Spider Brain Morphology & Behavior

Total Page:16

File Type:pdf, Size:1020Kb

Spider Brain Morphology & Behavior University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses July 2016 Spider Brain Morphology & Behavior Skye M. Long University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Biology Commons, Entomology Commons, and the Other Neuroscience and Neurobiology Commons Recommended Citation Long, Skye M., "Spider Brain Morphology & Behavior" (2016). Doctoral Dissertations. 707. https://doi.org/10.7275/8128500.0 https://scholarworks.umass.edu/dissertations_2/707 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. SPIDER BRAIN MORPHOLOGY & BEHAVIOR A Dissertation Presented by SKYE MICHELLE LONG Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2016 The Program in Organismic and Evolutionary Biology © Copyright by Skye Long 2016 All Rights Reserved SPIDER BRAIN MORPHOLOGY AND BEHAVIOR A Dissertation Presented By SKYE MICHELLE LONG Approved as to style and content by: Elizabeth M. Jakob, Chair Jeffrey Podos, Member Elizabeth R. Dumont, Member Susan Fahrbach, Member Elizabeth R. Dumont, Director Interdepartmental Graduate Programs DEDICATION To my beloved husband Robert. You make me want to be the person you believe I am. EPITAPH “It's still magic even if you know how it's done.” ― Terry Pratchett, A Hat Full of Sky ACKNOWLEDGEMENTS First of all, I would never thank all the thousands of people who have helped me in large and small ways get to this point in my career, but please accept this partial list. I thank my advisor, Beth Jakob, for her incredible support for this dissertation. She provided an environment where I could explore risky ideas and follow my passions. I could not have done this without her help. She provided an unlimited number of revisions not only this dissertation, but numerous grants, letters and emails. The exception being the acknowledgements, all mistakes within are mine and mine alone. In addition, her enthusiastic support allowed me to visit numerous labs across the country to learn techniques and attempt to morph from an animal behaviorist into a larval neurobiologist. I would like to thank Chris Maher and Ken Weber for giving me the skills and confidence to even apply to graduate school. Jeff Podos, Betsy Dumont and Susan Fahrbach for all of their advice and direction as part of my committee. I know the path was not always clear. I would like to thank the many people who provided advice and direction. Marc Seid for helping me with dissection techniques and introducing me to Reconstruct. Susan Fahrbach for helping me with embedding advice, as well as intellectual support as a member of my committee. Ron Hoy, Gil Menda and Paul Shamble for evaluating my early work and pushing me further. Glen Marrs for his work on developing the tissue processing method. Christine Divine for introducing me to DiI. Tom Eiting for sharing the secrets of paraffin sectioning with me. The resources of many labs were shared in the completion of this dissertation. Ethan Graf and Dominic Poccia for allowing me to access to the confocal, without which Chapters 3 and 4 would not have been possible. Tobias Baskin for the use of his vibratome. Kate Dorfman for allowing me lab and hood space. Robbie Cairl for donating invaluable supplies. vi I received support for this work from numerous agencies: The University of Massachusetts Amherst, The Graduate Program in Organismic & Evolutionary Biology, Sigma Xi and The American Arachnological Society. In addition, this work was supported by NSF IOS 0952822 to my advisor Elizabeth Jakob. My graduate school experience would not have been the same without the many amazing people I have met both here at OEB and at the many wonderful meetings I have attended. In particular, Lexi Brown, Rachel & Matt Bolus, Sarah Goodwin, Dina Navon, Moira Concannon, Tom Eiting, Chi-Yun Kuo, Michael Rosario, Kit Harcourt, Casey Gilman, Annie Leonard, Anne Stengle, Jamie Church, Zane Barlow, Dana Moseley, Yi-Fen Lin, Jamie Tanner, Israel Del Toro and Andy Smith. In addition, I have had the opportunity to work with some truly incredible undergraduates, both as students and lab assistants. Finally, Penny Jaques for the thousands of times she helped me find my way out of the woods. All of you helped me more than you could ever know. vii ABSTRACT SPIDER BRAIN MORPHOLOGY & BEHAVIOR MAY 2016 SKYE MICHELLE LONG, B.A., UNIVERSITY OF SOUTHERN MAINE Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Elizabeth M. Jakob Spiders are ideal model animals for experimental and comparative studies of behavior, learning and perception. They display many complex behaviors, such as the multimodal mating dances of lycosid spiders, the stealthy hunting strategies of the jumping spider Portia sp., to the labile sociality of theridiids. Spiders also demonstrate a wide range of cognitive capabilities. Spiders perceive their environment using multiple sensory modalities including: chemosensory organs; lyriform and slit-sense organs and specialized hairs that detect vibration and air movement; and up to eight eyes that vary in function, some able to detect polarization and a broad spectrum of light, including ultraviolet. While much is known about the behavior and external morphology of spiders, little is known about the spider’s nervous system. Early in the 20th century researchers, such as Saint- Remy, Hanström and Legendre, began the process of cataloging the variety of form and function within the arachnid brain. Unfortunately, these studies were limited by techniques and sample quality and much of the information is difficult to access and place into a modern context. In modern research the focus on comparative studies of spider brain morphology disappeared and was replaced with more focused research on a single species, the wandering spider Cupiennius salei. While much has been learned from these studies, C. salei represents only a small fraction of the spectrum of behaviors and sensory system morphologies that may be reflected in brain viii morphology. Current advances in techniques and collecting methods, combined with the framework of knowledge gained from C. salei allow for meaningful comparative work on spider neurobiology. The four chapters of my dissertation explore spider behavior, learning and neuromorphology and present two novel protocols for their study. In Chapter 1, I present a behavioral study in which I explore the effect of firefly flashing on the predatory behavior of spiders. In Chapter 2, I present a novel protocol for aversive learning trials in spiders. In Chapter 3, I present a novel method for producing whole-head DiI stained spider cephalothorax sections. In Chapter 4, I describe the variation in the visual processing pathways in spiders representing 19 different families. ix TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ................................................................................................................... vi ABSTRACT ....................................................................................................................................... viii LIST OF TABLES ................................................................................................................................ xv LIST OF FIGURES ............................................................................................................................. xvi CHAPTER 1. FIREFLY FLASHING AND JUMPING SPIDER PREDATION ............................................................... 1 1.1 Introduction .................................................................................................................. 1 1.2 Methods ........................................................................................................................ 4 1.2.1 Study organisms ............................................................................................ 4 1.2.2 Firefly Disturbance and Flash Behavior ........................................................ 5 1.2.3 Dusk Activity Trials ........................................................................................ 6 1.2.4 Tests of the Startle Hypothesis for Flashing ................................................. 6 1.2.5 Effect of Flashing on Spiders’ Prey Choice .................................................... 8 1.2.6 Effect of Flashing on Avoidance of Unpalatable Prey Over Multiple Encounters ................................................................................................ 8 1.3 Results ......................................................................................................................... 10 1.3.1 Firefly Disturbance and Flash Behavior ...................................................... 10 1.3.2 Dusk Activity Trials ...................................................................................... 10 1.3.3 Tests of the Startle Hypothesis for Flashing ............................................... 10 1.3.4 Effect of Flashing on Spiders’ Prey Choice .................................................. 11 1.3.5 Effect of Flashing on Avoidance of Unpalatable Prey Over Multiple Encounters
Recommended publications
  • Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
    www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
    [Show full text]
  • Cryptic Species Delimitation in the Southern Appalachian Antrodiaetus
    Cryptic species delimitation in the southern Appalachian Antrodiaetus unicolor (Araneae: Antrodiaetidae) species complex using a 3RAD approach Lacie Newton1, James Starrett1, Brent Hendrixson2, Shahan Derkarabetian3, and Jason Bond4 1University of California Davis 2Millsaps College 3Harvard University 4UC Davis May 5, 2020 Abstract Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimi- tation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, Antrodiaetus unicolor species complex which contains two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and employ multiple lines of evidence for testing genetic exchangeability and ecological interchange- ability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include STRUCTURE, PCA, and a recently developed unsupervised machine learning approach (Variational Autoencoder). We eval- uate ecological similarity by using large-scale ecological data for niche-based distribution modeling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches.
    [Show full text]
  • Curriculum Vitae Bradley Evan Carlson, Ph.D
    Curriculum Vitae Bradley Evan Carlson, Ph.D. Byron K. Trippet Assistant Professor of Biology Wabash College Crawfordsville, IN 47933 Email: [email protected] Telephone: (765) 361-6460 Website: carlsonecolab.weebly.com Professional Experience 2014 - present Byron K. Trippet Assistant Professor of Biology, Wabash College Education 2009-2014 PhD in Ecology, minor in Statistics, The Pennsylvania State University, University Park, PA Advisor: Dr. Tracy Langkilde Dissertation: The evolutionary ecology of intraspecific trait variation in larval amphibians 2008 B.S. in Biology, Bethel University, St. Paul, MN Summa cum laude, Honors Graduate Thesis: Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae) Research Interests Evolutionary ecology – phenotypic diversity, local adaptation, trait integration Behavioral ecology – phenotypic plasticity, predator-prey interactions, personality traits Community ecology – trait-mediated indirect interactions, predation, aquatic ecology Zoology – herpetology, arachnology, comparative morphology Publications (*co-author was undergraduate) Kashon*, EAF, and BE Carlson. 2018. Consistently bolder turtles maintain higher body temperatures in the field but may experience greater predation risk. Behavioral Ecology and Sociobiology 72:9. Carlson, BE, and T Langkilde. 2017. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecology and Evolution 7:9978-9990. Lambert, MR, Carlson, BE, Smylie, MS, and L Swierk. 2017. Ontogeny of sexual dichromatism in the explosively breeding Wood Frog. Herpetological Conservation and Biology 12:447-456. Media coverage: InsideEcology.com (https://insideecology.com/2018/02/12/amphibians-that-change-colour/) Carlson, BE, and T Langkilde. 2016. The role of resources in microgeographic variation in Red- spotted Newt (Notophthalmus v. viridescens) morphology. Journal of Herpetology 50:442-448.
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • Aranhas (Araneae, Arachnida) Do Estado De São Paulo, Brasil: Diversidade, Esforço Amostral E Estado Do Conhecimento
    Biota Neotrop., vol. 11(Supl.1) Aranhas (Araneae, Arachnida) do Estado de São Paulo, Brasil: diversidade, esforço amostral e estado do conhecimento Antonio Domingos Brescovit1,4, Ubirajara de Oliveira2,3 & Adalberto José dos Santos2 1Laboratório de Artrópodes, Instituto Butantan, Av. Vital Brasil, n. 1500, CEP 05503-900, São Paulo, SP, Brasil, e-mail: [email protected] 2Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antonio Carlos, n. 6627, CEP 31270-901, Belo Horizonte, MG, Brasil, e-mail: [email protected], [email protected] 3Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG 4Autor para correspondência: Antonio Domingos Brescovit, e-mail: [email protected] BRESCOVIT, A.D., OLIVEIRA, U. & SANTOS, A.J. Spiders (Araneae, Arachnida) from São Paulo State, Brazil: diversity, sampling efforts, and state-of-art. Biota Neotrop. 11(1a): http://www.biotaneotropica.org. br/v11n1a/en/abstract?inventory+bn0381101a2011. Abstract: In this study we present a database of spiders described and registered from the Neotropical region between 1757 and 2008. Results are focused on the diversity of the group in the State of São Paulo, compared to other Brazilian states. Data was compiled from over 25,000 records, published in scientific papers dealing with Neotropical fauna. These records enabled the evaluation of the current distribution of the species, the definition of collection gaps and priority biomes, and even future areas of endemism for Brazil. A total of 875 species, distributed in 50 families, have been described from the State of São Paulo.
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • The Biology of the Spider, Misumenops Celer {Hentz), and Studies on .Its Significance As a Factor in the Biological Control of Insect Pests Of-Sorghum
    THE BIOLOGY_OF THE SPIDER, MISUMENOPS CELER {HENTZ), AND STUDIES ON .ITS SIGNIFICANCE AS A FACTOR IN THE BIOLOGICAL CONTROL OF INSECT PESTS OF-SORGHUM By_ R. MUNIAPPAN t, Bachelor of Science. ,,, . -· Uni_.y.er.sj ty of Madras Madras, India 1963 Master of Science University of Madras Madras; Ind1 a 1965- Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY - Au_gust, 1969 COKIJ.ItlO~ $TAl£ llffliVBmliW lL!iESJ~AFRV i ·.c ·;-· ~ t .. ~6,V;'hi,·.·.·• .t,, •. r_;.,;i,.·~·; ;:.: '<.-~..:, :. ,•·,-. ... 4 ..... ~~;.,~;"-,· ti~'-·· ·· · "'-:O•"'!')"l!"C.fil-,# THE BIOLOGY OF THE SPIDER, MISUMENOPS CELER (HENTZ), AND STUDIES ON ITS SIGNIFICANCE AS A FACTOR IN THE BIOLOGICAL CONTROL OF INSECT PESTS OF SORGHUM Thesis Approved: ~1.~· Thesis Adviser . Dean of the Graduate College , ...:t...,., .•. ' 730038 PREFACE In recent years the importance of-.spiders in biological control _ has been well realized, and in many laboratories of the world work on_ this aspect is in progresso During the past five years.the Entomology Department of Oklahoma State Untversiity _has studied their utilization in the biological control of sorghum and other crop pests" Oro Harvey L, Chada, Professor of Entomology, Oklahoma State University, and Investigatfons leader, Entomology Research Division, United States Department of Agriculture, suggested this problem to the author and explained the need to do re$earch on this aspecto The author expresses silllcere appreciation to his major adviser, Dro Harvey L. Chada, for his advice, competent instruction and guidance, encouragement, helpful suggestions, and assistance in the preparation of this thesis o Grateful recognition is expressed to Dr, Do L Howell, Professor and Head of the Department of Entomology, Oro Ro .Ro Walton, Professor of Entomology, and Dr" Do L Weibel, Professor of Agronomy~ for their valu­ able criticism and suggestions cm the research and on the manuscripto Special appreciation 1s expressed to E.
    [Show full text]
  • UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA FACULTAD DE AGRONOMIA TESIS PARA TITULO PROFESIONAL ELABORADO POR: Analy Nohely Aponte
    - 1 - UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA FACULTAD DE AGRONOMIA TESIS PARA TITULO PROFESIONAL ARANEOFAUNA EDÁFICA ASOCIADA AL CULTIVO ORGÁNICO DE CACAO (Theobroma cacao L.) EN EL CENTRO POBLADO BELLA –TINGO MARÍA PARA OBTENER EL TITULO PROFESIONAL DE INGENIERO AGRONOMO ELABORADO POR: Analy Nohely Aponte Jaramillo TINGO MARÍA – PERÚ 2020 UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA Tingo María FACULTAD DE AGRONOMÍA Carretera Central Km 1.2 Telf. (062) 562341 (062) 561136 Fax. (062) 561156 E.mail: [email protected]. "Año de la universalización de la salud” ACTA DE SUSTENTACIÓN DE TESIS Nº 008 - 202O-FA-UNAS BACHILLER : Analy Nohely Aponte Jaramillo TÍTULO : Araneofauna edáfica asociada al cultivo orgánico de cacao (Theobroma cacao L.) en el centro poblado Bella –Tingo María JURADO CALIFICADOR PRESIDENTE : Miguel Eduardo Anteparra Paredes VOCAL : Jorge Adriazola del Águila VOCAL : Manuel Tito Viera Huiman ASESOR : José Luís Gil Bacilio FECHA DE SUSTENTACIÓN : 29 de Julio del 2020 HORA DE SUSTENTACIÓN : 10:00 a.m. LUGAR DE SUSTENTACIÓN : Sala Virtual de la Facultad de Agronomía https://teams.microsoft.com/_#/school/conversations/General?threadId=19:030ece5db9d34aaeae1b3cea3e1de97a@thread. tacv2&ctx=channel CALIFICATIVO : Muy Bueno RESULTADO : Aprobatorio OBSERVACIONES A LA TESIS : Las observaciones y recomendaciones dadas durante la sustentación. TINGO MARÍA, 29 de Julio del 2020 ...... .......................................................................... .......................................................................... Miguel Eduardo Anteparra Paredes Jorge Adriazola del Águila PRESIDENTE VOCAL ..................................................................................... ............................................................................... Manuel Tito Viera Huiman José Luís Gil Bacilio VOCAL ASESOR - 2 - Por un breve momento te abandoné, pero te recogeré con grandes misericordias. Con un poco de ira escondí mi rostro de ti pero con misericordia eterna tendré compasión, dijo Jehová tu Redentor.
    [Show full text]
  • Tarantulas in the Pacific Northwest1
    WSU Puyallup REC PLS-108 Updated July 2003 Tarantulas in the Pacific Northwest1 Tarantulas (Fig. 1) in the Pacific Northwest? Well, maybe not like the hairy monsters of the tropics, but some very interesting "atypical" species do occur here. Our species belong to the family Antrodiaetidae. One of our most common spiders is the folding-door spider, Antrodiaetus pacificus (Simon). It is a fairly large species, females ranging from 11 to 13 millimeters in length, males slightly smaller. They are generally dark brown to almost black in color with the abdomen purplish brown. Males are characterized by their long legs, slim bodies, and three tergites (hardened plates) on the abdomen. Females (Fig. 2) are more robust with only one tergite. These spiders excavate burrows in the soil or in damp, rotten wood, digging with a row of spines on each chelicer, known as a ratellum. The six to ten inch deep vertical shafts are lined with silk. The webbing extends beyond ground level as a short collar of camouflaged silk. The turret’s two sides may be drawn in by the occupant, forming two "doors" which meet in the middle. At night, Antrodiaetus assumes a foraging posture with its pedipalps and first pair of legs just touching the rim of silk at the mouth of the tube. In this position, the folding door spider can readily detect an insect moving above ground. The spider will leap out of its burrow with lightning speed, seize its victim, and drop back down, like a terrorizing Jack-in-the-box. When finished with its meal, it will add the insect's dry, dismembered body to a silk-covered trash pile at the bottom of its burrow.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]