Effect of Changes in Cycle Ergometer Settings on Bioelectrical Activity in Selected Muscles of the Lower Limbs

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Changes in Cycle Ergometer Settings on Bioelectrical Activity in Selected Muscles of the Lower Limbs 2017 24, 228-234 Pol. J. Sport Tourism , 228 EFFECt OF CHANGES IN CyCLE ERGOMETER SETTINGs ON BIOELECTRICAL aCTIVITY IN SELECTED MUSCLES OF THE LOWER LIMBs ROBERT STASZKIEWICZ1A, MICHAŁ KAWULAK1A, LESZEK NOSIADEK1A, JAROSŁAW OMORCZYK1B, ANDRZEJ NOSIADEK2 1University of Physical Education in Krakow, Faculty of Physical Education and Sport, Department of Biomechanicsa, Department of Gymnastics and Danceb 2State Higher Vocational School in Tarnow, Department of Physical Education Mailing address: Robert Staszkiewicz, University of Physical Education in Krakow, Faculty of Physical Education and Sport, Department of Biomechanics, 78 Jana Pawla II Ave., 31-573 Krakow, tel.: +48 12 6831539, fax: +48 12 6831121, e-mail: [email protected] abstract Introduction. The aim of this study was to measure the duration of biopotentials in selected muscles of the lower limbs, evalu- ate the time of elevated bioelectrical activity in these muscles, and identify similarities and differences in electrical phenomena that occur in the muscles for various external settings of a cycle ergometer. Material and methods. The study examined 10 healthy people (5 women and 5 men) aged from 20 to 30 years. A cycle ergometer and EMG apparatus were used in the ex- periment. The bioelectrical activity of six muscles of the lower limbs (rectus femoris, vastus medialis, tibialis anterior, biceps femoris, gastrocnemius caput mediale, and gastrocnemius caput laterale) was recorded for four different settings of the cycle ergometer (variable saddle height and method of foot attachment to pedals). The EMG records were presented with reference to the bicycle crankset rotation cycle. Conclusions. The study found that changing the height of the saddle of the cycle ergometer and the use of toe clips in the pedals caused changes in bioelectrical activity in the muscles. The adjustment of saddle height affected the duration of potentials more noticeably than the use of toe clips. Furthermore, only one period of elevated electrical activity in the muscles of the lower limbs was found in the pedalling cycle. The longest time of the presence of action potentials was recorded for the m. gastrocnemius caput laterale, whereas the shortest time was observed in the m. vastus medialis. key words: biomechanics, electromyography, pedalling, muscle, lower limb introduction equipment at surgeries is the stationary bicycle (cycle ergom- eter). The popularity of this device stems from ease of use, easy Cycling, including riding a stationary bicycle (or cycle er- control of progress, and uncomplicated load modulation. Fur- gometer), is a popular topic of scientific research, particularly thermore, most patients have their own traditional bikes which among researchers in the field of biomechanics [1]. The research can later be used to continue the rehabilitation. Therefore, re- typically focuses on such aspects as improved pedalling efficien- searchers in biomechanics cooperate with physical therapists to cy [2], energy expenditure for this movement, improved energy prevent the adverse consequences of cycling [12, 13, 14], examine expenditure for the movement, and improved cycling comfort the effect of saddle height on knee joint load [15], and improve [3]. Studies have examined optimal positions on a bike [4, 5] rehabilitation protocols [16]. and the choice of adequate and optimal pedalling rate [6]. This study addresses a combination of problems which have Scientific interests are also focused on issues related to co- been discussed over the years. The innovative character of the ordination [7] during the driving motion of the cyclist’s body. study, however, lies in the fact that it approaches these issues in Some studies have been oriented at the use of new technological the context of physiotherapy. solutions in bicycles, ranging from changes in the area of the cogset [8] to the types of foot fixation to the pedals [9]. The aim of the study Numerous biomechanical examinations of locomotor activ- As mentioned before, physical therapies are often focused ity on a bicycle have helped gain knowledge useful for physi- on the patient’s movements. Therefore, physiotherapists use otherapists. Drozdek et al. [10] evaluated the effect of body various devices and accessories which allow for the engagement position adopted on a bicycle on the recordings of bioelectrical of selected muscles, i.e. those that are expected to be activated muscle activity (EMG). Similarly, the results of the studies that in the rehabilitation process. One of the ways of stimulating the examined the effect of various pedalling techniques on biome- muscles of the lower limbs is having the patient perform exer- chanical motion indices [11] can have some practical implica- cise on a cycle ergometer. tions. The aims of this study were as follows: The interest of physical therapists in the problems discussed a) to measure the duration of the biopotentials of selected results directly from the fact that one of the standard pieces of muscles of the lower limbs, Copyright © 2017 by the Józef Piłsudski University of Physical Education in Warsaw, Faculty of Physical Education and Sport in Biała Podlaska 2017 24, 228-234 Staszkiewicz et al.: EFFECT OF CHANGES IN CYCLE ... Pol. J. Sport Tourism , 229 b) to evaluate the time of elevated bioelectrical activity in was to record bioelectrical activity in six selected muscles of these muscles, one (left) lower limb. The EMG examinations were performed c) to evaluate the number of such phenomena during the for the following muscles: rectus femoris (rf), vastus medialis bicycle crankset motion, (Vm), tibialis anterior (TA), biceps femoris (Bf), gastrocnemius d) to describe the sequence of electrical phenomena with caput mediale (GCm), and gastrocnemius caput laterale (GCl). reference to specific muscles during pedalling, Three electrodes were glued to the skin over each muscle (posi- e) to explore similarities and differences in electrical phe- tive, negative, and referential electrodes). Dedicated disposable nomena in the muscles for different external settings of electrodes were used. The locations of gluing were consistent a bicycle. with the guidelines of the manufacturer of the EMG system and determined with high precision by means of MegaWin compu- material and methods ter software. The hair in the areas where the electrodes which received Research material the electrical potentials from the muscles were glued was shaved The examinations discussed in this study were carried out using an electric shaver, and the stratum corneum was removed in the Department of Biomechanics of the University of Physi- with cotton swabs and spirit. After the electrodes were mount- cal Education in Krakow. The study examined 10 healthy people ed, the wireless signal receivers were attached. The receivers (5 women and 5 men) aged from 20 to 30 years. Two exclusion sent signals to the central station with information about the criteria were used during recruitment for the study: involve- electrical phenomena in the muscles. Next, the information was ment in professional sport (cycling) and previous serious inju- processed and displayed on the computer screen. ries to the locomotor system. The study was aimed at identifying The examinations of biopotentials were divided into four a natural pedalling pattern in healthy people and evaluating the stages representing four different variants of settings. The first effect of external bicycle settings (saddle height and the use of stage consisted in recording them during pedalling with the toe clips) on this pattern. saddle set high and using bicycle toe clips. Saddle height was Basic morphological indices, that is body height and body adjusted individually so that in the middle of the cycle (when mass, in women were 167.2 ± 4.4 cm and 58.1 ± 9.5 kg (mean ± the foot was in the lowest position), the leg was fully extended SD). In the male group, these values were 180.7 ± 7.5 cm and in the knee joint. The second stage was similar to the first one 75.2 ± 7.4 kg, respectively. (the same saddle height), but the toe clips were removed during During the measurement, the study participants wore pedalling. During the third stage, the saddle was lowered each clothes that did not limit the range of movement, with the most time by half of the height of the first stage, and the toe clips important elements being comfortable shoes and shorts. Only remained detached. In the last (fourth) stage, the toe clips were this type of clothes made it possible to glue the electrodes to the attached again, and the saddle remained at the lowered height. muscles, made exercising on the cycloergometer comfortable, In each experiment (stages 1 to 4), the study participants and minimised the risk of disturbance in the signal flow from pedalled at a constant pedalling rate (rhythm) of 60 rpm (1 Hz). the electrodes to the central station. The participants were allowed to control the pedalling rate in two ways: by watching a display on the cycle ergometer and by Research procedure listening to the sound from a metronome. Following the guide- The most important components of the measurement sys- lines, the starting point of individual pedalling cycles adopted tem used in the study were a cycle ergometer (Monark 818 E Er- was the highest position of the left pedal. gomedic) and a wireless EMG apparatus (WBA Mega Electron- The biopotentials of the muscles were recorded during their ics). The set-up of the electrodes and the wireless signal receivers activity for each bicycle setting over a minimum of 15 complete during the measurement is presented in Figure 1. The basic task cycles (crankset rotations). The analysis was based on biopoten- tials recorded for only 10 (consecutive) cycles. The beginning of each cycle was also denoted with a marker in an electronic form by the person who supervised the experiment. Apart from the constant rotational speed of the crankset (and, consequently, the frequency), constant load was also used at each stage of the experiment. The option designed by the manufacturer of the cycle ergometer was used for this purpose.
Recommended publications
  • 26″ Hyper HBC Cruisers Manual
    The following manual is only a guide to assist you and is not a complete or comprehensive manual of all aspects of maintaining and repairing your bicycle. The bicycle you have purchased is a complex object. Hyper Bicycles recommends that you consult a bicycle specialist if you have doubts or concerns as to your experience or ability to properly assemble, repair, or maintain your bicycle. You will save time and the inconvenience of having to go back to the store if you choose to write or call us concerning missing parts, service questions, operating advice, and/or assembly questions. 177 Malaga Park Dr. Malaga, NJ 08328 Call Toll Free SERIAL NUMBER LOCATION 1-866-204-9737 Local 417-206-0563 Bottom View Fax: 775-248-5155 Monday-Friday 8:00AM to 5:00PM (CST) For product related questions email us at: [email protected] For customer service questions email us at: [email protected] IMPORTANT NOTICE WRITE YOUR SERIAL NUMBER HERE serial number Keep your serial number handy in case of damage, loss or theft. B I C Y C L E O W N E R ’ S M A N U A L Contents SAFETY Safety Equipment 2 Mechanical Safety Check 3 Riding Safety 5 IMPORTANT NOTE TO PARENTS 5 Rules of the Road 7 Rules of the Trail 9 Wet Weather Riding 10 Night Riding 10 Bicycling in Traffic 12 ASSEMBLY, MAINTENANCE May not be May not be AND ADJUSTMENT exactly as exactly as illustrated illustrated Fenders 30 NEW OWNER Warranty 36 Purchase Record 37 VISIT US ONLINE@ M A X W E I G H T : 2 7 5 l b s www.hyperbicycles.com This manual contains important safety, performance If you have a problem, do not return to the store, and maintenance information.
    [Show full text]
  • Development of a Bicycle Dynamic Model and Riding Environment for Evaluating Roadway Features for Safe Cycling
    TRC-2017-02 October 31, 2018 Development of a Bicycle Dynamic Model and Riding Environment for Evaluating Roadway Features for Safe Cycling FINAL REPORT Upul Attanayake, Ph.D., P.E. Mitchel Keil, Ph.D., P.E. Abul Fazal Mazumder, M.Sc. Transportation Research Center for Livable Communities Western Michigan University Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. TRCLC 2017-02 N/A N/A 4. Title and Subtitle 5. Report Date Development of a Bicycle Dynamic Model and Riding Environment October 31, 2018 for Evaluating Roadway Features for Safe Cycling 6. Performing Organization Code N/A 7. Author(s) 8. Performing Org. Report No. Upul Attanayake, Ph.D., P.E. N/A Mitchel Keil, Ph.D., P.E. Abul Fazal Mazumder, M.Sc. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Western Michigan University N/A 1903 West Michigan Avenue 11. Contract No. Kalamazoo, MI 49008 TRC 2017-02 12. Sponsoring Agency Name and Address 13. Type of Report & Period Transportation Research Center for Livable Communities Covered (TRCLC) Final Report 1903 W. Michigan Ave., 8/15/2017 - 10/31/2018 Kalamazoo, MI 49008-5316 14. Sponsoring Agency Code USA N/A 15. Supplementary Notes 16. Abstract Cycling is a viable transportation option for almost everyone and enhances health, equity, and quality of life. Cycling contributes to the society by reducing fuel consumption, traffic congestion, and air and noise pollution. In recent days, cycling has been promoted as more emphasis is given to non-motorized mobility. To attract people towards cycling, safe and comfortable bikeways are needed.
    [Show full text]
  • The Custom Bicycle
    THE CUSTOM BICYCLE Michae J. Kolin and Denise M.de la Rosa BUYING. SETTING UP, AND RIDING THE QUALITY BICYCLE Copyright© 1979 by Michael J. Kolin and Denise M. de la Rosa All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without the written permission of the publisher. Book Design by T. A. Lepley Printed in the United States of America on recycled paper, containing a high percentage of de-inked fiber. 468 10 9753 hardcover 8 10 9 7 paperback Library of Congress Cataloging in Publication Data Kolin, Michael J The custom bicycle. Bibliography: p. Includes index. 1. Bicycles and tricycles—Design and construction. 2. Cycling. I. De la Rosa, Denise M., joint author. II. Title. TL410.K64 629.22'72 79-1451 ISBN 0-87857-254-6 hardcover ISBN 0-87857-255-4 paperback THE CUSTOM BICYCLE BUYING, SETTING UP, AND RIDING i THE QUALITY BICYCLE by Michael J. Kolin and Denise M. de la Rosa Rodale Press Emmaus, Pa. ARD K 14 Contents Acknowledgments Introduction Part I Understanding the Bicycle Frame CHAPTER 1: The Bicycle Frame 1 CHAPTER 2: Bicycle Tubing 22 CHAPTER 3: Tools for Frame Building 3 5 Part II British Frame Builders CHAPTER 4: Condor Cycles 47 CHAPTER 5: JRJ Cycles, Limited 53 CHAPTER 6: Mercian Cycles, Limited BO CHAPTER 7: Harry Quinn Cycles, Limited 67 CHAPTER 8: Jack Taylor Cycles 75 CHAPTER 9: TI Raleigh, Limited 84 CHAPTER 10: Woodrup Cycles 95 Part III French Frame Builders CHAPTER 11: CNC Cycles 103 CHAPTER 12: Cycles Gitane 106 CHAPTER 13: Cycles Peugeot 109 THE CUSTOM BICYCLE Part IV Italian Frame Builders CHAPTER 14: Cinelli Cino & C.
    [Show full text]
  • Development of a Future Electrical Bicycle for the Ageing Population
    eZIN Development of a future electrical bicycle for the ageing population CHRISTOS SAPLACHIDIS EMIL YXHAGE Master of Science Thesis in the Master Degree Program, Industrial Design Engineering SUPERVISOR : DAVID LAMM, MIKAEL SUNDGREN EXAMINER: ULRIKE RAHE CHALMERS UNIVERSITY OF TECHNOLOGY Department of Product- and Production Development Gothenburg, Sweden 2015 Division of Design & Human Factors eZIN Development of a future electrical bicycle for the aging population Master of Science Thesis PPUX05 eZIN Master of Science Thesis in the Master Degree Program, Industrial Design Engineering © CHRISTOS SAPLACHIDIS, EMIL YXHAGE Chalmers University of Technology SE-412 96 Goteborg, Sweden Telephone +46(0) 31-772 1000 Cover photo: Computer generated image of final concept Print: Repro Service Chalmers CHALMERS UNIVERSITY OF TECHNOLOGY Department of Product- and Production Development Gothenburg, Sweden 2015 Division of Design & Human Factors Abstract A rather important trend for modern society is the fact that average life expectancy is increased with accelerated pace. Furthermore, the burden of lifetime illness is compressed into a shorter period before the time of a person's death, a statement known as compression of morbidity. As a result, people are capable of being more and more active for longer periods and older ages. Considering as well, the fact that most jobs currently, and most likely in the future, involve a lot of office work sitting still, the need for daily exercise becomes critical in many aspects, especially at older ages. Biking can bring these facts together since it can be easily integrated into everyday living as transportation mean. At older ages though, conventional bicycles can present usage requirements and side effects that will prevent people from using them.
    [Show full text]
  • A Constant Force Bicycle Transmission
    Rochester Institute of Technology RIT Scholar Works Theses 8-1-1983 A constant force bicycle transmission Thomas Chase Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Chase, Thomas, "A constant force bicycle transmission" (1983). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. A CONSTANT FORCE BICYCLE TRANSMISSION by Thomas R. Chase A Thesis Project Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Mechanical Engineering Approved by: Prof. Richard Budynas Thesis Adviser Prof. Dr. Bhalchandra V. Karlekar Department Head Prof. '"egible Signature Prof. Ray C. Johnson DEPARTMENT OF MECHANICAL ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NHJ YORK August 1983 A CONSTANT FORCE BICYCLE TRANSMISSION ABSTRACT A prototype design for a human powered automatic transmission intended for use on an ordinary touring bicycle is presented. The transmission is intended to automatically adjust the gearing of the bicycle to maintain an optimum pedal force, regardless of the current riding conditions. Therefore, the transmission eliminates the need for the cyclist to manually adjust the bicycle gearing. The entire transmission is a self-contained unit designed to bolt onto the rear wheel of an otherwise unmodified 27-inch bicycle. The transmission combines a unique adaptation of a commercially popular continuously variable traction drive with a totally mechanical integral feedback controller. The features of the traction drive unique to its application to a bicycle are outlined in detail, along with an analysis of the important traction drive design parameters.
    [Show full text]
  • Pedal Force Effectiveness in Cycling: a Review of Constraints and Training Effects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Online @ ECU Edith Cowan University Research Online ECU Publications 2013 1-1-2013 Pedal force effectiveness in cycling: A review of constraints and training effects Rodrigo Bini Patria Hume James L. Croft Edith Cowan University, [email protected] Andrew Kilding Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2013 Part of the Sports Sciences Commons Bini, R., Hume, P., Croft, J. L., & Kilding, A. (2013). Pedal force effectiveness in cycling: A review of constraints and training effects. Journal of Science and Cycling, 2(1), 11-24. Availablehere This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworks2013/891 J Sci Cycling. Vol. 2(1), 11-24 REVIEW ARTICLE Open Access Pedal force effectiveness in Cycling: a review of constraints and training effects Rodrigo R Bini1, 2, Patria Hume1, James Croft3, Andrew Kilding1 Abstract Pedal force effectiveness in cycling is usually measured by the ratio of force perpendicular to the crank (effective force) and total force applied to the pedal (resultant force). Most studies measuring pedal forces have been restricted to one leg but a few studies have reported bilateral asymmetry in pedal forces. Pedal force effectiveness is increased at higher power output and reduced at higher pedaling cadences. Changes in saddle position resulted in unclear effects in pedal force effectiveness, while lowering the upper body reduced pedal force effectiveness. Cycling experience and fatigue had unclear effects on pedal force effectiveness. Augmented feedback of pedal forces can improve pedal force effectiveness within a training session and after multiple sessions for cyclists and non-cyclists.
    [Show full text]
  • PEDAL POWERED.Indd
    Portable Pedal Power A proposal for AAA and Burt Rutan March 1, 2005 Submitted by CASL and the EDC Outline of Portable Pedal Power Proposal: Why we need it How our Proposal Meets the Proposal Requirements Multidisciplinary Collaboration: the Submitting Group Design Guidelines Design Sketches Initial Electrical Schematic Proposed Budget Additional Information from research: Basic Pedal Power Study Available Products Organizations Precedent Studies Glossary Portable Pedal Power Proposal Abstract: Living in America in the 21st Century is a luxury that is generally taken for granted. It wasnʼt long ago that people lived in small houses without flush toilets, running water, or electricity, and now people donʼt even recognize the great ingenuity that is required to bring electricity in to our lives. Our proposal seeks to raise hands on awareness of electricity production, while demonstrating alternatives to the current standard in an exciting and engaging way. It is important to visualize new ways to bring power to the people as population continues to grow and power shortages continue to occur. Much of the power that is provided to people today is done in very un-sus- tainable ways; new ideas are needed to transition in to a post cheap-petroleum era. Proposal: We propose to design and create a portable bicycle trailor that generates electricity for events and dem- onstrations. The trailor will be fully equipped with bicycle stands that fold out to handle 3-4 bicycles. Each stand would be connected to a small magnet motor generator that would transform the bicycle pedal rotations in to electrical energy. The energy then charges a small battery bank.
    [Show full text]
  • Technical and Environmental Viability of a Road Bicycle Pedal Part Made of a Fully Bio-Based Composite Material
    materials Article Technical and Environmental Viability of a Road Bicycle Pedal Part Made of a Fully Bio-Based Composite Material David Hernández-Díaz 1,* , Ricardo Villar-Ribera 2,*, Ferran Serra-Parareda 3 , Rafael Weyler-Pérez 4, Montserrat Sánchez-Romero 4, José Ignacio Rojas-Sola 5 and Fernando Julián 6 1 Serra Húnter Programme, Department of Engineering Graphics and Design, Polytechnic University of Catalonia, 08222 Terrassa, Spain 2 Department of Engineering Graphics and Design, Campus Manresa, Polytechnic University of Catalonia, 08242 Manresa, Spain 3 LEPAMAP Research Group, University of Girona, 17003 Girona, Spain; [email protected] 4 Department of Strenght Materials and Structural Engineering, Polytechnic University of Catalonia, 08222 Terrassa, Spain; [email protected] (R.W.-P.); [email protected] (M.S.-R.) 5 Department of Engineering Graphics, Design and Projects, University of Jaén, 23071 Jaén, Spain; [email protected] 6 Design, Development and Product Innovation, Department of Organization, Business, University of Girona, 17003 Girona, Spain; [email protected] * Correspondence: [email protected] (D.H.-D.); [email protected] (R.V.-R.) Abstract: Glass fibre is the most widely used material for reinforcing thermoplastic matrices presently and its use continues to grow. A significant disadvantage of glass fibre, however, is its impact on the environment, in particular, due to the fact that glass fibre-reinforced composite materials are difficult to recycle. Polyamide 6 is an engineering plastic frequently used as a matrix for high-mechanical Citation: Hernández-Díaz, D.; performance composites. Producing polyamide monomer requires the use of a large amount of Villar-Ribera, R.; Serra-Parareda, F.; energy and can also pose harmful environmental impacts.
    [Show full text]
  • Design and Material Study of Race Bike Crank Pl
    ISSN: 2277-9655 [Vairakanna* et al., 6(4): April, 2017] Impact Factor: 4.116 IC™ Value: 3.00 CODEN: IJESS7 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND MATERIAL STUDY OF RACE BIKE CRANK PL. Vairakanna*, M. Chandran * PG Scholar, Department of Mechanical Engineering, Dr. MGR University, Chennai, India Professor, Department of Mechanical Engineering, Dr. MGR University, Chennai, India DOI: 10.5281/zenodo.496091 ABSTRACT In this study we are going to study on design and material optimization of a race bike crank. The objective is to compare the stresses and weight saving of alternate crank material with existing steel crank. Increasing strength while decreasing or maintaining weight of the products is getting to be highly important research issue in this modern world. On design study compare alternative designs of crank for effective weight reductions. The best optimized design and material will be suggested. The material will be selected with objective of increasing strength to weight ratio. KEYWORDS: Bicycle crank, Crank Material, Crank Design Profile. INTRODUCTION Cranks The two cranks, one on each side and usually mounted 180 degree apart, connect the bottom bracket axle to the pedals. Bicycle cranks can vary in length to accommodate different sized riders and different types of cycling. Crank length can be measured from the center of the pedal spindle to the center of the bottom bracket spindle or axle. The larger bicycle component manufacturers typically offers crank lengths for adult riders from 165mm to 180mm in 2.5mm increments, with 170mm cranks being the most common size. The factor affecting the selection of crank length is the rider’s cycling specialty and the type of cycling event.
    [Show full text]
  • 22Nd Annual Antique & Classic Bicycle
    CATALOG PRICE $4.00 Michael E. Fallon / Seth E. Fallon COPAKE AUCTION INC. 266 Rt. 7A - Box H, Copake, N.Y. 12516 PHONE (518) 329-1142 FAX (518) 329-3369 Email: [email protected] Website: www.copakeauction.com 22nd Annual Antique & Classic Bicycle Auction Pedaling History Bicycle Museum Collection Session II of III (plus select additions) ******************************************* Auction: Saturday April 20, 2013 @ 10:00 am Swap Meet: Friday April 19th (dawn ‘til dusk) Preview: Thur. April 18, 11-5 PM, Fri. April 19, 11-5 PM, Sat. April 20, 9-10 AM TERMS: Everything sold “as is”. No condition reports in descriptions. Bidder must look over every lot to determine condition and authenticity. Cash or Travelers Checks MasterCard, Visa and Discover Accepted First time buyers cannot pay by check without a bank letter of credit 15% Buyer’s Premium (no cash discounts, 18% for LiveAuctioneers online purchases) National Auctioneers Association - NYS Auctioneers Association CONDITIONS OF SALE 1. Some of the lots in this sale are offered subject to a reserve. This reserve is a confidential minimum price agreed upon by the consignor & COPAKE AUCTION below which the lot will not be sold. In any event when a lot is subject to a reserve, the auctioneer may reject any bid not adequate to the value of the lot. 2. All items are sold "as is" and neither the auctioneer nor the consignor makes any warranties or representations of any kind with respect to the items, and in no event shall they be responsible for the correctness of the catalogue or other description of the physical condition, size, quality, rarity, importance, medium, provenance, period, source, origin or historical relevance of the items and no statement anywhere, whether oral or written, shall be deemed such a warranty or representation.
    [Show full text]
  • 24Th Annual Antique & Classic Bicycle Auction
    CATALOG PRICE $4.00 Michael E. Fallon / Seth E. Fallon COPAKE AUCTION INC. 266 Rt. 7A - Box H, Copake, N.Y. 12516 PHONE (518) 329-1142 FAX (518) 329-3369 Email: [email protected] Website: www.copakeauction.com 24th Annual Antique & Classic Bicycle Auction Featuring the Howie Cohen Collection from Lafayette, Colorado, A Templeton, MA Collection, Select Additions from several European Museums, a Hollywood California collection of Bowden bicycles with memorabilia and over 200 bicycle lamps from the mid-west. ************************************************** Auction: Saturday April 18, 2015 @ 9:00 am Swap Meet: Friday April 17th (dawn ‘til dusk) Preview: Thur. – Fri. April 16-17: 11-5pm, Sat. April 18, 8-9am TERMS: Everything sold “as is”. No condition reports in descriptions. Bidder must look over every lot to determine condition and authenticity. Cash or Travelers Checks - MasterCard, Visa and Discover Accepted First time buyers cannot pay by check without a bank letter of credit 17% buyer's premium - 20% buyer's premium for LIVE AUCTIONEERS Accepting Quality Consignments for All Upcoming Sales National Auctioneers Association - NYS Auctioneers Association CONDITIONS OF SALE 1. Some of the lots in this sale are offered subject to a reserve. This reserve is a confidential minimum price agreed upon by the consignor & COPAKE AUCTION below which the lot will not be sold. In any event when a lot is subject to a reserve, the auctioneer may reject any bid not adequate to the value of the lot. 2. All items are sold "as is" and neither the auctioneer nor the consignor makes any warranties or representations of any kind with respect to the items, and in no event shall they be responsible for the correctness of the catalogue or other description of the physical condition, size, quality, rarity, importance, medium, provenance, period, source, origin or historical relevance of the items and no statement anywhere, whether oral or written, shall be deemed such a warranty or representation.
    [Show full text]
  • Bicycle Pedal
    ^ ^ H ^ I H ^ H ^ II ^ II ^ ^ ^ ^ HI H ^ ^ ^ ^ HI ^ ^ ^ ^ I ^ � European Patent Office Office europeen des brevets EP 0 753 453 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt CI.6: B62M 3/08 15.01.1997 Bulletin 1997/03 (21) Application number: 96305140.4 (22) Date of filing: 12.07.1996 (84) Designated Contracting States: (72) Inventor: Ueda, Yutaka, c/o Shimano Inc. DE FR GB IT Sakai, Osaka 590 (JP) (30) Priority: 12.07.1995 JP 176304/95 (74) Representative: Pacitti, Pierpaolo A.M. E. et al Murgitroyd and Company (71) Applicant: SHIMANO INC. 373 Scotland Street Osaka 590 (JP) Glasgow G5 8QA (GB) (54) Bicycle pedal (57) A bicycle pedal (1) includes front and rear cleat beber (31 , 31 b). The wide tread surface (49) provides sta- engaging members (30, 30b, 31 , 31 b) for engaging cor- ble contact between the cycling shoe (21 ) and the cleat responding front and rear portions of a cleat (22) affixed (2i(22) when the pedal is disengaged from the cleat en- to a bicycle shoe (21). A tread cage (5) having a rela- gagaging members, and the movable tread cage (5) allows tively wide tread surface (49) is coupled to the pedal for the tread surface to move away from the cleat engaging movement relative to at least one of the front cleat en- memembers so as not to interfere when the cyclist is in the gaging member (30, 30b) or rear cleat engaging mem- preprocess of engaging the cleat (22) with the cleat engag- inginc members.
    [Show full text]