Market Analysis Perspective for 3D Printing

Total Page:16

File Type:pdf, Size:1020Kb

Market Analysis Perspective for 3D Printing Turning Point: IDC’s View of 3D Print/Additive Manufacturing Tim Greene June 2018 © IDC IDC Forecast View: U.S. 3D Print Market Value ($M) Hardware Materials Services $10,000 20% CAGR $9,000 $8,000 $7,000 $6,000 $5,000 $4,000 $3,000 $2,000 $1,000 $0 2016 2017 2018 2019 2020 2021 2022 © IDC 2 IDC Forecast View: U.S. 3D Printer Shipments 250,000 Fused filament (FFF/FDM) Stereolithography (SLA) Binder Jetting Powder bed Fusion 16% CAGR Select Deposition Lamination (SDL) Material Jetting 200,000 Directed Energy Deposition 150,000 100,000 50,000 - 2015 2016 2017 2018 2019 2020 2021 © IDC 3 Fundamental Value Propositions of 3D Printing for Manufacturing 1. Mass personalization • Customized version of existing products • New products © IDC 4 Fundamental Value Propositions of 3D Printing for Manufacturing 2. Design Freedom • Customer-focused, collaborative design • Ergonomic advantages on manufacturing floor • Unmakeable shapes © IDC 5 Fundamental Value Propositions of 3D Printing for Manufacturing 3. Managing the Supply Chain Traditional supply chain Design Iterate Production Warehouse Distribution Customer A leaner zero-inventory supply chain enabled by 3D printing Design Iterate Production Distribution Customer © IDC 6 Fundamental Value Propositions of 3D Printing for Manufacturing 4. Enabling flexible manufacturing & reducing equipment down time • Short to medium-sized production runs • Parts for tools & testing Crossover equipment Cost per piece point • Changing the 3D print crossover point 0- 10-100 100 – 1,000+ 10 1,000 Number of pieces © IDC 7 Fundamental Value Propositions of 3D Printing for Manufacturing 5. Speed • Iterate economically • Capacity • Automation = Always-on = Faster cycle times • Reduced post-processing . Stratasys Carbon SpeedCell Continuous . 3D Systems Figure FormLabs Build 3D Four FuseCell Demonstrator © IDC 8 Fundamental Value Propositions of 3D Printing for Manufacturing 6. Intelligence of the system • Manage & control multiple devices • Cloud connected • Two-way communication © IDC 9 Forces Driving 3D Printing: Cost & Speed Are Top 3D Printer Frustrations Please indicate your company's top frustrations with 3D printing technology © IDC 10 Turning Point 2018 – Polymer-based 3D Printing . Features grow by leaps and bounds • Speed Speed . Carbon, 3D Systems’, Stratasys, Formlabs, HP . Rise, Essentium HSE • Color . HP, Mimaki, XYZ Printing • Materials for industry-specific solutions Materials Build size . Dental, Aerospace, Automotive • Larger build sizes . BigRep, Cosine, Raise 3D Color © IDC 11 Turning Point 2018 – Metal-based 3D Printing . Metal printing systems proliferate in 2018 • Desktop Metal – Studio system “10X” cheaper than comparable laser- based systems • Formalloy – Laser Metal Deposition – 2 – 100 times faster • GE Additive Arcam EBM Spectra H - 50% increase in build speed, 39% larger build volume. • MarkForged – Now shipping the MetalX - 10x less expensive than alternative metal additive manufacturing technologies • SPEE3D – Supersonic 3D deposition – 100 – 1,000 times faster than laser- based 3D printing • XJET – Nanoparticle Jetting – 5-times faster (no powder) • Optomec - $600K LENS system down to $200K © IDC 12 Forces Driving 3D Printing: Governments Investing in 3D Printing Argentina, Australia, Brazil, Canada, Chile, China, Finland, France, Germany, India, Japan, Mexico, New Zealand, Netherlands, Pakistan, Poland, Russia, Singapore, South Africa, South Korea, Spain, Sweden, Taiwan, UAE, UK, USA © IDC 13 3D Printing/AM Customers & Industries . Companies & Service providers to range of industries • Aerospace & Defense - $800B • Architectural & Engineering - $65B • Automotive - $620B • Education - $4.4T • Energy - $6T • Entertainment - $1.6T • Eyewear - $95B • Footwear - $215B • Jewelry - $443B • Healthcare - $8T • Packaging - $400B © IDC 14 Forces Driving 3D Printing: 3D Printing Adoption in Some of the World’s Biggest Manufacturers . Adidas . Johnson & Johnson . Airbus . Lockheed Martin . Align Technologies . Medtronic Automotive . Arthrex . NASA . Aurora Flight Sciences . New Balance . ASICS . Nike . BAE Systems . Northrop Grumman Aerospace . Bell Helicopter . Puma . Bombardier . Raytheon . BMW . Reebok . Boeing . Rolls-Royce Footwear . Finmeccanica . Safran . Ford . Siemens . Daimler . Sketchers . DJO-Global . Smith & Nephew Orthopedic . GE Additive . Sonova . GKN Aerospace . Stryker . GM . United Technologies . Honeywell . Zimmer Biomet © IDC 15 Key Takeaways . Print technology and materials advancing quickly – new price/performance levels achieved • 3D Printing Technologies are diversifying, but materials deposition still represents 80+% of shipments in 2022 . Digital transformation in manufacturing facilitated by advances in 3D printing • 3D printing/AM will push market to more than $9B in U.S. value by 2022 . Very significant market forces like government & PE investments, and global manufacturers driving change/adoption in the 3D printing market © IDC 16 For More Information Thank you! Tim Greene Research Director [email protected] Twitter https://twitter.com/@IDC LinkedIn https://www.linkedin.com/company/idc www.idc.com © IDC 17.
Recommended publications
  • Advanced Manufacturing Choices
    Advanced Manufacturing Choices Additive Manufacturing Techniques J.Ramkumar Dept of Mechanical Engineering IIT Kanpur [email protected] 2 Table of Contents 1. Introduction: What is Additive Manufacturing 2. Historical development 3. From Rapid Prototyping to Additive Manufacturing (AM) – Where are we today? 4. Overview of current AM technologies 1. Laminated Object Manufacturing (LOM) 2. Fused Deposition Modeling (FDM) 3. 3D Printing (3DP) 4. Selected Laser Sintering (SLS) 5. Electron Beam Melting (EBM) 6. Multijet Modeling (MJM) 7. Stereolithography (SLA) 5. Modeling challenges in AM 6. Additive manufacturing of architected materials 7. Conclusions 3 From Rapid Prototyping to Additive Manufacturing What is Rapid Prototyping - From 3D model to physical object, with a “click” - The part is produced by “printing” multiple slices (cross sections) of the object and fusing them together in situ - A variety of technologies exists, employing different physical principles and working on different materials - The object is manufactured in its final shape, with no need for subtractive processing How is Rapid Prototyping different from Additive Manufacturing? The difference is in the use and scalability, not in the technology itself: Rapid Prototyping: used to generate non-structural and non-functional demo pieces or batch-of-one components for proof of concept. Additive Manufacturing: used as a real, scalable manufacturing process, to generate fully functional final components in high-tech materials for low-batch, high-value manufacturing. 4 Why is Additive Manufacturing the Next Frontier? EBF3 = Electron Beam Freeform Fabrication (Developed by NASA LaRC) 5 Rapid Prototyping vs Additive Manufacturing today AM breakdown by industry today Wohlers Report 2011 ~ ISBN 0-9754429-6-1 6 From Rapid Prototyping to Additive Manufacturing A limitation or an opportunity? Rapid Prototyping in a nutshell 1.
    [Show full text]
  • Desktop Metal Is Set to Change How Metal Is Manufactured with the Fastest Metal 3D Printing System in the World
    April 25, 2017 Desktop Metal Is Set to Change How Metal Is Manufactured with the Fastest Metal 3D Printing System in the World For the First Time, Affordable, Safe and Precise Metal 3D Printing for Both Prototyping and Mass Production Will Be a Reality Across Industries - at Speeds 100x Faster BURLINGTON, Mass.--(BUSINESS WIRE)-- Desktop Metal, the company committed to making metal 3D printing accessible to global manufacturers and engineers, today launched two systems covering the full product lifecycle -- from prototyping to mass production -- which mark a fundamental shift in how products will be developed and brought to market. The DM Studio and DM Production systems change the rules of traditional metal manufacturing solutions with the advent of first-of-its-kind innovative approaches that reduce costs and significantly increase speed, safety, and print quality. This Smart News Release features multimedia. View the full release here: http://www.businesswire.com/news/home/20170425005401/en/ The first office- friendly metal 3D printing system for rapid prototyping, the Desktop Metal Studio System is 10 times less expensive than existing technology today. The system is a complete platform, including both a printer, starting at $49,900, and microwave-enhanced sintering furnace that, The DM Studio System is the world’s first affordable, office-friendly metal 3D together, deliver printing system. (Photo: Business Wire) complex and even impossible geometries of metal 3D printed parts right in an engineer’s office or on the shop floor. The DM Studio System: Eliminates the need for expensive, industrial facilities to safely house the technology. Unlike traditional metal 3D printing processes, the DM Studio System requires no hazardous powders, no lasers and no cutting tools to operate.
    [Show full text]
  • Photopolymers in 3D Printing Applications
    Photopolymers in 3D printing applications Ramji Pandey Degree Thesis Plastics Technology 2014 DEGREE THESIS Arcada Degree Programme: Plastics Technology Identification number: 12873 Author: Ramji Pandey Title: Photopolymers in 3D printing applications Supervisor (Arcada): Mirja Andersson Commissioned by: Abstract: 3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photo- polymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particular focus on photopolymer based sys- tems. The thesis includes extensive literature research on 3D printing and photopolymer systems, which was supported by visit to technology fair and demo experiments. Further, useful information about recent technological advancements in 3D printing and materials was acquired by discussions with companies’ representatives at the fair. This analysis method was helpful to see the industrial based 3D printers and how companies are creat- ing digital materials on its own. Finally, the demo experiment was carried out with fusion deposition modeling (FDM) 3D printer at the Arcada lab. Few objects were printed out using polylactic acid (PLA) material. Keywords: Photopolymers, 3D printing, Polyjet technology, FDM
    [Show full text]
  • Desktop Metal, Inc
    Desktop Metal, Inc. Went public via SPAC with Trine Acquisition Corporation, Desktop Metal, Inc. is accelerating the transformation of manufacturing with end-to-end metal 3D printing solutions. The Company has developed the Studio System+, a three-part solution that automates metal 3D printing. The high resolution printing system is integrated through Desktop Metal’s cloud-based software and provides a seamless worklflow for printing metal parts in-house. • Address: 63 Third Avenue , , Burlington , MA, 01803 • Geographic Region: New England • Industry: Computers and Peripherals, Electronics / Instrumentation, Software • SIC Codes: 3577 - Computer Peripheral Equipment • NAICS Codes: 334119 - Other Computer Peripheral Equipment Manufacturing • Legal Counsel: Latham & Watkins LLP • Company Website: www.desktopmetal.com Key Management Investors • Rubino, Mike - CFO • BMW i Ventures • Schmitt, Peter - Chief Designer • DCVC • Sachs, Ely - Co-Founder • Ford Motor Company • Chiang, Yet-Ming - Co-Founder • Founder Collective • Heart, A. - Co-Founder • Future Fund • Schuh, Christopher - Co-Founder • GE Ventures • Fulop, Ric - Co-Founder, CEO, Director • Google Ventures (GV) • Myerberg, Jonah - Co-Founder, CTO • Kleiner Perkins Caufield & Byers LLC • Chin, Rick - Co-Founder, VP, Software Development (KPCB) • Zuberi, Bilal - Director • Koch Disruptive Technologies (KDT) • Hsieh, Wen - Director • Lowe's Companies, Inc. • Grayson, Dayna - Director • Lux Capital • Knight, Byron - Director • Moonrise Venture Partners • Papa, Steve - Director • New Enterprise
    [Show full text]
  • 3D Printing: Hype Or Game Changer?
    3D printing: hype or game changer? A Global EY Report 2019 What is additive manufacturing? Additive manufacturing (AM), commonly known as 3D printing (3DP), is a digital manufacturing process that involves slicing three-dimensional digital designs into layers and then producing additively, layer by layer, using AM systems and various materials. Table of contents 04 Foreword 05 Key findings 06 About this study 08 3DP moves into the operational mainstream 14 From the lab to the shop window: AM serial production takes off 22 Choosing the right 3DP operating model 28 Growing up with AM 32 How AM can give businesses a competitive edge 36 The evolution of 3DP technologies and materials 40 What holds companies back from adopting 3DP? 44 AM trends, developments and challenges 50 M&A activity in the 3DP market 58 What’s next for AM? 60 How EY teams support companies on their 3DP journey 63 Authors 3D printing: hype or game changer? A Global EY Report 2019 | 3 Foreword In the three years since EY published first 3DP report, additive manufacturing (AM) has grown up. The technology has attracted such exposure that almost two- thirds (65%) of the businesses we surveyed this year have now tried the technology — up from 24% in 2016. Any early skepticism that predictions of 3DP’s transformative potential were just hype have been laid to rest. AM has joined the armory of production technologies, with 18% of companies already using it to make end- use products for customers and consumers. This means that the crucial “early majority” — whose buy-in is essential to the success of any new technology — have been won over.
    [Show full text]
  • History of Additive Manufacturing
    Wohlers Report 2012 State of the Industry History of additive This 26-page document is a part of Wohlers Report 2012 and was created for its readers. The document chronicles the history of additive manufacturing manufacturing (AM) and 3D printing, beginning with the initial commercialization of by Terry Wohlers and Tim Gornet stereolithography in 1987 to May 2011. Developments from May 2011 to May 2012 are available in the complete 287-page version of the report. An analysis of AM, from the earliest inventions in the 1960s to the 1990s, is included in the final several pages of this document. Additive manufacturing first emerged in 1987 with stereolithography (SL) from 3D Systems, a process that solidifies thin layers of ultraviolet (UV) light- sensitive liquid polymer using a laser. The SLA-1, the first commercially available AM system in the world, was the precursor of the once popular SLA 250 machine. (SLA stands for StereoLithography Apparatus.) The Viper SLA product from 3D Systems replaced the SLA 250 many years ago. In 1988, 3D Systems and Ciba-Geigy partnered in SL materials development and commercialized the first-generation acrylate resins. DuPont’s Somos stereolithography machine and materials were developed the same year. Loctite also entered the SL resin business in the late 1980s, but remained in the industry only until 1993. After 3D Systems commercialized SL in the U.S., Japan’s NTT Data CMET and Sony/D-MEC commercialized versions of stereolithography in 1988 and 1989, respectively. NTT Data CMET (now a part of Teijin Seiki, a subsidiary of Nabtesco) called its system Solid Object Ultraviolet Plotter (SOUP), while Sony/D-MEC (now D-MEC) called its product Solid Creation System (SCS).
    [Show full text]
  • Stereolithography the First 3D Printing Technology Designated May 18, 2016
    ASME Historic Mechanical Engineering Landmark Stereolithography The First 3D Printing Technology Designated May 18, 2016 The American Society of Mechanical Engineers Mr. Hull made two significant contributions that advanced the viability of 3D technology: • He designed/established the STL file format that is widely accepted for defining 3D images in 3D printing software. • He established the digital slicing and in-fill Historical Significance of the strategies common in most 3D printing processes. Landmark Mr. Hull obtained patent no. 4,575,330 (filed Stereolithography is recognized as the first August 8, 1984) for an “Apparatus for production commercial rapid prototyping device for what of three-dimensional objects by is commonly known today as 3D printing. 3D stereolithography.” In 1986, he co-founded 3D printing is revolutionizing the way the world Systems, Inc. (3D Systems) to commercialize the thinks and creates, and has been identified as technology. 3D Systems introduced their first 3D a ‘disruptive technology’ – an innovation that printer, the SLA-1, in 1987. has displaced established technologies and created new industries. ASME Landmark Plaque Text 3D Systems SLA-1 3D Printer | 1987 This is the first 3D printer manufactured for commercial sale and use. This system pioneered the rapid development of additive manufacturing, a method in which material is added layer-by-layer to form a solid object, as opposed to traditional manufacturing in which material is cut or machined away. The SLA-1 is based on stereolithography, using a precisely controlled beam of UV light to solidify liquid polymers one layer at a time. Stereolithography process Chuck Hull developed stereolithography in 1983 and formed 3D Systems to manufacture and While the origins of 3D printing date back to market a commercial printer.
    [Show full text]
  • Additive Manufacturing Lead Contractor of the PP5 – RDA Pilsen Deliverable: Authors: PP5 – RDA Contractual Delivery 31.01.2022 Date
    WPT3 D.T3.2.10 Virtual demonstration centre – Additive Version 1 manufacturing 03/2021 Project information Project Index Number: CE1519 Project Acronym: CHAIN REACTIONS Project Title: Driving smart industrial growth through value chain innovation Website: https://www.interreg-central.eu/Content.Node/CHAIN-REACTIONS.html Start Date of the Pro- 01.04.2019 ject: Duration: 36 Months Document Control page DT3.2.10 – Joint implementation report for the pilot in the advanced manu- Deliverable Title: facturing sector – virtual demonstration centre – additive manufacturing Lead Contractor of the PP5 – RDA Pilsen Deliverable: Authors: PP5 – RDA Contractual Delivery 31.01.2022 Date: Actual Delivery Date: 25.03.2021 Page I Table of content 1 Introduction ......................................................................................... 1 2 Division of 3D printing technologies ............................................................. 1 2.1 Selective Laser Sintering – SLS ............................................................................................... 1 2.2 Selective laser melting - SLM ................................................................................................. 2 2.3 Stereolithography - SLA ......................................................................................................... 2 2.4 Fused deposition Modelling - FDM ....................................................................................... 3 2.5 Electronic beam melting - EBM ............................................................................................
    [Show full text]
  • University of California, Irvine
    UNIVERSITY OF CALIFORNIA, IRVINE Application of Fused Deposition Modeling and Stereolithography Processes for Fabrication of Point-of-Care Bioassay Platforms THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Materials Science and Engineering by Yang-chung Lee Thesis Committee: Professor Marc Madou, Chair Project Scientist Lawrence Kulinsky Professor James Earthman 2016 © 2016 Yang-chung Lee TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGMENTS vii ABSTRACT OF THE THESIS viii 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Background 2 1.2.1 History of Additive Manufacturing 2 1.2.2 CAD-file Preparation for Additive Manufacturing 3 1.2.3 Introduction to Additive Manufacturing Technologies – FDM and SLA 4 1.2.4 Advantages of Additive Manufacturing Techniques for the Microfluidic Device 8 1.3 Researches on FDM Microfluidics 9 1.4 Researches on SLA Microfluidics 12 1.5 Objective of Thesis 13 2. MALARIA – AB IMMUNOASSAY 15 3. FDM IMMUNOASSAY PROTOTYPES - DESIGN FOR ADDITIVE MANUFACTURING 17 3.1 Printing TPU with Airwolf AW3D HD2x (FDM) Printer 17 3.2 Difference between ABS and TPU Printing 21 ii 3.3 Design for TPU Prototypes 22 3.4 Minimize Surface Defects on the Prototypes 23 3.5 Design of TPU Prototypes for the Malaria-Ab Immunoassay 26 3.5.1 3D Printed ABS Device for the Malaria-Ab Immunoassay 26 3.5.2 First Generation of TPU Prototypes for the Malaria-Ab Immunoassay 27 3.5.3 Second Generation of TPU Prototypes for the Malaria-Ab Immunoassay 30 3.6 Discussion on TPU Immunoassay Prototypes 31 4.
    [Show full text]
  • Ceramic Binder Jetting Additive Manufacturing: a Literature Review on Density
    Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density Wenchao Dua, Xiaorui Renb, Zhijian Peia, Chao Maa,b,c,* a Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX b Department of Mechanical Engineering, Texas A&M University, College Station, TX c Department of Engineering Technology & Industrial Distribution, Texas A&M University, College Station, TX *[email protected] Abstract The objective of this review paper is to summarize the current status and identify the knowledge gaps in ceramic binder jetting additive manufacturing, in a particular focus on density. This paper begins with an overview of the process, material considerations, and process parameters. It then discusses different aspects of density, including various terminologies, measurement methods, and achieved values. Afterwards, it reviews two categories of techniques to increase the part density: material preparation techniques (powder granulation, mixing powders of different sizes, using slurry feedstock, and mixing different materials) and post-processing techniques (sintering, chemical reaction, infiltration, and isostatic pressing). Finally, it presents the knowledge gaps in the literature. 1 Introduction Ceramic materials can have outstanding properties, such as extraordinary hardness, excellent resistance to wear, heat, and corrosion, and exceptional biocompatibility. Therefore, ceramic materials have a wide range of applications, from orthopaedic and dental implants in the biomedical industry to engine components in the aerospace and automotive industries. However, 1 it is very costly to fabricate ceramic parts of complex shapes using conventional manufacturing techniques. For complex ceramic parts, tooling can contribute up to 80% of the overall cost if conventional techniques are used [1]. Conventional techniques have other disadvantages including excessive cost in prototyping and difficulty to make design changes.
    [Show full text]
  • Long-Term Technological and Industrial Plan Project No
    Long-term technological and industrial plan Project No. 601217-EPP-1-2018-1-BE-EPPKA2-SSA-B This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Document Details Deliverable Number: 1.3 Due Date : May, 2020 Leading Organisation: Lortek Participating Orgnisations: AITIIP, CECIMO, EC Nantes, EPMA, EWF, IDONIAL, ISQ, LMS, LZH, Materialise, MTC, Polimi, Renishaw, UBRUN Languages(s): English Dissemination level: Public SAM – LONG TERM TECHNOLOGICAL AND INDUSTRIAL PLAN Project No. 601217-EPP-1-2018-1-BE-EPPKA2-SSA-B Page 2 1. Executive summary ......................................................................................................................... 5 2. Introduction .................................................................................................................................... 7 3. Methodology .................................................................................................................................. 9 4. Initiatives in Additive Manufacturing............................................................................................ 10 5. AM technological trend evolution to 2030 ................................................................................... 11 Technological Roadmaps ..................................................................................................... 12 AM motion
    [Show full text]
  • Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: a Holistic Materials–Process Perspective
    pharmaceutics Review Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective Mohammad A. Azad 1,*, Deborah Olawuni 1, Georgia Kimbell 1, Abu Zayed Md Badruddoza 2 , Md. Shahadat Hossain 3 and Tasnim Sultana 4 1 Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; [email protected] (D.O.); [email protected] (G.K.) 2 Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; [email protected] 3 Department of Engineering Technology, Queensborough Community College, City University of New York (CUNY), Bayside, NY 11364, USA; [email protected] 4 Department of Public Health, School of Arts and Sciences, Massachusetts College of Pharmacy and Health Sciences (MCPHS), Boston, MA 02115, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-336-285-3701 Received: 1 January 2020; Accepted: 30 January 2020; Published: 3 February 2020 Abstract: Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer–active pharmaceutical ingredient (API) combinations, impact the printing process.
    [Show full text]