Spiders at the Cinema

Total Page:16

File Type:pdf, Size:1020Kb

Spiders at the Cinema ACADEMIA Spider ecology, behavior, and learning Behavioral Ecology Spiders at the Cinema Focus on extremely receptive sensory organs allow MACIEJ BARTOS them to perceive those signals accurately, There are plenty Faculty of Biology and Environmental Protection helping them construct complex webs and of spiders that are University of Łódź remotely localize insects flying or scuttling as colorful as the [email protected] nearby. Eyesight and sensory organs used prettiest butterflies, Dr Maciej Bartos studies the behavior of jumping spiders to perceive chemical stimuli also play an have better eyesight important role in orientation and commu- than many birds or In spite of severe brain size limitations, nication between individuals. Most spiders’ mammals, and exhibit many spiders are able to solve simple eyes, like those of insects, are not more complex behavior complex problems, recognize their prey capable of perceiving complex images. They than many higher allow them to notice motion, changes in light animals. Pictured: with great accuracy, and learn new intensity, and to a lesser degree allow them American Cardinal hunting techniques to identify a partner or prey. As such the jumper (Phiddippus majority of spiders exhibit relatively simple cardinalis) To most people, spiders are hairy crea- behavior. However, not tures that lurk in dark corners behind the all spiders are limited by cupboard. They are widely disliked, and low acuity of vision. in some people even trigger panic fuelled There is in fact a large by tales of the creatures’ terrible venom. group of diurnal spiders However, arachnophobia can be cured: those whose world is domi- afflicted simply need to find out more about nated by visual stimuli. spiders and get to know them better. In They see color, includ- reality, apart from the genuinely scary ones, ing wavelengths in the many spiders are as colorful as the prettiest UV range, they are able butterflies, have better eyesight than many to differentiate complex birds or mammals, and exhibit more com- configurations of viewed plex behavior than many higher animals. objects, and their visual Their excellent vision and small brain size acuity exceeds that of make them a good model for research into learning and decision making processes in animals. Perhaps surprisingly, some such studies involve setting up miniature cin- emas for the spiders, allowing researchers to study how they perceive their world and how they make decisions based on the infor- mation available. In light and darkness Spiders form a large and diverse group of predatory arthropods. The majority of the over 42,000 described spider species have poor eyesight and are mainly active at night. The sensory world they live in is made up of different kinds of vibrations: airborne, those transmitted by the substrate, their nests or webs, and tensions in their cuticle trig- gered by various mechanical stimuli. Their Keith Stewart/bugsinthenews.info 16 No. 2 (30) No. 2011 ACADEMIA Focus on Behavioral Ecology Maciej Bartos many vertebrates, even ones with vision the corneal lens there is a long tube reach- Dune jumping spider as good as cats or pigeons. This is the fam- ing far into the cephalothorax. At the end is examining its prey ily of jumping spiders (Salticidae), owing the retina, with another lens in front, magni- their name to their ability to jump to escape fying the image 1.5 times. The long, tubular enemies or while hunting prey. They are eyes, the narrow retina and the additional the largest and most diverse spider fam- lens mean that the spiders are as if looking ily. Although only 60 species of jumping through a telescope – the image is magni- spiders can be found in Poland, there are fied, although the field of vision is very nar- over 5300 different species worldwide. It row (approx. 10o). Despite this and the fact is worth noting that the majority have been that the corneal lens is immobile, making it described by Polish taxonomists, Prof. Jerzy impossible to look around, jumping spiders Prószyński, Prof. Wanda Wesołowska, and have developed a unique muscular system Prof. Marek Żabka. moving the retina inside the cephalothorax while the lens stays fixed. The system of six Extraordinary eyes muscle pairs attached to the surface of the Despite their name, the most extraordi- visual tube provides the retina with relative- nary thing about jumping spiders is not ac- ly free movement inside the cephalothorax, tually their ability to jump – which is, after increasing the visual field to around 60o. In all, shared by certain other spiders. They are order to see an object in full, the spider must truly distinguished by their extremely well first examine it closely – scan it bit by bit – developed vision, centered in one of their and assemble the images to form a whole. four pairs of eyes, which represent a unique The retina has a distinct, narrow V shape of evolutionary adaptation in the animal king- densely spaced receptors, with the arms of dom in terms of structure and function. The the V facing towards the lens. This arrange- eyes are all located around the cephalotho- ment provides sharp resolution of objects at rax, giving the animal an almost 360o visual various distances from the observer, even field. Three pairs are secondary eyes; like without adjusting the eye. The retina is built the eyes of most insects, they are only capa- of four layers of cells; each layer is sensitive ble of perceiving changes in light intensity to a different light wavelength, enabling and movement, and they do not allow the jumping spiders to see color. spider to recognize complex patterns. This ability is provided by their principal eyes Huge eyes, small brain situated at the front of the cephalothorax. Jumping spiders have an extremely good When an object appears in the visual field, visual acuity and exhibit highly complex the spider first notices its movement using behavior, even though they have very small the secondary eyes; it then turns round to brains (no larger than a pinhead). Such a face it and examine it more closely using small brain size severely limits computa- the principal eyes. The eyes have several tional ability and, as a consequence, the important structural features differentiating animal’s behavioral complexity. It should them from secondary eyes and making them be remembered that neurons in inverte- extremely effective visual organs. Behind brates are larger than in vertebrates. There 17 2 (30) No. 2011 ACADEMIA Spider ecology, behavior, and learning is huge variation in cognitive abilities of also able to learn new hunting methods. different groups of vertebrates, even just Portia specializes in hunting a very danger- Behavioral Ecology among mammals; comparing their brain ous prey – other spiders – often “imperson- sizes and structures to those of jumping spi- ate” sexual partners of the host of the web ders makes it clear how limited the latter’s they are entering, sending signals interpret- Focus on “wiring” must be. But paradoxically, the ed by the host as encouragement for mating. behavior of jumping spiders – among the The host is usually fooled and approaches smallest in the order – is undoubtedly the the intruder unawares, allowing itself to be most complex of all spiders, marking them caught at a suitable moment. However, this out from other invertebrates. allows Portia to capture only certain spiders All invertebrates, spiders included, have using innate hunting strategies. Since each until recently been regarded as simple, pre- species has its own distinctive set of mating programmed animals that show no behav- signals, on entering the web of an unknown ioral flexibility or ability to learn. However, prey Portia uses trial and error to deter- this view – persisting since Cartesian times mine the correct code – sending out a wide – has gradually changed as our knowledge range of vibrations of varying frequency and research methodology improved. Under and intensity, selecting those that elicit a closer scrutiny it turned out that certain so- response from the host. They frequently cial hymenoptera are able to communicate approach the host spider, although in order with each other to transmit diverse, often to remain unnoticed they move only during complex information such as the relative gusts of wind preventing them from being location and distance between the nest detected. If there is no wind, they twitch the and food source. Although bees and ants web themselves to imitate air motion. They have been studied for many years, it is only create this cover to allow them to approach recently that researchers have started to their prey undetected. use contemporary methodology and cre- These small spiders’ cognitive ability is ative experimental settings in which the well demonstrated in situations when Portia animals are set problem-solving tasks or sees its potential prey, but is unable to reach are required to make a decision under con- it directly. In this scenario it uses the spatial trolled conditions, allowing scientists to see arrangement of its surroundings to plan and invertebrates in a new light: as animals with prepare a route and select the one which a good ability to use information available to will eventually lead it to the prey. This hap- them and solve complex tasks. pens even when the selected route leads in the opposite direction to the prey, and the object of the assault temporarily disappears Research carried out from Portia’s visual field. The behavior de- in recent years has scribed here requires the spider to create brought significant a mental cognitive map, a skill which until progress in our recently had been thought to only be pres- understanding of the ent in higher vertebrates. Analyzing Portia’s complexity of spider behavior, we are faced with the question: behavior.
Recommended publications
  • Ecology and Behavior of the Giant Wood Spider in New Guinea
    Ecology and Behavior of the Giant Wood Spider Nephila maculata (Fabricius) in New Guinea MICHAEL H. ROBINSON and BARBARA ROBINSON SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 149 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Evidence for Nanocoulomb Charges on Spider Ballooning Silk
    PHYSICAL REVIEW E 102, 012403 (2020) Evidence for nanocoulomb charges on spider ballooning silk E. L. Morley1,* and P. W. Gorham 2,† 1School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom 2Department of Physics & Astronomy, University of Hawaii at Manoa, 2505 Correa Rd., Honolulu, Hawaii 96822, USA (Received 10 December 2019; revised 5 March 2020; accepted 6 March 2020; published 9 July 2020) We report on three launches of ballooning Erigone spiders observed in a 0.9m3 laboratory chamber, controlled under conditions where no significant air motion was possible. These launches were elicited by vertical, downward-oriented electric fields within the chamber, and the motions indicate clearly that negative electric charge on the ballooning silk, subject to the Coulomb force, produced the lift observed in each launch. We estimate the total charge required under plausible assumptions, and find that at least 1.15 nC is necessary in each case. The charge is likely to be nonuniformly distributed, favoring initial longitudinal mobility of electrons along the fresh silk during extrusion. These results demonstrate that spiders are able to utilize charge on their silk to attain electrostatic flight even in the absence of any aerodynamic lift. DOI: 10.1103/PhysRevE.102.012403 I. INTRODUCTION nificant upward components to the local wind velocity distri- bution; whether actual wind momentum spectra provide the The phenomenon of aerial dispersal of spiders using required distributions is still unproven, particularly for takeoff strands of silk often called gossamer was identified and stud- conditions. Even so, recent detailed observations of spider ied first with some precision by Martin Lister in the late 17th ballooning analyzed exclusively in terms of aerodynamic century [1], followed by Blackwall in 1827 [2], Darwin [3]on forces [12] provide plausible evidence that larger spiders can the Beagle voyage, and a variety of investigators since [4–7].
    [Show full text]
  • Portia Perceptions: the Umwelt of an Araneophagic Jumping Spider
    Portia Perceptions: The Umwelt of an Araneophagic Jumping 1 Spider Duane P. Harland and Robert R. Jackson The Personality of Portia Spiders are traditionally portrayed as simple, instinct-driven animals (Savory, 1928; Drees, 1952; Bristowe, 1958). Small brain size is perhaps the most compelling reason for expecting so little flexibility from our eight-legged neighbors. Fitting comfortably on the head of a pin, a spider brain seems to vanish into insignificance. Common sense tells us that compared with large-brained mammals, spiders have so little to work with that they must be restricted to a circumscribed set of rigid behaviors, flexibility being a luxury afforded only to those with much larger central nervous systems. In this chapter we review recent findings on an unusual group of spiders that seem to be arachnid enigmas. In a number of ways the behavior of the araneophagic jumping spiders is more comparable to that of birds and mammals than conventional wisdom would lead us to expect of an arthropod. The term araneophagic refers to these spiders’ preference for other spiders as prey, and jumping spider is the common English name for members of the family Saltici- dae. Although both their common and the scientific Latin names acknowledge their jumping behavior, it is really their unique, complex eyes that set this family of spiders apart from all others. Among spiders (many of which have very poor vision), salticids have eyes that are by far the most specialized for resolving fine spatial detail. We focus here on the most extensively studied genus, Portia. Before we discuss the interrelationship between the salticids’ uniquely acute vision, their predatory strategies, and their apparent cognitive abilities, we need to offer some sense of what kind of animal a jumping spider is; to do this, we attempt to offer some insight into what we might call Portia’s personality.
    [Show full text]
  • UC Santa Barbara Electronic Theses and Dissertations
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective Hunting in a Spider Society Permalink https://escholarship.org/uc/item/4pm302q6 Author Wright, Colin Morgan Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective Hunting in a Spider Society A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Colin M. Wright Committee in charge: Professor Jonathan Pruitt, Chair Professor Erika Eliason Professor Thomas Turner June 2018 The dissertation of Colin M. Wright is approved. ____________________________________________ Erika Eliason ____________________________________________ Thomas Turner ____________________________________________ Jonathan Pruitt, Committee Chair April 2018 ACKNOWLEDGEMENTS I would like to thank my Ph.D. advisor, Dr. Jonathan Pruitt, for supporting me and my research over the last 5 years. I could not imagine having a better, or more entertaining, mentor. I am very thankful to have had his unwavering support through academic as well as personal challenges. I am also extremely thankful for all the members of the Pruitt Lab (Nick Keiser, James Lichtenstein, and Andreas Modlmeier), as well as my cohorts at both the University of Pittsburgh and UCSB that have been my closest friends during graduate school. I appreciate Dr. Walter Carson at the University of Pittsburgh for being an unofficial second mentor to me during my time there. Most importantly, I would like to thank my family, Rill (mother), Tom (father), and Will (brother) Wright.
    [Show full text]
  • Comparative Analysis of Courtship in <I>Agelenopsis</I> Funnel-Web Spiders
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms Audra Blair Galasso [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Behavior and Ethology Commons Recommended Citation Galasso, Audra Blair, "Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1377 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Audra Blair Galasso entitled "Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Susan E. Riechert, Major
    [Show full text]
  • Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus Studiosus (Araneae: Theridiidae) Jennifer B
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2016 Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus studiosus (Araneae: Theridiidae) Jennifer B. Price East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Behavioral Neurobiology Commons, Behavior and Ethology Commons, Comparative and Evolutionary Physiology Commons, Molecular Biology Commons, Other Animal Sciences Commons, and the Other Ecology and Evolutionary Biology Commons Recommended Citation Price, Jennifer B., "Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus studiosus (Araneae: Theridiidae)" (2016). Electronic Theses and Dissertations. Paper 3114. https://dc.etsu.edu/etd/3114 This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus studiosus (Araneae: Theridiidae) ______________________ A dissertation Presented to the faculty of the Department of Biomedical Sciences East Tennessee State University In partial fulfillment of the requirements
    [Show full text]
  • FIRST AID in ARACHNIDS a SUMMARY V1.2
    FIRST AID IN ARACHNIDS A SUMMARY v1.2 MORE ON WWW.THERAPHOSIDAE.BE www.theraphosidae.be © All rights reserved | 2017 1 ACCIDENTS MOLTING ISSUES Keep track of the spider's behavior. Predict an upcoming molt. Never remove the spider from her original spot during ecdysis, unless her life is in danger. Never spray water directly on the spider, esp. not during ecdysis. OLD EXOSKELETON GOT STUCK ON NEW SKIN • Provide optimal environmental conditions. • Wait until the spider got on its feed to help. • Provide enough fresh water. • Remove parts of old carapace with tweezers. • Remove all living prey before ecdysis starts. • Difficult parts: Perform anaesthesia. • Don't disturb the spider. CURE PREVENTION DEFORMED LEGS • Provide optimal environmental conditions. • Perform autotomy 2 weeks post-ecdysis. • Provide enough fresh water. • Remove all living prey before ecdysis starts. • Don't disturb the spider. CURE PREVENTION DISEASES OF THE CUTICULA • Provide optimal environmental conditions. • Provide optimal environmental conditions. • Provide enough fresh water. • Remove all living prey before ecdysis starts. • Don't disturb the spider. CURE PREVENTION LOSS OF FANGS • Provide optimal environmental conditions. • Step 1: Perform anaesthesia. • Provide enough fresh water. • Step 2: Cut the fangs from old exoskeleton. • Remove all living prey before ecdysis starts. • Step 3: Glue old fang in place. • Don't disturb the spider. Do nothing if the spider eats and lives well. CURE Contact a veterinarian, specializing in exotics. PREVENTION WET MOLT • Provide optimal environmental conditions. • Death is not inevitable. • Provide enough fresh water. • Remove all living prey before ecdysis starts. • Don't disturb the spider. CURE PREVENTION www.theraphosidae.be © All rights reserved | 2017 2 OPEN WOUNDS Mainly caused by use of bad terraria, sharp objects, collapsing structures and impulsive fear responses.
    [Show full text]
  • The Sublethal Effects of Neonicotinoids on Spiders Are Independent of Their
    www.nature.com/scientificreports OPEN The sublethal efects of neonicotinoids on spiders are independent of their nutritional status Milan Řezáč1, Nela Gloríková1, Shawn M. Wilder2 & Petr Heneberg3* Spiders were recently shown to be adversely afected by feld-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported efects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of β-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the efects of diet and concurrent exposure to feld-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed frst instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to feld-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments afected the lipid and protein content of the spiders, their body weight and carapace length but did not afect any of the measured behavioral parameters. Surprisingly, we did not fnd any efects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these efects were not afected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to feld-realistic concentrations of neonicotinoid insecticides.
    [Show full text]
  • Octopamine Levels Relate to Male Mating Tactic Expression in the Wolf Spider Rabidosa Punctulata Eileen A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 2015 Octopamine levels relate to male mating tactic expression in the wolf spider Rabidosa punctulata Eileen A. Hebets University of Nebraska-Lincoln, [email protected] Matthew aH nsen University of Nebraska–Lincoln Thomas C. Jones East Tennessee State University, [email protected] Dustin J. Wilgers University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscihebets Part of the Animal Sciences Commons, Behavior and Ethology Commons, Biology Commons, Entomology Commons, and the Genetics and Genomics Commons Hebets, Eileen A.; Hansen, Matthew; Jones, Thomas C.; and Wilgers, Dustin J., "Octopamine levels relate to male mating tactic expression in the wolf spider Rabidosa punctulata" (2015). Eileen Hebets Publications. 69. http://digitalcommons.unl.edu/bioscihebets/69 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Animal Behaviour 100 (2015), pp. 136–142. doi 10.1016/j.anbehav.2014.11.023 Copyright © 2014 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. Used by permission. Submitted 26 July 2014; accepted 20 August 2014 and again 13 November 2014; online 29 December 2014 digitalcommons.unl.edu Octopamine levels relate to male mating tactic expression in the wolf spider Rabidosa punctulata Eileen A. Hebets,1 Matthew Hansen,1 Thomas C. Jones,2 and Dustin J.
    [Show full text]
  • Predatory Behavior of the Zebra Spider, Salticus Scenicus (Araneae: Salticidae)
    Predatory behavior of the zebra spider, Salticus scenicus (Araneae: Salticidae) LAWRENCEM. DILL' Department of Biology, York University, Toronto, Ontario Received March 27, 1975 DILL, L. M. 1975. Predatory behavior of the zebra spider, Salticus scenicus (Araneae: Sal- ticidae). Can. J. Zool. 53: 1284-1289. The zebra spider (Salticus scenicus), a small jumping spider, orients towards prey detected by its lateral eyes whenever the angle subtended by such prey exceeds 5.5". The velocity of the prey is not involved in the determination of reactive distance, but only moving objects elicit orienta- tion. The probability that orientation is followed by stalking is a function of both prey size and velocity, but the effects of these parameters on reactive distance for stalking were not deter- mined. The zebra spider's stalk velocity declines progressively as it nears its (stationary) prey, and the probable optimality of this behavioral tactic is discussed. DILL,L. M. 1975. Predatory behavior of the zebra spider, Salticus scenicus (Araneae: Sal- ticidae). Can. J. Zool. 53: 1284-1289. Le saltique harlequin (Salticus scenicus) petite araignee sauteuse, s'oriente vers une proie repCree au moyen de ses yeux lateraux, lorsque I'angle soustendu par la proie depasse 5.5". La vitesse de la proie n'hfluence pas la distance ii laquelle I'araignke reagit, mais seuls les objets en mouvement entrainent I'orientation. La probabilite que I'orientation soit suivie d'une poursuite est fonction de la taille de la proie et de sa vitesse; cependant, les effets de ces parametres sur la distance a laquelle I'araignee commence sa poursuite n'ont pas kt6 determines.
    [Show full text]
  • Beautiful Big-Eyed Jumpers
    The American River Natural History Association Number 164 www.arnha.org Summer 2013 Beautiful Big-eyed Jumpers by Tim Manolis If you don’t know much about jumping spiders, be warned and are often more-or-less the same size. The vision these eyes – learning more about them can become an addictive pleasure! provide is often unremarkable to poor. Now, I know that a lot of folks more frequently associate the But two of the eight eyes of jumping spiders are strikingly phrase “creepy crawly” with spiders than the phrase “addictive different. The front row of eyes face forward, and the middle pleasure,” but jumping spiders are not your average spiders. two of this row (called the anterior median eyes) are much larger Among other amazing things, they stalk prey -- insects and than the other six eyes, giving these spiders a rather “cute” other spiders -- like cats, big-eyed gaze. More importantly, they give jumping spiders using vision that rivals that a surprisingly crisp, binocular view of the world in full color of many birds and mam- (they even see in the ultraviolet range). In short, the anterior mals. Male jumpers can median eyes of jumping spiders have much better visual acuity be brilliantly colored with than those of any other insects or spiders. Their other six eyes, courtship displays rivaling the outer two front eyes and the four in the back row (actually those of birds-of-paradise. arranged in two lateral rows behind the front row, facing up), Some species are remark- see Spiders on page 3 able mimics of ants, wasps, or beetles.
    [Show full text]
  • Ontogeny of Venom Use and Venom Composition in the Western Widow Spider Latrodectus Hesperus David Roger Nelsen
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 6-2013 Ontogeny of Venom Use and Venom Composition in the Western Widow Spider Latrodectus Hesperus David Roger Nelsen Follow this and additional works at: http://scholarsrepository.llu.edu/etd Part of the Behavior and Ethology Commons, Biology Commons, Developmental Biology Commons, Public Health Commons, and the Social and Behavioral Sciences Commons Recommended Citation Nelsen, David Roger, "Ontogeny of Venom Use and Venom Composition in the Western Widow Spider Latrodectus Hesperus" (2013). Loma Linda University Electronic Theses, Dissertations & Projects. 292. http://scholarsrepository.llu.edu/etd/292 This Dissertation is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. LOMA LINDA UNIVERSITY School of Public Health in conjunction with the Faculty of Graduate Studies ____________________ Ontogeny of Venom Use and Venom Composition in the Western Widow Spider Latrodectus hesperus By David Roger Nelsen ____________________ A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biology ____________________ June 2013 UMI Number: 3566117 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]