<<

Workshop on Cost Estimation and Cost Analysis of Nuclear Projects and Programmes Idaho National Laboratory, USA

Nuclear in the Energy Mix Perspective of North

Anton Chaushevski Faculty of Electrical Eng.& IT, Sts Cyril and Methodius University -

INL, September 30 – October 03, 2019 Content

•Existing Power System (PS) •New production capacities candidates •Long term scenarios for Power System •Activities in energy planning  Model for hourly operation of power plants  Environmental impacts from fossil fuels technologies •Nuclear option for future development Current situation in Electric Power System •Import is 30% of electricity needs (2000-3000 GWh/year) • Base load from TPP on lignite (over 30 years old units in operation) • Domestic lignite with limited reserves (next 20 years) •Base load in critical status after 2030 •Needs for new base load production capacities •Small grid with Max. power needs 1500-2000 MW •Yearly energy needs 9000 GWh

•The largest single generation unit is 220MW (thermal unit)

•Challenges in new technology which is environmentally acceptable (REN in first period next 5-10 years) •Nuclear power is an energy option after 2030 •SMR as reasonable and acceptable investments for small country as a new nuclear beginner Existing power system and main companies Map of the grid •ELEM - power plants and private producers •MEPSO – national TSO •EVN and other distributions Урошевац Врање Србија Ново Косово Червена Могила Косово Скакавица Железара Куманово 1 К.Паланка Куманово Кратово М.Каменица Скопје1 Скопје 5 ТИРЗ ТетовоТеарце Бугарија Тетово 2 ТЕ ТО Куманово 2 Пробиштип Ѓ.Петров Скопје2 Рафинерија Тетово 1 ИЗ Неокази Бунарџик Делчево Југохром Скопје3 Кочани Скопје 4 Петровец О.Поле Штип Полог Св.Петка Велес Гостивар Штип1 Козјак Штип2 Топилница Вруток Самоков Велес2 Бучим Берово Централна Згрополци Радовиш рудник Бошков мост Осломеј Иловица Дуброво Шпиље Кавадарци Кичево Неготино Прилеп2 Градска Струмица1 Сушица Глобочица Прилеп3 Струмица2 Петрич Фени Тиквеш Неготино Прилеп1 Вaландово Сопотница

Охрид Богданци Струга Гевгелија Битола 2 Охрид1 Ресен Битола1 Битола Елбасан Охрид2 Битола4 Б.Гнеотино Солун Битола3 Суводол Грција

ХЕЦ 400 kV ДВ ТС 400/110 kV ВЕЦ 110 kV ДВ ТС 110/x kV Албанија ТЕЦ Лерин ТЕТО Состојба 2020 The structure of the Power system

Wind Farms

GENERATION SYSTEM CONSUMERS

TSO ELEM Regulated consume with TPPs & HPPs

M Large Ind. consumers IMPORT from Market E Independent Power Producers P CHP, CC,.... S Connection O Export to Market

Distribution PV Companies, EVN Small HPP Supply structure in GWh for last years Regulating consumers and customers (7500-8000 GWh) Industrial consumers for 110 kV are not included (free on the market) (1000-1500 GWh)

2014 2015 2016 TPP 3507 3092 2699 3317 2986 2672 Oslomej 190 106 27 CHP Energetika 0 0 1.3 HPP 958 1528 1490 Mavrovo 398 439 553 Crn Drim 326 529 586 Tikves 116 313 145 118 247 206 Wind Park 70 121 110 ELEM Total 4535 4741 4299 CHP TETO+Kogel 192 179 554 IMPORT 3072 2656 2191 REN (Substitice) 256 350 449 Small HPP 242 308 389 PV 14 22 24 Biomass 0 20 36 DEMAND 8055 7926 7493 Typical yearly and daily demand

1600 P (MW) 1400 1200 1000 800

600 30 December 2016 400 20 October 2016 200 06 August 2016 16 May 2016 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Existing iInstalled capacities Installed Power Yearly Available Generation P (MW) W (GWh) TPP coal 825 4800 TPP oil 210 1000 CHP gas 287 2000 HPP (Large&Small) 675 1545 Wind farm 37 120 PV 17 22 Biomass 6 18 TOTAL 2057 9470 Emission factors and environmental impacts from fossil fuel thermal power plants

LIGNITE CO2 SO2 H2O N2 O2 Total Nm3/kg-Fuel 0.435 0.004 0.723 2.384 0.146 3.693 1400 kg / kg Fuel 0.855 0.012 0.581 2.981 0.209 4.637 kg/Nm3 Gasses 0.231 0.003 0.157 0.807 0.057 1.256 1200 CO2 (gr/kWh) g/kJ 0.111 0.002 0.075 0.387 0.027 0.602 1000 g/kWh 1249.0 16.9 848.6 4354.7 305.3 6774.5 800

600

OIL CO2 SO2 H2O N2 O2 Total 400 Nm3/kg-Fuel 1.587 0.014 0.336 8.634 0.530 11.101 200 kg / kg Fuel 3.117 0.040 0.270 10.793 0.757 14.976 kg/Nm3 Gasses 0.281 0.004 0.024 0.972 0.068 1.349 0 g/kJ 0.078 0.001 0.007 0.269 0.019 0.373 Lignite Oil Natural. Gas g/kWh 821.2 10.5 71.1 2843.1 199.3 3945.3

18 NATURAL GAS CO SO H O N O Total 2 2 2 2 2 16 Nm3/kg-Fuel 0.999 0.000 1.999 9.842 0.604 13.444 14 kg / kg Fuel 1.962 0.000 1.606 12.303 0.863 16.734 SO2 (gr/kWh) kg/Nm3 Gasses 0.146 0.000 0.119 0.915 0.064 1.245 12 g/kJ 0.051 0.000 0.041 0.317 0.022 0.431 10 g/kWh 331.1 0.0 271.0 2075.4 145.5 2823.0 8 6 4 2 0 Lignite Oil Natural. Gas Generation prices of electricity  Thermal PP (coal), 55 Euro/MWh  CC thermal PP (gas), 65 Euro/MWh  Hydro Power (Run off, Storage), 20 Euro/MWh

REN  Small Hydro 45-120 Euro/MWh (Feed in tariff)  Wind Power, 89 Euro/MWh (Feed in tariff)  PV Solar, Market price + Add.  Biomass 180 Euro/MWh (Feed in tariff)

REN in 2016

 Small HPP (80MW) 389 GWh  Wind power (37MW) 110 GWh  PV (18MW) 24 GWh  Biomass (7MW) 36 GWh Operation Planning of Power Generation in the Power System

MODELS for Planning of Power System • Long – term planning (year, few years, decades) New investments in power plants, National Strategy planning,... • Short term planning (in a day, week, …, year) Operation of existing power plants… Model for hourly operation of power plants in PS Optimization function -Total Operation Costs -minimum

K T N T ∑∑ Kk (Pter (t)) ⋅ ∆t + ∑∑ Kn (Psys (t)) ⋅ ∆t ⇒ min k=1 t=1 n=1 t=1 Power balance between generation and consumption in each time interval according to the relation

∑ Pther (t) + ∑ Phyd (t) + ∑ PREN (t) + ∑ Psys (t) = Pload (t) K M R N k –Thermal power plant contracts (TPP & NPP) with Pter (t), m - Hydropower plants, each with power Phyd (t) n - Additional systems or interconnections REN – Renewable (Wind farms, PV and others)

Other Constraints: • Water balance for HPP, • Energy production balance for TPP • Contracts for import/export • Planned outages Modelling thermal units

Thermal Power Plants (TPP &NPP) Production costs depend on power output (CAP+Fuel+O&M)

2 K k (Pk,t ) = Pk,t ⋅ qk (Pk,t ) = Pk,t ⋅ (Ak + Bk ⋅ Pk,t + Ck ⋅ Pk,t )

K(P) = A ⋅ P + B ⋅ P 2 + C ⋅ P 3 Modelling Hydro Power units

 Hydro Power Plants Specific spent water per energy depend on turbine discharge and storage level

 2      Pm,t Pm,t  Pm,t Pm,t  Q  = ⋅  A + B ⋅ + C ⋅     neto  neto m m neto m  neto   H m,t  H m,t  H m,t  H m,t     Electricity load representative

tn ∑ P(ti ) ⋅ti P(t) ∆ t =1 ∆t W ( t) i Ptot = = P tn = − max P(t3 ) ∆t Pvar Ptot Pmin ∑ti P(t1) ti =1 P(t4 )

P(tn ) P P(t2 ) var In order to reduce the dimension of the problem , the Pmin ... number of time interval (T) can be smaller with different Ptot duration (appropriate to the demand)

t1 t t t 2 3 4 t n

Model possibilities  Wide options of Generation planning ( long & short terms)  Operating regime of HPP’s & TPP’s  Flexible opportunity for interval’s dividing: months, weeks. days, hours (few,...,2,1)  Balance of total & variable load  Water balance for HPP’s reservoirs  Electricity exchange (import, export) Existing power system of Macedonia

Lignite TPP – 820 MW, 4500 GWh Bitola, Oslomej Gas TPP – 280 MW, 2000 GWh TE TO, Kogel, Energetika ELEM Oil TPP – 210 MW, 1200 GWh HYDRO – 580 MW, 1450 GWh

DEMAND near 9000 GWh Domestic production around 6500 GWh Import (Gap) of 2500 GWh Basin Wannual [GWh] Wshare [%] 1 Mavrovo HPPs 488 33.66 2 Crn Drim HPPs 513 35.38 3 Treska HPPs 190 13.10 4 Crna HPPs 184 12.69 5 Small HPPs 75 5.17 Total 1450 100.00 Future projection of new power plants

Lignite TPP – 300 MW, 2000 GWh 1 units x 300 MW Gas TPP – 500MW, 3000 GWh 2 units Nuclear – up to 1000 MW, 8000 GWh

HYDRO – near 1000 MW, 2300 GWh Renewable (up to 400 GWh)  Small HPP 60 MW  Wind 150 MW  PV 20 MW

Basin Pinst. Wyear Investment MW GWh mil € Boskov Most 68.2 117 70 Lukovo pole and HPP Crn Kamen Mavrovo 5 163 45 Galiste 193.5 264 200 Cebren Crna river 333 340 319 Spilje 2 Crn Drim 72 33 35 Gradec 54.6 252 157 Veles Vardar 93.0 300 251 10 HPPs in the Vardar valley Vardar 176.8 784 486 TOTAL 1032 2343 1563 Simulation of Scenario in hourly optimization Case with NPP

2500 P(MW)

2000 Winter Week 1500 Hydro Import PUMP Gas 1000 NUCLEAR

500

0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166

2500 P(MW)

2000 Summer Week 1500 Hydro Import PUMP Gas 1000 NUCLEAR

500

0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 1000 P (MW) Treska 900 Mavrovo 800 CRNA 700 Crn Drim 600 Gradec 500 400 300 200 100 0 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 Conventional HPP Covering the peak demand Conventional+ Reversible HPP 1000 P (MW) Treska 900 Mavrovo 800 CRNA 700 Crn Drim 600 Gradec 500 400 300 200 100 0 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 Comparison of covering the base load 1200 No Nuclear and large NPP option P (MW)

1000

800

600

400 Coal + Import 200 6400 GWh

0 1 170 339 508 677 846 1015 1184 1353 1522 1691 1860 2029 2198 2367 2536 2705 2874 3043 3212 3381 3550 3719 3888 4057 4226 4395 4564 4733 4902 5071 5240 5409 5578 5747 5916 6085 6254 6423 6592 6761 6930 7099 7268 7437 7606 7775 7944 8113 8282 8451 8620

1200 P(MW) 1000

800

600

400 Nuclear NPP

200 6800 GWh

0 1 177 353 529 705 881 1057 1233 1409 1585 1761 1937 2113 2289 2465 2641 2817 2993 3169 3345 3521 3697 3873 4049 4225 4401 4577 4753 4929 5105 5281 5457 5633 5809 5985 6161 6337 6513 6689 6865 7041 7217 7393 7569 7745 7921 8097 8273 8449 8625 CASE OF OPERATION OF THE POWER SYSTEM WITH WIND FARMS PLANNING IN A YEAR FOR 8760 HOURS

Simulation of power generation units operation: • TPPs of: Pmin=870MW < P(t) < Pmax=1270MW • HPPs for average hydrology of: Pinst=628MW • Wind power plants of 150 MW with an annual production of 300 GWh. • Annual demand of 10,000 GWh.

Pmin Pinst Annual generation ТPP (MW) (MW) W (GWh) Lignite (Bitola1,2,3, & Oslomej) 550 800 5000 Gas (TE-TO, Kogel, Energetika) 160 260 2000 Oil (Negotino) 160 210 1000 Total 870 1270 8000

Pinst Annual generation for average inflow HPP (MW) W (GWh) ELEM –storage HPP 550 1500 EVN 38 110 Small HPP 40 120 Total 628 1730 Power system operation in the selected winter week

Covering the demand and wind power for selected winter week

HPP operation for both cases, with and without wind power

TPP operation for both cases, with and without wind power Power system operation in the selected summer week

Covering the demand and wind power for selected summer week

HPP operation for both cases, with and without wind power

TPP operation for both cases, with and without wind power Suppressed (pished) power in the system for each hour of the year (case with wind farm of 600MW total installed power)

The power pushed into the system as the result of wind power injection can be reduced if the technical minimum power of the thermal units can be decreased in order to accept the power from wind farms. Otherwise, can be reduced with additional hydro power units (storage or reversible), or flexible gas power turbines. Covering the electricity needs up to 2040 •Reduced fossil fuel scenario •Annual growth rate of 2,5% •Gap of electricity needs - IMPORT or NUCLEAR •After 2035 - over 6000 GWh

18000 Wyear (GWh) 16000

14000

12000 Import 10000 Renewable

8000 Hydro New Gas 6000 Gas 4000 New coal 2000 Lignite 0 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 Security rules for grid  N-1 security rule – is fulfilled if all technical criteria are respected when contingency event occurs in the network  Extreme contingencies – busbar outage – complete power plant outage  N-2 security rule – double circuits outage – simultaneous outage of two different lines

 Cascade outages  Loading  Voltage profile  Max outage of load/production Technical criteria  Voltage stability  Dynamic stability MK grid long-term visions & NPP integration

27 New interconnection projects

Nis

Trebinje Plevlja Sofija Ribarevina

Kosovo B Podgorica Prizren Chervena Mogila

Skopje Stip Blagoevgrad Vau Fierze Dejes Dubrovo N Tirana Bitola Filippi

Elbasan Amyndeo Zemlak

Kardia Ag. Dimitrios 28

Arachtos Some facts

 Big gap in covering the power needs in Macedonia, for the last 10 years which is 30% of the total demand.  Fossil option (coal and gas) for long term supply is uncertainty and insecure (depend on transportation limitations and global energy policy with gas pipe lines).  Environmental consequences from fossil fuel option as an additional challenge.  Nuclear option as a real long term power supply security.  Small and medium size reactors (SMR) are preferable, or sharing large scale NPP as regional project  Stakeholders for NEP are ELEM, MEPSO, DRS-Directorate for Radiation Safety, Universities with academia SMR as Energy option after 2030

•Low investments for small country •Modularity of the technology and relatively easier for implementation for new beginner country in nuclear power (HR needs, nuclear regulatory authorities,…) •Transport problem for large and heavy equipments (no sea port or any water transport, only roads and railway) •Implementation the environmental friendly technologies

Sharing Large NPP as regional project •Possibility to start of new beginner in nuclear technology •HR needs and nuclear regulation •Letter of interest for NPP Belene send to Bulgarian authorities •Long way to negotiations for until decision