toxicité & propriétés thérapeutiques THESE présentée et soutenue publiquement le : 2 décembre 2016 pour obtenir le Diplôme d'État de DOCTEUR EN PHARMACIE PAR Marine COMOLA Née le 26 octobre 1990 à Besançon (25) (Nom) (Qualité) Président : Dominique MEILLET Professeur Directeur de la thèse : Dominique MEILLET Professeur Co-Directeur : Jean-Marc MOINGEON Chargé d’Enseignements Juge : Marine BRESSON Docteur en Pharmacie l UFR SMP 19 rue Ambroise Paré F-25030 Besançon cedex l Tél. +33 (0)3 63 08 22 00 l Fax +33 (0)3 81 66 56 83 l http://medecine-pharmacie.univ-fcomte.fr UNIVERSITÉ DE FRANCHE-COMTÉ U.F.R. DES SCIENCES MÉDICALES & PHARMACEUTIQUES DE BESANÇON DIRECTEUR P Professeur Emmanuel SAMAIN ASSESSEURS MÉDECINE Professeur Bernard PARRATTE Directeur des études Professeur Benoît de BILLY Professeur Gilles CAPELLIER Professeur Thierry MOULIN DOYEN PHARMACIE Professeur Marie-Christine WORONOFF-LEMSI Directrice Adjointe ASSESSEUR PHARMACIE Professeur Laurence NICOD Directrice des études RESPONSABLE ADMINISTRATIVE Mme Florence PRETOT MÉDECINE PROFESSEURS DES UNIVERSITÉS – PRATICIENS HOSPITALIERS M. Olivier ADOTEVI IMMUNOLOGIE M. Frédéric AUBER CHIRURGIE INFANTILE M. François AUBIN DERMATO-VÉNÉRÉOLOGIE Mme Yvette BERNARD CARDIOLOGIE Mme Alessandra BIONDI RADIOLOGIE ET IMAGERIE MÉDICALE M. Hugues BITTARD UROLOGIE M. Christophe BORG CANCÉROLOGIE M. Hatem BOULAHDOUR BIOPHYSIQUE ET MÉDECINE NUCLÉAIRE M. Jean-Luc BRESSON BIOLOGIE ET MÉDECINE DU DÉVELOPPEMENT ET DE LA REPRODUCTION M Gilles CAPELLIER RÉANIMATION M. Jean-Marc CHALOPIN NÉPHROLOGIE Mme Catherine CHIROUZE MALADIES INFECTIEUSES M Sidney CHOCRON CHIRURGIE THORACIQUE ET CARDIOVASCULAIRE M. Jean-Luc CHOPARD MÉDECINE LÉGALE ET DROIT DE LA SANTÉ Mme Cécile COURIVAUD NÉPHROLOGIE M. -
Orbilia Ultrastructure, Character Evolution and Phylogeny of Pezizomycotina
Mycologia, 104(2), 2012, pp. 462–476. DOI: 10.3852/11-213 # 2012 by The Mycological Society of America, Lawrence, KS 66044-8897 Orbilia ultrastructure, character evolution and phylogeny of Pezizomycotina T.K. Arun Kumar1 INTRODUCTION Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108 Ascomycota is a monophyletic phylum (Lutzoni et al. 2004, James et al. 2006, Spatafora et al. 2006, Hibbett Rosanne Healy et al. 2007) comprising three subphyla, Taphrinomy- Department of Plant Biology, University of Minnesota, cotina, Saccharomycotina and Pezizomycotina (Su- St Paul, Minnesota 55108 giyama et al. 2006, Hibbett et al. 2007). Taphrinomy- Joseph W. Spatafora cotina, according to the current classification (Hibbett Department of Botany and Plant Pathology, Oregon et al. 2007), consists of four classes, Neolectomycetes, State University, Corvallis, Oregon 97331 Pneumocystidiomycetes, Schizosaccharomycetes, Ta- phrinomycetes, and an unplaced genus, Saitoella, Meredith Blackwell whose members are ecologically and morphologically Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 highly diverse (Sugiyama et al. 2006). Soil Clone Group 1, poorly known from geographically wide- David J. McLaughlin spread environmental samples and a single culture, Department of Plant Biology, University of Minnesota, was suggested as a fourth subphylum (Porter et al. St Paul, Minnesota 55108 2008). More recently however the group has been described as a new class of Taphrinomycotina, Archae- orhizomycetes (Rosling et al. 2011), based primarily on Abstract: Molecular phylogenetic analyses indicate information from rRNA sequences. The mode of that the monophyletic classes Orbiliomycetes and sexual reproduction in Taphrinomycotina is ascogen- Pezizomycetes are among the earliest diverging ous without the formation of ascogenous hyphae, and branches of Pezizomycotina, the largest subphylum except for the enigmatic, apothecium-producing of the Ascomycota. -
Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).