Parasitic cones in Tharsis volcanic province on Mars: Implications for its recent magmatic plumbing system B. Pieterek [1] , J. Ciążela [2] , D. Mège[2], P.-A. Tesson[2], M. Ciazela[2], J. Gurgurewicz[2], A. Lagain[3], A. Muszyń ski[1] [1]Institute of Geology, Adam Mickiewicz University, ul. Bogumila Krygowskiego 12, 60-680 Poznan, Poland (
[email protected]), [2]Space Research Centre, Polish Academy of Sciences, ul. Bartycka 18A, 00-716 Warsaw, Poland, [3]School of Earth and Planetary Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia Introduction: Methods: Although Tharsis is the largest volcanic province on Mars, the origin of numerous small 1) The parasitic cones were mapped and dated using ArcMap software combining imagery from: volcanic cones in this area is not yet fully explained. Their genesis may be related to: the Thermal Emission Imaging System (THEMIS) of Mars Odyssey (MO) (spatial resolution 1) the evolution of larger volcanic ediices (Hughes et al., 2005), such as Olympus Mons or the of ~100 m/pixel); Tharsis Montes the Context Camera (CTX) of Mars Reconnaissance Orbiter (MRO) (6 m/pixel). 2) local tectonic trends (Hauber et al., 2009), independent younger magma production events 2) The orientations were plotted on the rose diagrams using Stereonet 10.2. (Bleacher et al., 2007, 2009), or locally-restricted stress ields that differed from the giant 3) Selected parasitic cones were dated using crater counting (>100 m in diameter) with the volcano caldera-wide stress regime (Mouginis-Mark and Christensen, 2005). ArcGIS extension CraterTools2.1 (Kneissl et al., 2011). Ages were obtained by CraterStats II Characterizing the system of small volcanic cones in terms of space and time is essential to (Michael and Neukum, 2010) by applying the Hartmann's [2005] chronology system (Hartmann, understand the Tharsis magmatic plumbing complex.