Mixing Genetically and Morphologically Distinct

Total Page:16

File Type:pdf, Size:1020Kb

Mixing Genetically and Morphologically Distinct Article Mixing Genetically and Morphologically Distinct Populations in Translocations: Asymmetrical Introgression in A Newly Established Population of the Boodie (Bettongia lesueur) Rujiporn Thavornkanlapachai 1,*, Harriet R. Mills 2, Kym Ottewell 3, Judy Dunlop 4,5, Colleen Sims 5, Keith Morris 5, Felicity Donaldson 6 and W. Jason Kennington 1 1 School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia; [email protected] 2 Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, Western Australia 6027, Australia; [email protected] 3 Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6152, Australia; [email protected] 4 School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; [email protected] 5 Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia [email protected] (C.S.); [email protected] (K.M.) 6 360 Environmental, 10 Bermondsey Street, West Leederville, Western Australia 6007, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61 8 9219 9089 Received: 22 August 2019; Accepted: 17 September 2019; Published: 19 September 2019 Abstract: The use of multiple source populations provides a way to maximise genetic variation and reduce the impacts of inbreeding depression in newly established translocated populations. However, there is a risk that individuals from different source populations will not interbreed, leading to population structure and smaller effective population sizes than expected. Here, we investigate the genetic consequences of mixing two isolated, morphologically distinct island populations of boodies (Bettongia lesueur) in a translocation to mainland Australia over three generations. Using 18 microsatellite loci and the mitochondrial D-loop region, we monitored the released animals and their offspring between 2010 and 2013. Despite high levels of divergence between the two source populations (FST = 0.42 and ϕST = 0.72), there was clear evidence of interbreeding between animals from different populations. However, interbreeding was non- random, with a significant bias towards crosses between the genetically smaller-sized Barrow Island males and the larger-sized Dorre Island females. This pattern of introgression was opposite to the expectation that male–male competition or female mate choice would favour larger males. This study shows how mixing diverged populations can bolster genetic variation in newly established mammal populations, but the ultimate outcome can be difficult to predict, highlighting the need for continued genetic monitoring to assess the long-term impacts of admixture. Keywords: burrowing bettong; genetic mixing; intraspecific hybridization; translocation 1. Introduction Species used in conservation translocations are often threatened or rare. Many have isolated populations that are subjected to loss of genetic variation, high levels of inbreeding, and elevated Genes 2019, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/genes Genes 2019, 10, x FOR PEER REVIEW 2 of 17 risks of extinction [1–3]. While it has been argued that any threatened populations with unique characteristics or distinct evolutionary history should be conserved separately [4], low genetic diversity and fitness reduction in small populations due to genetic drift and inbreeding can pose significant extinction threats to these populations [5]. Furthermore, an isolated population may accumulate deleterious mutations and have low evolutionary potential in changing environments [6]. For these reasons, translocation programmes involving single source populations may have a high risk of failure. Mixing individuals from different source populations is one way to bolster genetic variation and avoid inbreeding in threatened species [7–9]. Hybridization between diverged populations counteracts the deleterious effects of inbreeding by masking deleterious recessives (dominance) or increasing heterozygosity at loci where heterozygotes have a selective advantage (over-dominance) [10]. A well-known example is the genetic restoration of the Florida panther (Puma concolor coryi). The introduction of Texas panthers (Puma concolor stanleyana) from a geographically nearby population increased genetic diversity, reduced inbreeding, improved survival and fitness, and tripled the number of panthers [11–13]. Furthermore, long-isolated populations often carry different subsets of alleles as a result of lack of gene flow, genetic drift, and local selection [14]. Interbreeding between individuals from these populations should increase evolutionary potential and enable their offspring to survive in a wider range of environments [15,16]. Consistent with this expectation, many translocations sourcing from multiple source populations or genetic rescue cases have shown an increase in genetic diversity and improved fitness over multiple generations [7,17–21]. While mixing differentiated populations can have favourable outcomes, it can also lead to fitness reductions in the progeny (i.e., outbreeding depression) due to post-zygotic isolation between source populations [22–24]. Crossing between phenotypically different parents can produce offspring with phenotypes that are unsuitable for the local environment. For example, a hybridisation of two garter snake populations (Thamnophis ordinoides) produced a mismatch in body pattern and behaviour in hybrid snakes that had a higher mortality from predation in comparison to purebred snakes [25]. Progeny may be unviable because of abnormal structure and/or number of chromosomes [26] or fitness of progeny may be lower due to heterozygote disadvantage, harmful epistatic interaction between alleles of the parents, or disrupting of co-adapted gene complexes [27]. Common signs of intrinsic incompatibility include reduction in fertility and viability of hybrid offspring, such as sterility [26], low survival rate [28], slow growth rate [29], and decreased reproductive success [30]. In addition, pre-zygotic isolation due to differences in morphology, behaviour, ecology, reproductive biology, and gametic compatibility, may prevent or reduce interbreeding between individuals from different source populations [31–33]. This can reduce the effective population size or result in an uneven genetic contribution from the source to the translocated population and induce genetic problems associated with a small population size [34]. Predicting whether outbreeding depression will occur is difficult. Generally, the risk of outbreeding depression becomes higher as the genetic distance between the parents becomes greater, but the amount of divergence required for it to occur varies from species to species [35,36]. The different possible outcomes of mixing diverged populations leave many conservation managers with a difficult decision when choosing populations for use in translocations. This decision can affect the outcome of the translocation and long-term persistence of the population. Allendorf et al. [24] and Edmands [22] suggested that augmenting gene flow between fragmented populations should only be carried out if the populations have lost substantial genetic variation and the effects of inbreeding depression are apparent. However, such information is often not available for populations of immediate conservation concern, and while awaiting data on the effects of inbreeding to be collected, populations are at risk of extirpation. Weeks et al. [37] argued that by overestimating the risk of outcrossing breeding depression, rational use of gene flow for genetic rescue is unnecessarily prevented. So far, a meta-analysis of intentional outcrossing of inbred populations of vertebrates, invertebrates, and plants with a low outbreeding depression risk (evaluated using Frankham et al. 2011 decision tree) has shown positive outcomes of genetic mixing [8], which has lasted for several generations [20]. However, there are only a few case studies available that employed outcrossing for Genes 2019, 10, x FOR PEER REVIEW 3 of 17 conservation purposes [8,9]. Inconsistent outcomes of hybridisation between species, subspecies, and divergent populations and the increasing use of translocation mean that more studies are needed to allow better guidelines about when to use multiple populations in translocation [38]. The boodie or burrowing bettong (Bettongia lesueur) is a medium-sized, burrow-living marsupial endemic to Western Australia. B. lesueur is characterised by a short blunt head, with small rounded and erect ears. They are yellowy grey with a light grey underside, while the legs, feet, and tail are more yellow in colour [39] (Figure 1b). They are omnivorous, nocturnal, and the only macropod that shelters in burrows on a regular basis [39]. The average weight of a Bernier and Dorre Islands boodie is 1.26 ± 13.2 kg [40], in comparison to Barrow Island, which is 0.74 ± 9.2 kg [41] (Figure 1a). The populations on Bernier and Dorre Islands breed throughout the year, peaking over winter when the majority of rain falls [40]. On Barrow Island, breeding cycles are seasonally opposite to Bernier and Dorre islands and peak in summer, coinciding with cyclonic rain [40,41]. Females produce two young on average per year (three maximum) [40]. The young reach sexual maturity after 280 days [40].
Recommended publications
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Bara-Boodie.Pdf
    ENGAGE E EXPLOR Bara EXPLAIN Boodie, the burrowing bettong ELABORATE E EVALUAT By Alwyn Evans Illustrated by Paul Ricketts ENDICES P AP PAGE 7 PART 1: LEARNING THROUGH STORY / BARA BOODIE, THE BURROWING BETTONG ENGAGE EXPLORE EXPLAIN ELABORATE long, long time ago, boodies lived contentedly all over Australia, in all A sorts of places: from shady woodlands with grasses and shrubs, to wide sandy deserts. EVALUAT Actually my friend, they lived in almost any place they fancied. Bara Boodie and her family’s home was the Australian Western Desert, in E Martu people’s country. They lived in a large cosy nest under a quandong tree, with many friends and neighbours nearby. Actually my friend, boodies loved to make friends with everyone. AP P Bara Boodie, the burrowing bettong ENDICES PART 1: LEARNING THROUGH STORY / BARA BOODIE, THE BURROWING BETTONG PAGE 8 ENGAGE o make their nests snug, Bara’s dad, mum and aunties collected bundles T of spinifex and grasses. Scampering on all fours, they carried their bundles with their fat, prehensile tails, back to their nests. E Actually my friend, they used any soft EXPLOR things they found. As they were small animals, all the family fitted cosily into their nest. Bara was only about 28 centimetres long, and her two brothers weren’t much more. Her mother and aunties were shorter than her father who was 40 centimetres long. At night they slept, curled EXPLAIN up together, with their short-muzzled faces and small rounded ears tucked into their fur. Actually my friend, they looked like one great big, grey, furry ball.
    [Show full text]
  • Wildlife Matters
    AWC-newsletter/v10 23/5/02 12:11 PM Page 1 Newsletter of Australian Wildlife Conservancy Wildlife Matters AWC TO SAVE THREATENED AWC: Protecting WILDERNESS AND ITS WILDLIFE Australian Wildlife Welcome to the first MT ZERO, NORTH QUEENSLAND newsletter from Australian Wildlife Conservancy (AWC). We trust you will enjoy reading Wildlife Matters, which we hope to fill with good news about the wildlife in AWC’s sanctuaries. Unfortunately, for most of the last 200 years the news regarding Australia’s wildlife has not been good. The Toolache Wallaby, widely regarded as the most beautiful and graceful member of the kangaroo family, is gone forever. The Thylacine, the Paradise Parrot and the enigmatic Lesser Bilby are just some of the other animals that Australia has lost. continued on page 2 CONTENTS Is Mt Zero the Last Chance for the Northern Bettong? 3 Northern Bettong Photo: QPWS Eastern Pebble-mound Mouse Wet Sclerophyll Forest Sanctuary News 4 ustralian Wildlife Conservancy is proposing to acquire a The Evolution of AWC 6 remarkable wilderness area in north Queensland that is AWC Provides New Hope Ahome to more than 35 native mammal species. Located for Five Threatened Species 7 approximately 65 kilometres north-west of Townsville, Mt Zero is a biodiversity-rich property covering nearly 40,000 hectares adjacent to the Wet Tropics World Heritage Area. Sadly, Mt Zero and its wildlife are threatened by logging and grazing. AWC discovered Mt Zero, deep in the Coane Mountain Range, when our scientists visited north Queensland last year. They were delighted to find a property rich in native mammals - a real ‘hotspot’ for Australia’s threatened mammal fauna.
    [Show full text]
  • Translocated Boodie (Bettongia Lesuer) Burrowing Effects on Soils and Vegetation
    Translocated boodie (Bettongia lesuer) burrowing effects on soils and vegetation Bryony J. Palmer, Leonie E. Valentine, Cheryl A. Lohr, Gergana N. Daskalova, Richard J. Hobbs. May 2021 This report is based off the published open access research article: Palmer BJ, Valentine LE, Lohr CA, Daskalova GN and Hobbs RJ (2021) Burrowing by translocated boodie (Bettongia leseur) populations alters soils but has limited effects on vegetation. Ecology and Evolution 11: 2596-2615. DOI:10.1992/ece3.7218. Cite this publication as: Palmer, B., Valentine, L., Lohr, C., Daskalova, G., Hobbs, R., 2021. Translocated boodie (Bettongia lesuer) burrowing effects on soils and vegetation. NESP Threatened Sprecies Recovery Hub Project 4.1.7 report, Brisbane. Cover image: The boodie or burrowing bettong (Bettongia lesueur) were once widespread across much of Australia but are now only present on offshore islands or where they have been reintroduced to introduced predator-free exclosures or islands. Image: B. Palmer 2 Contents Acknowledgements ......................................................................................................................................................................................... 4 Executive summary .......................................................................................................................................................................................... 4 Introduction ......................................................................................................................................................................................................
    [Show full text]
  • Mammals of the Avon Region
    Mammals of the Avon Region By Mandy Bamford, Rowan Inglis and Katie Watson Foreword by Dr. Tony Friend R N V E M E O N G T E O H F T W A E I S L T A E R R N A U S T 1 2 Contents Foreword 6 Introduction 8 Fauna conservation rankings 25 Species name Common name Family Status Page Tachyglossus aculeatus Short-beaked echidna Tachyglossidae not listed 28 Dasyurus geoffroii Chuditch Dasyuridae vulnerable 30 Phascogale calura Red-tailed phascogale Dasyuridae endangered 32 phascogale tapoatafa Brush-tailed phascogale Dasyuridae vulnerable 34 Ningaui yvonnae Southern ningaui Dasyuridae not listed 36 Antechinomys laniger Kultarr Dasyuridae not listed 38 Sminthopsis crassicaudata Fat-tailed dunnart Dasyuridae not listed 40 Sminthopsis dolichura Little long-tailed dunnart Dasyuridae not listed 42 Sminthopsis gilberti Gilbert’s dunnart Dasyuridae not listed 44 Sminthopsis granulipes White-tailed dunnart Dasyuridae not listed 46 Myrmecobius fasciatus Numbat Myrmecobiidae vulnerable 48 Chaeropus ecaudatus Pig-footed bandicoot Peramelinae presumed extinct 50 Isoodon obesulus Quenda Peramelinae priority 5 52 Species name Common name Family Status Page Perameles bougainville Western-barred bandicoot Peramelinae endangered 54 Macrotis lagotis Bilby Peramelinae vulnerable 56 Cercartetus concinnus Western pygmy possum Burramyidae not listed 58 Tarsipes rostratus Honey possum Tarsipedoidea not listed 60 Trichosurus vulpecula Common brushtail possum Phalangeridae not listed 62 Bettongia lesueur Burrowing bettong Potoroidae vulnerable 64 Potorous platyops Broad-faced
    [Show full text]
  • Wildlife Carers Dictionary
    Your guide to using the Wildlife Carers Dictionary. The Each dictionary word is highlighted in bold text . The phonetic pronunciation of a word is highlighted in italic text . Wild life Diseases and illnesses are highlighted in red text . Medications are highlighted in green text . Scientific names of Australian native animals most regularly Carers into care are highlighted in purple text . Native animals often have more than one “common” name which are used in different areas of Australia. Some names Dictionary can be quite quirky! You can find these names in blue text . Nouns – a naming word are coded (n.). Verbs – a doing word are coded (v.). Adjectives – a describing word are coded (adj.). Information on Australian habitats can be found in the green boxes. Photographs of Australia’s native animals can be found in the blue boxes. Please note: photos are not necessarily in alphabetical order. Did you know? Quirky, interesting wildlife facts can be found in the orange boxes with red text. Fauna First Aid is supported by the Wildlife Preservation by Linda Dennis Society of Australia and the Australian Geographic Society. Version One 2011 With thanks... About Linda Dennis... This dictionary has been a labour of love and has taken me quite My passion for Australian native animals started nearly 20 some time to write. I’ve loved each and every challenging minute of years ago with my very first raptor experience at Eagle it! Heritage near Margaret River in Western Australia. After an up close and personal experience with a Black Kite perching on I’m excited to bring you this wildlife resource as it’s so very new, to my gloved hand I vowed that I would soon work closely with my knowledge nothing like it has been done in the wildlife community these magnificent creatures.
    [Show full text]
  • Terrestrial Native Mammals of Western Australia
    TERRESTRIALNATIVE MAMMALS OF WESTERNAUSTRALIA On a number of occasionswe have been asked what D as y ce r cus u ist ica ud q-Mul Aara are the marsupialsof W.A. or what is the scientiflcname Anlechinusfla.t,ipes Matdo given to a palticular animal whosecommon name only A n t ec h i nus ap i ca I i s-Dlbbler rs known. Antechinusr osemondae-Little Red Antechinus As a guide,the following list of62 speciesof marsupials A nteclt itus mqcdonneIlens is-Red-eared Antechi nus and 59 speciesof othersis publishedbelow. Antechinus ? b ilar n i-Halney' s Antechinus Antec h in us mqculatrJ-Pismv Antechinus N ingaui r idei-Ride's Nirfaui - MARSUPALIA Ningauirinealvi Ealev's-KimNinsaui Ptaiigole*fuilissima beiiey Planigale Macropodidae Plani gale tenuirostris-Narrow-nosed Planigate Megaleia rufa Red Kangaroo Smi nt hopsis mu rina-Common Dulnart Macropus robustus-Etro Smin t hop[is longicaudat.t-Long-tailed Dunnart M acr opus fu Ii g inos,s-Western Grey Kangaroo Sminthops is cras sicaudat a-F at-tailed Dunnart Macrcpus antilo nus Antilope Kangaroo S-nint hopsi s froggal//- Larapinla Macropu"^agi /rs Sandy Wallaby Stnintllopsirgranuli,oer -Whire-railed Dunnart Macrcpus rirra Brush Wallaby Sninthopsis hir t ipes-Hairy -footed Dunnart M acro ptrs eugenii-T ammar Sminthopsiso oldea-^f r oughton's Dunnart Set oni x brac ltyuru s-Quokka A ntec h inomys lanrger-Wuhl-Wuhl On y ch oga I ea Lng uife r a-Kar r abul M.yr nte c o b ius fasc ialrls-N umbat Ony c hogalea Iunq ta-W \rrur.g Notoryctidae Lagorchest es conspic i Ilat us,Spectacied Hare-Wallaby Notorlctes
    [Show full text]
  • Burrowing Bettong (Boodie) Bettongia Lesueur (Quoy and Gaimard, 1824)
    Burrowing Bettong (Boodie) Bettongia lesueur (Quoy and Gaimard, 1824) The third subspecies (Bettongia. lesueur. graii) is thought to have occurred on the mainland but the taxonomic status of the mainland population is uncertain. Description Small thickset, nocturnal rat-like kangaroo. Yellow-grey above (grey on islands) and light grey below, short rounded ears and a lightly haired and thick tail. Individuals from Bernier and Dorre Islands are larger than those on Barrow and Boodie Islands. Other Common Names Lesueur’s Rat Kangaroo, Lesueur’s Bettong, Burrowing Rat Kangaroo, Tungoo. Boodie is its Noongar name; many other Photo: Babs & Bert Wells/DEC Aboriginal names have been recorded. Bernier and Dorre Islands Head and body length Distribution 360 mm (mean) Bettongia lesueur lesueur occurs on Bernier and Dorre Islands in Shark Bay (Western Australia), and has been reintroduced to Tail length Heirisson Prong and Faure Island in Shark Bay, Dryandra Woodland 285 mm (mean) in the Wheat belt and to Yookamurra Sanctuary and Roxby Downs in South Australia. Weight An unnamed subspecies occurs on Barrow Island and has been 1.28 kg (mean) successfully reintroduced to nearby Boodie Island. Barrow and Boodie Islands An extinct subspecies occurred on the mainland. Specimens and sub-fossil records have been found in western Victoria, western New Head and body length South Wales, south-western Queensland and in South Australia. 280 mm (mean) Abandoned burrow systems are common in Western Australian deserts. Tail length For further information regarding the distribution of this species 207 mm (mean) please refer to www.naturemap.dec.wa.gov.au Weight 0.68 kg (mean) Habitat Subspecies On the mainland and islands, Boodies occupy arid and semi-arid habitats.
    [Show full text]
  • 3984 AWC-Newsletter 2 16/12/02 5:07 PM Page 1
    3984 AWC-newsletter 2 16/12/02 5:07 PM Page 1 newsletter of australian wildlife conservancy wildlife matters saving australia’s threatened wildlife Black-flanked Rock Wallaby Photo: Guy Magowan Please give generously to Numbats our annual appeal. Australian Wildlife Conservancy sanctuaries The proceeds will help fund projects such as: now protect 16 of Australia’s nationally • The translocation of the Banded Hare Wallaby and the Greater Stick-nest Rat threatened mammals and at least 10 of our to Faure Island. • The implementation of a fire nationally threatened birds. management plan to protect the Gouldian Finch and the Purple- Purple-crowned Fairy-wren crowned Fairy Wren at Mornington in Australia’s wildlife is in trouble. Incredibly, one third of the world’s mammals that the Central Kimberley. have become extinct over the last 400 years are Australian. The future for our birds is • The acquisition of additional, potentially disastrous, with one in six bird species listed as threatened with extinction biodiversity-rich land. and many other species declining rapidly. Australia also has more threatened reptiles Each threatened bird and mammal is an than any other nation on earth. ambassador for the broader ecosystem which it shares with a range of other Australian Wildlife Conservancy is taking action to address this extinction crisis. Our 10 species. Please help us protect Australia’s sanctuaries protect 575,000 hectares (1.3 million acres) of diverse habitat ranging from threatened species and their habitats. rainforest and tropical savanna to semi-arid grasslands and mangrove-lined lagoons. Often working in remote and difficult conditions, our field staff are implementing practical, on- See insert for details of how to donate ground programs designed to defeat those forces that threaten our wildlife - feral animals, to our annual appeal.
    [Show full text]
  • (Bettongia Penicillata) in Australia
    The population and epidemiological dynamics associated with recent decline of woylies (Bettongia penicillata) in Australia. Carlo Pacioni DVM, MVS (Cons Med) This thesis is presented for the degree of Doctor of Philosophy of Murdoch University, 2010 Printed on recycled paper Photo: Sabrina Trocini To my wife and friend, Sabrina I declare that this thesis is my own account of my research and contains as its main content work, which has not previously been submitted for a degree at any tertiary education institution. ……………..………………………………………………. Carlo Pacioni I Preface Chapters 5, 6, 7 and 8 are either published papers or manuscripts intended for publication in scientific journals as stand‐alone pieces of work. Consequently, some repetition was unavoidable. In addition, some differences in style are due to the requirements of the targeted journal. The reference style of the remaining chapters follows the current guidelines for the journal of Conservation Biology. The intellectual development and writing of this thesis was carried out by the author. Inclusion of co‐authors in the papers is to acknowledge the contributions of collaborators who provided tissue samples, demographic data, preliminary analysis and/or background information, as well as helpful discussions and editorial comments. II Abstract The woylie or brush‐tailed bettong (Bettongia penicillata ogilbyi) has recently undergone a dramatic decline (approximately 80% between 2001 and 2006). The Woylie Conservation and Research Project (WCRP) was established to investigate possible causes of this decline. It was hypothesised that predators and/or a disease may be a concomitant cause if not the primary cause(s) of the decline, based on the peculiar temporal and spatial characteristics of the decline and available associative evidence.
    [Show full text]
  • 17 Croft & Leiper
    ASSESSMENT OF OPPORTUNITIES FOR INTERNATIONAL TOURISM BASED ON WILD KANGAROOS By David B Croft and Neil Leiper WILDLIFE TOURISM RESEARCH REPORT SERIES: NO. 17 RESEARCH REPORT SERIES EXECUTIVE SUMMARY The primary aim of CRC Tourism’s research report series is technology transfer. The reports are targeted toward both industry and government users and tourism Objectives researchers. The content of this technical report series primarily focuses on applications, but may also advance research methodology and tourism theory. The report series titles relate to CRC Tourism’s research program areas. All research The first objective of this study was to identify various places in reports are peer reviewed by at least two external reviewers. For further information Australia where tourists can have direct experiences of macropods in on the report series, access the CRC website, [www.crctourism.com.au]. a natural habitat, and to assess the likely quality of such an experience. This was achieved by formal inquiry from wildlife Wildlife Tourism Report Series, Editor: Dr Karen Higginbottom researchers and managers with an interest in the kangaroo family, and This series presents research findings from projects within the Wildlife Tourism through analysis of the distribution and biology of species. This part Subprogram of the CRC. The Subprogram aims to provide strategic knowledge to of the study identified 16 important sites in New South Wales, facilitate the sustainable development of wildlife tourism in Australia. Queensland and Victoria for assessment of the feasibility of kangaroo- based tourism. National Library of Australia Cataloguing-in-Publication Data The second objective was to review this set of sites for developing Croft, David B.
    [Show full text]
  • FIELDIANA Geology
    FIELDIANA Geology Publistied by Field Museum of Natural History New Series, No. 8 THE FAMILIES AND GENERA OF MARSUPIALIA LARRY G.MARSHALL •.981 UBRARY FIELD m^cim July 20, 1981 Publication 1320 THE FAMILIES AND GENERA OF MARSUPIALIA FIELDIANA Geology Published by Field Museum of Natural History New Series, No. 8 THE FAMILIES AND GENERA OF MARSUPIALIA LARRY G.MARSHALL Assistant Curator of Fossil Mammals DqMirtment of Geology Field Museum of Natural History Accepted for publication August 6, 1979 July 20, 1981 Publication 1320 Library of Congress Catalog No.: 81-65225 ISSN 0096-2651 PRINTED IN THE UNITED STATES OF AMERICA CONTENTS Part A 1 i^4troduc^on 1 Review of History and Development of Marsupial Systematics 1 Part B 19 Detailed Classification of Families and Genera of Marsupialia 19 I. New World and European Marsupialia 19 Fam. Didelphidae 19 Subfam. Dideiphinae 19 Subfam. Caluromyinae 21 *Subfam. Glasbiinae 21 *Subfam. Caroloameghiniinae 21 •Fam. Sparassocynidae 21 •Fam. Pediomyidae 21 Fam. Microbiotheriidae 21 •Fam. Stagodonddae 22 •Fam. Borhyaenidae 22 •Subfam. Hathlyacyninae 22 •Subfam. Borhyaeninae 23 •Subfam. Prothylacyninae 23 •Subfam. Proborhyaeninae 23 •Fam. Thylacosmilidae 23 •Fam. Argyrolagidae 24 Fam. Caenolesddae 24 Subfam. Caenolestinae 24 Tribe Caenolestini 24 •Tribe Pichipilini 24 •Subfam. Palaeothentinae 24 •Subfam. Abderitinae 25 •Tribe Parabderitini 25 •Tribe Abderitini 25 •Fam. Polydolopidae 25 •Fam. Groeberiidae 25 Marsupialia incertae sedis 25 Marsupialia(?) 25 II. Australasian Marsupialia 26 Fam. Dasyuridae 26 Subfam. Dasyurinae 26 Tribe Dasyurini 26 Tribe Sarcophilini 26 Fam. Myrmecobiidae 27 •Fam. Thylacinidae 27 Fam. Peramelidae 27 Fam. Thylacomyidae 27 Fam. Notoryctidae 27 Fam. Phalangeridae 27 Subfam. Phalangerinae 27 Subfam. Trichosurinae 28 •Fam.
    [Show full text]