Mouse Tmx4 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Tmx4 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Tmx4 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tmx4 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tmx4 gene (NCBI Reference Sequence: NM_029148 ; Ensembl: ENSMUSG00000034723 ) is located on Mouse chromosome 2. 8 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 8 (Transcript: ENSMUST00000038228). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tmx4 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-20P22 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 16.42% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 4004 bp, and the size of intron 2 for 3'-loxP site insertion: 18288 bp. The size of effective cKO region: ~834 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 8 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Tmx4 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7116bp) | A(31.1% 2213) | C(16.36% 1164) | T(34.43% 2450) | G(18.11% 1289) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr2 - 134640088 134643087 3000 browser details YourSeq 91 1122 1664 3000 93.6% chr3 - 68569639 68570254 616 browser details YourSeq 84 1505 1667 3000 87.2% chr1 + 185740651 185740809 159 browser details YourSeq 82 1313 1668 3000 92.0% chr11 + 109128920 109129523 604 browser details YourSeq 81 1308 1667 3000 92.8% chr1 - 76008683 76009071 389 browser details YourSeq 79 1540 1665 3000 95.5% chr10 - 126553454 126553593 140 browser details YourSeq 77 1519 1656 3000 82.3% chr4 - 120328405 120328524 120 browser details YourSeq 74 1500 1658 3000 83.2% chr12 - 85740861 85740993 133 browser details YourSeq 71 1566 1674 3000 80.8% chr12 + 23980092 23980172 81 browser details YourSeq 69 1501 1614 3000 89.8% chr5 - 33454150 33454261 112 browser details YourSeq 66 1514 1632 3000 88.6% chr11 + 90325674 90325977 304 browser details YourSeq 65 1309 1658 3000 92.2% chr1 + 39507246 39507602 357 browser details YourSeq 64 1555 1654 3000 95.9% chr19 - 10348924 10349159 236 browser details YourSeq 63 1316 1577 3000 93.3% chr11 + 114219482 114219823 342 browser details YourSeq 59 1556 1663 3000 80.0% chr10 + 68860316 68860411 96 browser details YourSeq 58 1563 1667 3000 77.8% chr11 - 44981193 44981263 71 browser details YourSeq 57 1605 1667 3000 96.8% chr9 - 42408222 42408330 109 browser details YourSeq 56 1554 1658 3000 93.8% chr11 - 89343139 89343419 281 browser details YourSeq 55 1510 1667 3000 76.1% chr4 - 137065387 137065526 140 browser details YourSeq 55 1601 1666 3000 95.4% chr10 + 3865777 3865920 144 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr2 - 134636472 134639471 3000 browser details YourSeq 87 1255 1386 3000 84.7% chr12 + 83517302 83834723 317422 browser details YourSeq 79 1294 1420 3000 91.8% chr12 + 110973759 110973885 127 browser details YourSeq 77 1255 1419 3000 86.6% chr15 - 79204307 79204472 166 browser details YourSeq 77 1212 1414 3000 82.3% chr3 + 34760673 34760875 203 browser details YourSeq 73 1208 1420 3000 82.2% chr15 - 71912150 71912345 196 browser details YourSeq 73 1263 1420 3000 84.8% chr5 + 151087533 151087724 192 browser details YourSeq 72 1270 1416 3000 89.3% chr4 - 32910697 32910850 154 browser details YourSeq 69 1272 1420 3000 82.9% chr6 - 73271945 73272095 151 browser details YourSeq 66 1286 1420 3000 89.3% chr8 - 105809657 105809792 136 browser details YourSeq 66 2683 2771 3000 90.0% chr17 - 57884136 57884220 85 browser details YourSeq 65 2573 2894 3000 72.6% chrX + 111730134 111730396 263 browser details YourSeq 64 2576 2894 3000 70.0% chr3 - 69822037 69822236 200 browser details YourSeq 64 1270 1478 3000 94.6% chr4 + 134205832 134206316 485 browser details YourSeq 64 1331 1420 3000 85.6% chr14 + 52283429 52283518 90 browser details YourSeq 64 1265 1569 3000 92.4% chr11 + 61035685 61036050 366 browser details YourSeq 63 1264 1420 3000 82.3% chr4 - 138294661 138294817 157 browser details YourSeq 62 1272 1420 3000 88.8% chr1 - 188313821 188313970 150 browser details YourSeq 61 1270 1420 3000 85.1% chr7 + 30338490 30338641 152 browser details YourSeq 61 1347 1551 3000 82.8% chr7 + 16982121 16982679 559 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Tmx4 thioredoxin-related transmembrane protein 4 [ Mus musculus (house mouse) ] Gene ID: 52837, updated on 10-Oct-2019 Gene summary Official Symbol Tmx4 provided by MGI Official Full Name thioredoxin-related transmembrane protein 4 provided by MGI Primary source MGI:MGI:106558 See related Ensembl:ENSMUSG00000034723 Gene type protein coding RefSeq status PROVISIONAL Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Txndc13; AI843224; AW046784; mKIAA1162; D2Bwg1356e; 2810417D04Rik; 4930500L08Rik Expression Broad expression in frontal lobe adult (RPKM 23.2), cerebellum adult (RPKM 18.6) and 21 other tissues See more Orthologs human all Genomic context Location: 2 F2; 2 65.66 cM See Tmx4 in Genome Data Viewer Exon count: 8 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 2 NC_000068.7 (134594501..134644121, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 2 NC_000068.6 (134420237..134469857, complement) Chromosome 2 - NC_000068.7 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 4 transcripts Gene: Tmx4 ENSMUSG00000034723 Description thioredoxin-related transmembrane protein 4 [Source:MGI Symbol;Acc:MGI:106558] Gene Synonyms 2810417D04Rik, 4930500L08Rik, D2Bwg1356e, Txndc13 Location Chromosome 2: 134,594,185-134,644,145 reverse strand. GRCm38:CM000995.2 About this gene This gene has 4 transcripts (splice variants), 148 orthologues, 13 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Tmx4-201 ENSMUST00000038228.10 5488 335aa ENSMUSP00000045154.4 Protein coding CCDS16784 Q0P5W2 Q8C0L0 TSL:1 GENCODE basic APPRIS P2 Tmx4-203 ENSMUST00000110120.1 2602 183aa ENSMUSP00000105747.1 Protein coding - A2ARI0 TSL:1 GENCODE basic APPRIS ALT2 Tmx4-202 ENSMUST00000110119.1 596 166aa ENSMUSP00000105746.1 Protein coding - A2ARI1 TSL:2 GENCODE basic Tmx4-204 ENSMUST00000137377.1 3917 No protein - lncRNA - - TSL:1 69.96 kb Forward strand 134.60Mb 134.62Mb 134.64Mb Contigs AL845418.17 > Genes (Comprehensive set... < Tmx4-201protein coding < Tmx4-204lncRNA < Tmx4-203protein coding < Tmx4-202protein coding Regulatory Build 134.60Mb 134.62Mb 134.64Mb Reverse strand 69.96 kb Regulation Legend CTCF Enhancer Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding RNA gene Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000038228 < Tmx4-201protein coding Reverse strand 49.96 kb ENSMUSP00000045... Transmembrane heli... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Cleavage site (Sign... Superfamily Thioredoxin-like superfamily Pfam Thioredoxin domain PROSITE profiles Thioredoxin domain PROSITE patterns Thioredoxin, conserved site PANTHER PTHR46107 PTHR46107:SF1 Gene3D 3.40.30.10 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 40 80 120 160 200 240 280 335 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
    Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!).
    [Show full text]
  • Supplementary Table S2
    1-high in cerebrotropic Gene P-value patients Definition BCHE 2.00E-04 1 Butyrylcholinesterase PLCB2 2.00E-04 -1 Phospholipase C, beta 2 SF3B1 2.00E-04 -1 Splicing factor 3b, subunit 1 BCHE 0.00022 1 Butyrylcholinesterase ZNF721 0.00028 -1 Zinc finger protein 721 GNAI1 0.00044 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 GNAI1 0.00049 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 PDE1B 0.00069 -1 Phosphodiesterase 1B, calmodulin-dependent MCOLN2 0.00085 -1 Mucolipin 2 PGCP 0.00116 1 Plasma glutamate carboxypeptidase TMX4 0.00116 1 Thioredoxin-related transmembrane protein 4 C10orf11 0.00142 1 Chromosome 10 open reading frame 11 TRIM14 0.00156 -1 Tripartite motif-containing 14 APOBEC3D 0.00173 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3D ANXA6 0.00185 -1 Annexin A6 NOS3 0.00209 -1 Nitric oxide synthase 3 SELI 0.00209 -1 Selenoprotein I NYNRIN 0.0023 -1 NYN domain and retroviral integrase containing ANKFY1 0.00253 -1 Ankyrin repeat and FYVE domain containing 1 APOBEC3F 0.00278 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F EBI2 0.00278 -1 Epstein-Barr virus induced gene 2 ETHE1 0.00278 1 Ethylmalonic encephalopathy 1 PDE7A 0.00278 -1 Phosphodiesterase 7A HLA-DOA 0.00305 -1 Major histocompatibility complex, class II, DO alpha SOX13 0.00305 1 SRY (sex determining region Y)-box 13 ABHD2 3.34E-03 1 Abhydrolase domain containing 2 MOCS2 0.00334 1 Molybdenum cofactor synthesis 2 TTLL6 0.00365 -1 Tubulin tyrosine ligase-like family, member 6 SHANK3 0.00394 -1 SH3 and multiple ankyrin repeat domains 3 ADCY4 0.004 -1 Adenylate cyclase 4 CD3D 0.004 -1 CD3d molecule, delta (CD3-TCR complex) (CD3D), transcript variant 1, mRNA.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Mutations Suggests Both Loss-Of-Function and Gain-Of-Function Effects Morag A
    © 2021. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2021) 14, dmm047225. doi:10.1242/dmm.047225 RESEARCH ARTICLE Hearing impairment due to Mir183/96/182 mutations suggests both loss-of-function and gain-of-function effects Morag A. Lewis1,2,*, Francesca Di Domenico1, Neil J. Ingham1,2, Haydn M. Prosser2 and Karen P. Steel1,2 ABSTRACT birth. However, this is not the cause of the hearing loss; even before The microRNA miR-96 is important for hearing, as point mutations in the onset of normal hearing, homozygote hair cells fail to mature humans and mice result in dominant progressive hearing loss. Mir96 both morphologically and physiologically, remaining in their is expressed in sensory cells along with Mir182 and Mir183, but the immature state, and heterozygote hair cells show a developmental roles of these closely-linked microRNAs are as yet unknown. Here, delay. miR-96 is thus thought to be responsible for coordinating we analyse mice carrying null alleles of Mir182, and of Mir183 and hair cell maturation (Chen et al., 2014; Kuhn et al., 2011). Mir96 together to investigate their roles in hearing. We found that Overexpression of the three miRNAs also results in cochlear defects Mir183/96 heterozygous mice had normal hearing and homozygotes and hearing loss (Weston et al., 2018). The complete loss of all were completely deaf with abnormal hair cell stereocilia bundles and mature miRNAs from the inner ear results in early developmental reduced numbers of inner hair cell synapses at 4 weeks of age. defects including a severely truncated cochlear duct (Friedman Mir182 knockout mice developed normal hearing then exhibited et al., 2009; Soukup et al., 2009).
    [Show full text]
  • Supplementary Material Contents
    Supplementary Material Contents Immune modulating proteins identified from exosomal samples.....................................................................2 Figure S1: Overlap between exosomal and soluble proteomes.................................................................................... 4 Bacterial strains:..............................................................................................................................................4 Figure S2: Variability between subjects of effects of exosomes on BL21-lux growth.................................................... 5 Figure S3: Early effects of exosomes on growth of BL21 E. coli .................................................................................... 5 Figure S4: Exosomal Lysis............................................................................................................................................ 6 Figure S5: Effect of pH on exosomal action.................................................................................................................. 7 Figure S6: Effect of exosomes on growth of UPEC (pH = 6.5) suspended in exosome-depleted urine supernatant ....... 8 Effective exosomal concentration....................................................................................................................8 Figure S7: Sample constitution for luminometry experiments..................................................................................... 8 Figure S8: Determining effective concentration .........................................................................................................
    [Show full text]
  • Vitamin K Epoxide Reductase Prefers ER Membrane- Anchored Thioredoxin-Like Redox Partners
    Vitamin K epoxide reductase prefers ER membrane- anchored thioredoxin-like redox partners Sol Schulman, Belinda Wang, Weikai Li, and Tom A. Rapoport1 Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 Contributed by Tom A. Rapoport, July 11, 2010 (sent for review May 17, 2010) Vitamin K epoxide reductase (VKOR) sustains blood coagulation of this reaction (9). In a first step (Fig. 1A), the reduced CXXC by reducing vitamin K epoxide to the hydroquinone, an essential motif of the Trx-like protein domain transfers electrons to two cofactor for the γ-glutamyl carboxylation of many clotting factors. conserved cysteines in a periplasmic loop of VKOR (Fig. S1); this The physiological redox partner of VKOR remains uncertain, but is loop is located between transmembrane (TM) segments 1 and 2 likely a thioredoxin-like protein. Here, we demonstrate that human of the four-TM bundle surrounding the quinone. The reaction VKOR has the same membrane topology as the enzyme from proceeds through a mixed disulfide bridge intermediate, in which Synechococcus sp., whose crystal structure was recently deter- the N-terminal cysteine in the CXXC motif of the Trx-like mined. Our results suggest that, during the redox reaction, domain is linked with the N-terminal loop cysteine in VKOR Cys43 in a luminal loop of human VKOR forms a transient disulfide (Fig. 1A; boxed intermediate). This mixed disulfide bridge is sub- bond with a thioredoxin (Trx)-like protein located in the lumen of sequently resolved by attack of the C-terminal cysteine in the the endoplasmic reticulum (ER).
    [Show full text]
  • Protein Disulfide–Isomerase, a Folding Catalyst and a Redox-Regulated
    Free Radical Biology and Medicine 83 (2015) 305–313 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Protein disulfide–isomerase, a folding catalyst and a redox-regulated chaperone Lei Wang 1, Xi Wang 1, Chih-chen Wang n National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China article info abstract Article history: Protein disulfide–isomerase (PDI) was the first protein-folding catalyst to be characterized, half a century Received 20 November 2014 ago. It plays critical roles in a variety of physiological events by displaying oxidoreductase and redox- Received in revised form regulated chaperone activities. This review provides a brief history of the identification of PDI as both an 4 February 2015 enzyme and a molecular chaperone and of the recent advances in studies on the structure and dynamics Accepted 7 February 2015 of PDI, the substrate binding and release, and the cooperation with its partners to catalyze oxidative Available online 17 February 2015 protein folding and maintain ER redox homeostasis. In this review, we highlight the structural features of Keywords: PDI, including the high interdomain flexibility, the multiple binding sites, the two synergic active sites, Chaperone and the redox-dependent conformational changes. Endoplasmic reticulum & 2015 Elsevier Inc. All rights reserved. Oxidative protein folding Protein conformation Protein disulfide–isomerise Redox regulation Introduction normal biological functions” [4]. The concept of chaperone- assisted protein folding/unfolding/assembly/disassembly, i.e., the Remarkable early work by Hsien Wu [1] and others established “assisted self-assembly” principle, expands the protein folding the first theory of protein denaturation.
    [Show full text]
  • A Concise Review of Human Brain Methylome During Aging and Neurodegenerative Diseases
    BMB Rep. 2019; 52(10): 577-588 BMB www.bmbreports.org Reports Invited Mini Review A concise review of human brain methylome during aging and neurodegenerative diseases Renuka Prasad G & Eek-hoon Jho* Department of Life Science, University of Seoul, Seoul 02504, Korea DNA methylation at CpG sites is an essential epigenetic mark position of carbon in the cytosine within CG dinucleotides that regulates gene expression during mammalian development with resultant formation of 5mC. The symmetrical CG and diseases. Methylome refers to the entire set of methylation dinucleotides are also called as CpG, due to the presence of modifications present in the whole genome. Over the last phosphodiester bond between cytosine and guanine. The several years, an increasing number of reports on brain DNA human genome contains short lengths of DNA (∼1,000 bp) in methylome reported the association between aberrant which CpG is commonly located (∼1 per 10 bp) in methylation and the abnormalities in the expression of critical unmethylated form and referred as CpG islands; they genes known to have critical roles during aging and neuro- commonly overlap with the transcription start sites (TSSs) of degenerative diseases. Consequently, the role of methylation genes. In human DNA, 5mC is present in approximately 1.5% in understanding neurodegenerative diseases has been under of the whole genome and CpG base pairs are 5-fold enriched focus. This review outlines the current knowledge of the human in CpG islands than other regions of the genome (3, 4). CpG brain DNA methylomes during aging and neurodegenerative islands have the following salient features. In the human diseases.
    [Show full text]
  • TMX2) Regulates the Ran Protein Gradient and Importin-Β-Dependent Nuclear Cargo Transport Ami Oguro1,2 & Susumu Imaoka1
    www.nature.com/scientificreports OPEN Thioredoxin-related transmembrane protein 2 (TMX2) regulates the Ran protein gradient and importin-β-dependent nuclear cargo transport Ami Oguro1,2 & Susumu Imaoka1 TMX2 is a thioredoxin family protein, but its functions have not been clarifed. To elucidate the function of TMX2, we explored TMX2-interacting proteins by LC-MS. As a result, importin-β, Ran GTPase (Ran), RanGAP, and RanBP2 were identifed. Importin-β is an adaptor protein which imports cargoes from cytosol to the nucleus, and is exported into the cytosol by interaction with RanGTP. At the cytoplasmic nuclear pore, RanGAP and RanBP2 facilitate hydrolysis of RanGTP to RanGDP and the disassembly of the Ran-importin-β complex, which allows the recycling of importin-β and reentry of Ran into the nucleus. Despite its interaction of TMX2 with importin-β, we showed that TMX2 is not a transport cargo. We found that TMX2 localizes in the outer nuclear membrane with its N-terminus and C-terminus facing the cytoplasm, where it co-localizes with importin-β and Ran. Ran is predominantly distributed in the nucleus, but TMX2 knockdown disrupted the nucleocytoplasmic Ran gradient, and the cysteine 112 residue of Ran was important in its regulation by TMX2. In addition, knockdown of TMX2 suppressed importin-β-mediated transport of protein. These results suggest that TMX2 works as a regulator of protein nuclear transport, and that TMX2 facilitates the nucleocytoplasmic Ran cycle by interaction with nuclear pore proteins. Tioredoxin-related transmembrane proteins (TMXs) are protein disulfde isomerase (PDI) family members and possess a transmembrane region.
    [Show full text]
  • TMX1 Preferentially Acts Upon Transmembrane Polypeptides
    Research Collection Doctoral Thesis In vivo characterization of TMX1: TMX1 preferentially acts upon transmembrane polypeptides Author(s): Brambilla Pisoni, Giorgia Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010665921 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23381 IN VIVO CHARACTERIZATION OF TMX1: TMX1 PREFERENTIALLY ACTS UPON TRANSMEMBRANE POLYPEPTIDES A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by GIORGIA BRAMBILLA PISONI Laurea Magistrale in Biologia Molecolare della Cellula, Università degli Studi di Milano born on 08.02.1986 citizen of Italy accepted on the recommendation of Markus Aebi Maurizio Molinari Paola Picotti Roberto Sitia 2016 Parts of this thesis have been published in the following articles: Noack, J., Brambilla Pisoni, G. & Molinari, M. Proteostasis: bad news and good news from the endoplasmic reticulum. Swiss medical weekly 144, w14001, doi:10.4414/smw.2014.14001 (2014). Tannous, A., Brambilla Pisoni, G., Hebert, D. N. & Molinari, M. N-linked sugar-regulated protein folding and quality control in the ER. Seminars in Cell & Developmental Biology 41, 79-89, doi:10.1016/j.semcdb.2014.12.001 (2015). Brambilla Pisoni, G., Ruddock, L. W., Bulleid, N. J. & Molinari, M. Division of labor among oxidoreductases: TMX1 preferentially acts on transmembrane polypeptides. Mol Biol Cell 26(19):3390-400. doi: 10.1091/mbc.E15-05-0321 (2015). Brambilla Pisoni, G. & Molinari, M. Five Questions (with their Answers) on ER-associated Degradation.
    [Show full text]