Introduction to SCIP 11:00–11:30 Coffee Break 11:30–12:30 Installation of SCIP and GCG 12:30–14:00 Lunch 14:00–17:30 Programming Exercises 15:30–16:00 Coffee Break

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to SCIP 11:00–11:30 Coffee Break 11:30–12:30 Installation of SCIP and GCG 12:30–14:00 Lunch 14:00–17:30 Programming Exercises 15:30–16:00 Coffee Break SCIP Workshop 2018 Structure of the SCIP Introduction Day 9:30{11:00 Introduction to SCIP 11:00{11:30 Coffee Break 11:30{12:30 Installation of SCIP and GCG 12:30{14:00 Lunch 14:00{17:30 Programming Exercises 15:30{16:00 Coffee Break Visit scip.zib.de/workshop2018 for all information. Tomorrow and on Thursday: Scientific Talks Plenary Talk Wednesday, 11:30 Ruth Misener, Imperial College London, UK Gregor Hendel { SCIP Introduction 1/71 Introduction to SCIP Gregor Hendel SCIP Workshop 2018, Aachen, March 6, 2018 What is SCIP? SCIP (Solving Constraint Integer Programs) . • provides a full-scale MIP and MINLP solver, • is constraint based, • incorporates • MIP features (cutting planes, LP relaxation), and • MINLP features (spatial branch-and-bound, OBBT) • CP features (domain propagation), • SAT-solving features (conflict analysis, restarts), • is a branch-cut-and-price framework, • has a modular structure via plugins, • is free for academic purposes, • and is available in source-code under http://scip.zib.de ! Gregor Hendel { SCIP Introduction 2/71 Meet the SCIP Team 31 active developers • 7 running Bachelor and Master projects • 16 running PhD projects • 8 postdocs and professors 4 development centers in Germany • ZIB: SCIP, SoPlex, UG, ZIMPL • TU Darmstadt: SCIP and SCIP-SDP • FAU Erlangen-N¨urnberg: SCIP • RWTH Aachen: GCG Many international contributors and users • more than 10 000 downloads per year from 100+ countries Careers • 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV • 7 former developers are now building commercial optimization software at CPLEX, FICO Xpress, Gurobi, MOSEK, and GAMS Gregor Hendel { SCIP Introduction 3/71 Outline SCIP {SolvingConstraintIntegerPrograms Constraint Integer Programming The Solving Process of SCIP Extending SCIP by Plugins The SCIP Optimization Suite http://scip.zib.de Gregor Hendel { SCIP Introduction 4/71 Outline SCIP {SolvingConstraintIntegerPrograms Constraint Integer Programming The Solving Process of SCIP Extending SCIP by Plugins The SCIP Optimization Suite http://scip.zib.de Gregor Hendel { SCIP Introduction 5/71 An example: the Traveling Salesman Problem Definition (TSP) Given a complete graph G = (V ; E) and distances de for all e 2 E: Find a Hamiltonian cycle (cycle containing all nodes, tour) of minimum length. K8 Gregor Hendel { SCIP Introduction 6/71 An example: the Traveling Salesman Problem Definition (TSP) Given a complete graph G = (V ; E) and distances de for all e 2 E: Find a Hamiltonian cycle (cycle containing all nodes, tour) of minimum length. K8 Gregor Hendel { SCIP Introduction 6/71 An example: the Traveling Salesman Problem Definition (TSP) Given a complete graph G = (V ; E) and distances de for all e 2 E: Find a Hamiltonian cycle (cycle containing all nodes, tour) of minimum length. Gregor Hendel { SCIP Introduction 6/71 What is a Constraint Integer Program? Mixed Integer Program Constraint Program Objective function: Objective function: . linear function . arbitrary function Feasible set: Feasible set: . described by linear constraints . given by arbitrary constraints Variable domains: Variable domains: . real or integer values . arbitrary (usually finite) min cT x min c(x) s:t: Ax ≤ b s:t: x 2 F I C I (xI ; xC ) 2 Z × R (xI ; xN ) 2 Z × X Gregor Hendel { SCIP Introduction 7/71 X min de xe e2E X subject to xe = 2 8v 2 V e2δ(v) X xe ≥ 2 8S ⊂ V ; S 6= ? e2δ(S) xe 2 f0; 1g 8e 2 E TSP { Integer Programming Formulation Given • complete graph G = (V ; E) xe • distances de > 0 for all e 2 E Binary variables • xe = 1 if edge e is used K8 Gregor Hendel { SCIP Introduction 8/71 TSP { Integer Programming Formulation Given • complete graph G = (V ; E) xe • distances de > 0 for all e 2 E Binary variables • xe = 1 if edge e is used K8 X min de xe e2E X subject to xe = 2 8v 2 V e2δ(v) X xe ≥ 2 8S ⊂ V ; S 6= ? e2δ(S) xe 2 f0; 1g 8e 2 E Gregor Hendel { SCIP Introduction 8/71 TSP { Integer Programming Formulation Given • complete graph G = (V ; E) xe • distances de > 0 for all e 2 E Binary variables • xe = 1 if edge e is used K8 X min de xe e2E X subject to xe = 2 8v 2 V node degree e2δ(v) X xe ≥ 2 8S ⊂ V ; S 6= ? e2δ(S) xe 2 f0; 1g 8e 2 E Gregor Hendel { SCIP Introduction 8/71 TSP { Integer Programming Formulation Given • complete graph G = (V ; E) xe • distances de > 0 for all e 2 E Binary variables • xe = 1 if edge e is used K8 X min de xe e2E X subject to xe = 2 8v 2 V e2δ(v) X xe ≥ 2 8S ⊂ V ; S 6= ? e2δ(S) subtour elimination xe 2 f0; 1g 8e 2 E Gregor Hendel { SCIP Introduction 8/71 TSP { Integer Programming Formulation Given • complete graph G = (V ; E) xe • distances de > 0 for all e 2 E Binary variables • xe = 1 if edge e is used K8 X min de xe distance e2E X subject to xe = 2 8v 2 V e2δ(v) X xe ≥ 2 8S ⊂ V ; S 6= ? e2δ(S) xe 2 f0; 1g 8e 2 E Gregor Hendel { SCIP Introduction 8/71 8 7 2 3 1 4 6 5 min length(x1;:::; xn) subject to alldifferent(x1;:::; xn) xv 2 f1;:::; ng 8v 2 V TSP { Constraint Programming Formulation Given • complete graph G = (V ; E) xv • for each e 2 E a distance de > 0 Integer variables • xv position of v 2 V in tour K8 Gregor Hendel { SCIP Introduction 9/71 xv K8 TSP { Constraint Programming Formulation 8 Given 7 2 • complete graph G = (V ; E) • for each e 2 E a distance de > 0 3 1 Integer variables 4 6 • xv position of v 2 V in tour 5 min length(x1;:::; xn) subject to alldifferent(x1;:::; xn) xv 2 f1;:::; ng 8v 2 V Gregor Hendel { SCIP Introduction 9/71 What is a Constraint Integer Program? Constraint Integer Program min cT x Objective function: s:t: x 2 F I C . linear function (xI ; xC ) 2 Z × R Feasible set: Remark: . described by arbitrary constraints • arbitrary objective or variables modeled by constraints Variable domains: . real or integer values Gregor Hendel { SCIP Introduction 10/71 What is a Constraint Integer Program? Constraint Integer Program X min de xe e E 2X Objective function: s:t: xe = 2 8 v 2 V e δ(v) 2 . linear function nosubtour(x) xe 2 f0; 1g 8 e 2 E Feasible set: (CIP formulation of TSP) . described by arbitrary constraints Single nosubtour constraint rules out subtours (e.g. by domain prop- Variable domains: agation). It may also separate sub- tour elimination inequalities. real or integer values Gregor Hendel { SCIP Introduction 10/71 Mixed-Integer Nonlinear Programs (MINLPs) min cTx s.t. gk (x) ≤ 0 8k 2 [m] xi 2 Z 8i 2 I ⊆ [n] xi 2 [`i ; ui ] 8i 2 [n] 1 The functions gk 2 C ([`; u]; R) can be 0 100 200 10 200 300 0 200 5 0 −200 −1 1 −1 1 convex or nonconvex Gregor Hendel { SCIP Introduction 11/71 Application: Data Classification Support Vector Machine, e.g., with ramp loss. n w Tw C X min + (ξ + 2(1 − z )) 2 n i i i=1 T s.t. zi (yi (w xi + b) − 1 + ξi ) ≥ 0 8i ξi 2 [0; 2]; zi 2 f0; 1g 8i d w 2 R ; b 2 R Gregor Hendel { SCIP Introduction 12/71 CIP • SATisfiability problems • Pseudo-Boolean Optimization • Mixed Integer Nonlinear Programs SAT PBO MINLP CP • Constraint Programming • Constraint Integer Programming Relation to CP and MIP • Every MIP is a CIP. \MIP ( CIP" • Every CP over a finite domain space is a CIP. \FD ( CIP" Constraint Integer Programming • Mixed Integer Programs MIP Gregor Hendel { SCIP Introduction 13/71 CIP • Pseudo-Boolean Optimization • Mixed Integer Nonlinear Programs PBO MINLP CP • Constraint Programming • Constraint Integer Programming Relation to CP and MIP • Every MIP is a CIP. \MIP ( CIP" • Every CP over a finite domain space is a CIP. \FD ( CIP" Constraint Integer Programming • Mixed Integer Programs • SATisfiability problems MIP SAT Gregor Hendel { SCIP Introduction 13/71 CIP • Mixed Integer Nonlinear Programs MINLP CP • Constraint Programming • Constraint Integer Programming Relation to CP and MIP • Every MIP is a CIP. \MIP ( CIP" • Every CP over a finite domain space is a CIP. \FD ( CIP" Constraint Integer Programming • Mixed Integer Programs • SATisfiability problems MIP • Pseudo-Boolean Optimization SAT PBO Gregor Hendel { SCIP Introduction 13/71 CIP CP • Constraint Programming • Constraint Integer Programming Relation to CP and MIP • Every MIP is a CIP. \MIP ( CIP" • Every CP over a finite domain space is a CIP. \FD ( CIP" Constraint Integer Programming • Mixed Integer Programs • SATisfiability problems MIP • Pseudo-Boolean Optimization • Mixed Integer Nonlinear Programs SAT PBO MINLP Gregor Hendel { SCIP Introduction 13/71 CIP • Constraint Integer Programming Relation to CP and MIP • Every MIP is a CIP. \MIP ( CIP" • Every CP over a finite domain space is a CIP. \FD ( CIP" Constraint Integer Programming • Mixed Integer Programs • SATisfiability problems MIP • Pseudo-Boolean Optimization • Mixed Integer Nonlinear Programs SAT PBO MINLP CP • Constraint Programming Gregor Hendel { SCIP Introduction 13/71 Relation to CP and MIP • Every MIP is a CIP. \MIP ( CIP" • Every CP over a finite domain space is a CIP. \FD ( CIP" Constraint Integer Programming CIP • Mixed Integer Programs • SATisfiability problems MIP • Pseudo-Boolean Optimization • Mixed Integer Nonlinear Programs SAT PBO MINLP CP • Constraint Programming • Constraint Integer Programming Gregor Hendel { SCIP Introduction 13/71 Constraint Integer Programming CIP • Mixed Integer Programs • SATisfiability problems MIP • Pseudo-Boolean Optimization • Mixed Integer Nonlinear Programs SAT PBO MINLP CP • Constraint Programming • Constraint Integer Programming Relation to CP and MIP • Every MIP is a CIP.
Recommended publications
  • Multi-Objective Optimization of Unidirectional Non-Isolated Dc/Dcconverters
    MULTI-OBJECTIVE OPTIMIZATION OF UNIDIRECTIONAL NON-ISOLATED DC/DC CONVERTERS by Andrija Stupar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Edward S. Rogers Department of Electrical and Computer Engineering University of Toronto © Copyright 2017 by Andrija Stupar Abstract Multi-Objective Optimization of Unidirectional Non-Isolated DC/DC Converters Andrija Stupar Doctor of Philosophy Graduate Department of Edward S. Rogers Department of Electrical and Computer Engineering University of Toronto 2017 Engineers have to fulfill multiple requirements and strive towards often competing goals while designing power electronic systems. This can be an analytically complex and computationally intensive task since the relationship between the parameters of a system’s design space is not always obvious. Furthermore, a number of possible solutions to a particular problem may exist. To find an optimal system, many different possible designs must be evaluated. Literature on power electronics optimization focuses on the modeling and design of partic- ular converters, with little thought given to the mathematical formulation of the optimization problem. Therefore, converter optimization has generally been a slow process, with exhaus- tive search, the execution time of which is exponential in the number of design variables, the prevalent approach. In this thesis, geometric programming (GP), a type of convex optimization, the execution time of which is polynomial in the number of design variables, is proposed and demonstrated as an efficient and comprehensive framework for the multi-objective optimization of non-isolated unidirectional DC/DC converters. A GP model of multilevel flying capacitor step-down convert- ers is developed and experimentally verified on a 15-to-3.3 V, 9.9 W discrete prototype, with sets of loss-volume Pareto optimal designs generated in under one minute.
    [Show full text]
  • Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
    Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux..
    [Show full text]
  • COSMO: a Conic Operator Splitting Method for Convex Conic Problems
    COSMO: A conic operator splitting method for convex conic problems Michael Garstka∗ Mark Cannon∗ Paul Goulart ∗ September 10, 2020 Abstract This paper describes the Conic Operator Splitting Method (COSMO) solver, an operator split- ting algorithm for convex optimisation problems with quadratic objective function and conic constraints. At each step the algorithm alternates between solving a quasi-definite linear sys- tem with a constant coefficient matrix and a projection onto convex sets. The low per-iteration computational cost makes the method particularly efficient for large problems, e.g. semidefi- nite programs that arise in portfolio optimisation, graph theory, and robust control. Moreover, the solver uses chordal decomposition techniques and a new clique merging algorithm to ef- fectively exploit sparsity in large, structured semidefinite programs. A number of benchmarks against other state-of-the-art solvers for a variety of problems show the effectiveness of our approach. Our Julia implementation is open-source, designed to be extended and customised by the user, and is integrated into the Julia optimisation ecosystem. 1 Introduction We consider convex optimisation problems in the form minimize f(x) subject to gi(x) 0; i = 1; : : : ; l (1) h (x)≤ = 0; i = 1; : : : ; k; arXiv:1901.10887v2 [math.OC] 9 Sep 2020 i where we assume that both the objective function f : Rn R and the inequality constraint n ! functions gi : R R are convex, and that the equality constraints hi(x) := ai>x bi are ! − affine. We will denote an optimal solution to this problem (if it exists) as x∗. Convex optimisa- tion problems feature heavily in a wide range of research areas and industries, including problems ∗The authors are with the Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
    [Show full text]
  • Introduction to Mosek
    Introduction to Mosek Modern Optimization in Energy, 28 June 2018 Micha l Adamaszek www.mosek.com MOSEK package overview • Started in 1999 by Erling Andersen • Convex conic optimization package + MIP • LP, QP, SOCP, SDP, other nonlinear cones • Low-level optimization API • C, Python, Java, .NET, Matlab, R, Julia • Object-oriented API Fusion • C++, Python, Java, .NET • 3rd party • GAMS, AMPL, CVXOPT, CVXPY, YALMIP, PICOS, GPkit • Conda package, .NET Core package • Upcoming v9 1 / 10 Example: 2D Total Variation Someone sends you the left signal but you receive noisy f (right): How to denoise/smoothen out/approximate u? P 2 P 2 minimize ij(ui;j − ui+1;j) + ij(ui;j − ui;j+1) P 2 subject to ij(ui;j − fi;j) ≤ σ: 2 / 10 Conic problems A conic problem in canonical form: min cT x s:t: Ax + b 2 K where K is a product of cones: • linear: K = R≥0 • quadratic: q n 2 2 K = fx 2 R : x1 ≥ x2 + ··· + xng • semidefinite: n×n T K = fX 2 R : X = FF g 3 / 10 Conic problems, cont. • exponential cone: 3 K = fx 2 R : x1 ≥ x2 exp(x3=x2); x2 > 0g • power cone: 3 p−1 p K = fx 2 R : x1 x2 ≥ jx3j ; x1; x2 ≥ 0g; p > 1 q 2 2 2 x1 ≥ x2 + x3; 2x1x2 ≥ x3 x1 ≥ x2 exp(x3=x2) 4 / 10 Conic representability Lots of functions and constraints are representable using these cones. T jxj; kxk1; kxk2; kxk1; kAx + bk2 ≤ c x + d !1=p 1 X xy ≥ z2; x ≥ ; x ≥ yp; t ≥ jx jp = kxk y i p i p 1=n t ≤ xy; t ≤ (x1 ··· xn) ; geometric programming (GP) X 1 t ≤ log x; t ≥ ex; t ≤ −x log x; t ≥ log exi ; t ≥ log 1 + x i 1=n det(X) ; t ≤ λmin(X); t ≥ λmax(X) T T convex (1=2)x Qx + c x + q 5 / 10 Challenge Find a • natural, • practical, • important, • convex optimization problem, which cannot be expressed in conic form.
    [Show full text]
  • AJINKYA KADU 503, Hans Freudenthal Building, Budapestlaan 6, 3584 CD Utrecht, the Netherlands
    AJINKYA KADU 503, Hans Freudenthal Building, Budapestlaan 6, 3584 CD Utrecht, The Netherlands Curriculum Vitae Last Updated: Oct 15, 2018 Contact Ph.D. Student +31{684{544{914 Information Mathematical Institute [email protected] Utrecht University https://ajinkyakadu125.github.io Education Mathematical Institute, Utrecht University, The Netherlands 2015 - present Ph.D. Candidate, Numerical Analysis and Scientific Computing • Dissertation Topic: Discrete Seismic Tomography • Advisors: Dr. Tristan van Leeuwen, Prof. Wim Mulder, Prof. Joost Batenburg • Interests: Seismic Imaging, Computerized Tomography, Numerical Optimization, Level-Set Method, Total-variation, Convex Analysis, Signal Processing Indian Institute of Technology Bombay, Mumbai, India 2010 - 2015 Bachelor and Master of Technology, Department of Aerospace Engineering • Advisors: Prof. N. Hemachandra, Prof. R. P. Shimpi • GPA: 8.7/10 (Specialization: Operations Research) Work Mitsubishi Electric Research Labs, Cambridge, MA, USA May - Oct, 2018 Experience • Mentors: Dr. Hassan Mansour, Dr. Petros Boufounos • Worked on inverse scattering problem arising in ground penetrating radar. University of British Columbia, Vancouver, Canada Jan - Apr, 2016 • Mentors: Prof. Felix Herrmann, Prof. Eldad Haber • Worked on development of framework for large-scale inverse problems in geophysics. Rediff.com Pvt. Ltd., Mumbai, India May - July, 2014 • Mentor: A. S. Shaja • Worked on the development of data product `Stock Portfolio Match' based on Shiny & R. Honeywell Technology Solutions, Bangalore, India May - July, 2013 • Mentors: Kartavya Mohan Gupta, Hanumantha Rao Desu • Worked on integration bench for General Aviation(GA) to recreate flight test scenarios. Research: Journal • A convex formulation for Discrete Tomography. Publications Ajinkya Kadu, Tristan van Leeuwen, (submitted to) IEEE Transactions on Computational Imaging (arXiv: 1807.09196) • Salt Reconstruction in Full Waveform Inversion with a Parametric Level-Set Method.
    [Show full text]
  • Treball (1.484Mb)
    Treball Final de Màster MÀSTER EN ENGINYERIA INFORMÀTICA Escola Politècnica Superior Universitat de Lleida Mòdul d’Optimització per a Recursos del Transport Adrià Vall-llaura Salas Tutors: Antonio Llubes, Josep Lluís Lérida Data: Juny 2017 Pròleg Aquest projecte s’ha desenvolupat per donar solució a un problema de l’ordre del dia d’una empresa de transports. Es basa en el disseny i implementació d’un model matemàtic que ha de permetre optimitzar i automatitzar el sistema de planificació de viatges de l’empresa. Per tal de poder implementar l’algoritme s’han hagut de crear diversos mòduls que extreuen les dades del sistema ERP, les tracten, les envien a un servei web (REST) i aquest retorna un emparellament òptim entre els vehicles de l’empresa i les ordres dels clients. La primera fase del projecte, la teòrica, ha estat llarga en comparació amb les altres. En aquesta fase s’ha estudiat l’estat de l’art en la matèria i s’han repassat molts dels models més importants relacionats amb el transport per comprendre’n les seves particularitats. Amb els conceptes ben estudiats, s’ha procedit a desenvolupar un nou model matemàtic adaptat a les necessitats de la lògica de negoci de l’empresa de transports objecte d’aquest treball. Posteriorment s’ha passat a la fase d’implementació dels mòduls. En aquesta fase m’he trobat amb diferents limitacions tecnològiques degudes a l’antiguitat de l’ERP i a l’ús del sistema operatiu Windows. També han sorgit diferents problemes de rendiment que m’han fet redissenyar l’extracció de dades de l’ERP, el càlcul de distàncies i el mòdul d’optimització.
    [Show full text]
  • Open Source Tools for Optimization in Python
    Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints.
    [Show full text]
  • Insight MFR By
    Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC.
    [Show full text]
  • OPTIMAL CONTROL of NONHOLONOMIC MECHANICAL SYSTEMS By
    OPTIMAL CONTROL OF NONHOLONOMIC MECHANICAL SYSTEMS by Stuart Marcus Rogers A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Department of Mathematical and Statistical Sciences University of Alberta ⃝c Stuart Marcus Rogers, 2017 Abstract This thesis investigates the optimal control of two nonholonomic mechanical systems, Suslov's problem and the rolling ball. Suslov's problem is a nonholonomic variation of the classical rotating free rigid body problem, in which the body angular velocity Ω(t) must always be orthogonal to a prescribed, time-varying body frame vector ξ(t), i.e. hΩ(t); ξ(t)i = 0. The motion of the rigid body in Suslov's problem is actuated via ξ(t), while the motion of the rolling ball is actuated via internal point masses that move along rails fixed within the ball. First, by applying Lagrange-d'Alembert's principle with Euler-Poincar´e'smethod, the uncontrolled equations of motion are derived. Then, by applying Pontryagin's minimum principle, the controlled equations of motion are derived, a solution of which obeys the uncontrolled equations of motion, satisfies prescribed initial and final conditions, and minimizes a prescribed performance index. Finally, the controlled equations of motion are solved numerically by a continuation method, starting from an initial solution obtained analytically (in the case of Suslov's problem) or via a direct method (in the case of the rolling ball). ii Preface This thesis contains material that has appeared in a pair of papers, one on Suslov's problem and the other on rolling ball robots, co-authored with my supervisor, Vakhtang Putkaradze.
    [Show full text]
  • Clean Sky – Awacs Final Report
    Clean Sky Joint Undertaking AWACs – Adaptation of WORHP to Avionics Constraints Clean Sky – AWACs Final Report Table of Contents 1 Executive Summary ......................................................................................................................... 2 2 Summary Description of Project Context and Objectives ............................................................... 3 3 Description of the main S&T results/foregrounds .......................................................................... 5 3.1 Analysis of Optimisation Environment .................................................................................... 5 3.1.1 Problem sparsity .............................................................................................................. 6 3.1.2 Certification aspects ........................................................................................................ 6 3.2 New solver interfaces .............................................................................................................. 6 3.3 Conservative iteration mode ................................................................................................... 6 3.4 Robustness to erroneous inputs ............................................................................................. 7 3.5 Direct multiple shooting .......................................................................................................... 7 3.6 Grid refinement ......................................................................................................................
    [Show full text]
  • Optimal Control for Constrained Hybrid System Computational Libraries and Applications
    FINAL REPORT: FEUP2013.LTPAIVA.01 Optimal Control for Constrained Hybrid System Computational Libraries and Applications L.T. Paiva 1 1 Department of Electrical and Computer Engineering University of Porto, Faculty of Engineering - Rua Dr. Roberto Frias, s/n, 4200–465 Porto, Portugal ) [email protected] % 22 508 1450 February 28, 2013 Abstract This final report briefly describes the work carried out under the project PTDC/EEA- CRO/116014/2009 – “Optimal Control for Constrained Hybrid System”. The aim was to build and maintain a software platform to test an illustrate the use of the conceptual tools developed during the overall project: not only in academic examples but also in case studies in the areas of robotics, medicine and exploitation of renewable resources. The grand holder developed a critical hands–on knowledge of the available optimal control solvers as well as package based on non–linear programming solvers. 1 2 Contents 1 OC & NLP Interfaces 7 1.1 Introduction . .7 1.2 AMPL . .7 1.3 ACADO – Automatic Control And Dynamic Optimization . .8 1.4 BOCOP – The optimal control solver . .9 1.5 DIDO – Automatic Control And Dynamic Optimization . 10 1.6 ICLOCS – Imperial College London Optimal Control Software . 12 1.7 TACO – Toolkit for AMPL Control Optimization . 12 1.8 Pseudospectral Methods in Optimal Control . 13 2 NLP Solvers 17 2.1 Introduction . 17 2.2 IPOPT – Interior Point OPTimizer . 17 2.3 KNITRO . 25 2.4 WORHP – WORHP Optimises Really Huge Problems . 31 2.5 Other Commercial Packages . 33 3 Project webpage 35 4 Optimal Control Toolbox 37 5 Applications 39 5.1 Car–Like .
    [Show full text]
  • Using SCIP to Solve Your Favorite Integer Optimization Problem
    Using SCIP to Solve Your Favorite Integer Optimization Problem Gregor Hendel, [email protected] Hiroshima University October 5, 2018 Gregor Hendel, [email protected] – Using SCIP 1/76 What is SCIP? SCIP (Solving Constraint Integer Programs) … • provides a full-scale MIP and MINLP solver, • is constraint based, • incorporates • MIP features (cutting planes, LP relaxation), and • MINLP features (spatial branch-and-bound, OBBT) • CP features (domain propagation), • SAT-solving features (conflict analysis, restarts), • is a branch-cut-and-price framework, • has a modular structure via plugins, • is free for academic purposes, • and is available in source-code under http://scip.zib.de ! Gregor Hendel, [email protected] – Using SCIP 2/76 Meet the SCIP Team 31 active developers • 7 running Bachelor and Master projects • 16 running PhD projects • 8 postdocs and professors 4 development centers in Germany • ZIB: SCIP, SoPlex, UG, ZIMPL • TU Darmstadt: SCIP and SCIP-SDP • FAU Erlangen-Nürnberg: SCIP • RWTH Aachen: GCG Many international contributors and users • more than 10 000 downloads per year from 100+ countries Careers • 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV • 7 former developers are now building commercial optimization sotware at CPLEX, FICO Xpress, Gurobi, MOSEK, and GAMS Gregor Hendel, [email protected] – Using SCIP 3/76 Outline SCIP – Solving Constraint Integer Programs http://scip.zib.de Gregor Hendel, [email protected] – Using SCIP 4/76 Outline SCIP – Solving Constraint Integer Programs http://scip.zib.de Gregor Hendel, [email protected] – Using SCIP 5/76 ZIMPL • model and generate LPs, MIPs, and MINLPs SCIP • MIP, MINLP and CIP solver, branch-cut-and-price framework SoPlex • revised primal and dual simplex algorithm GCG • generic branch-cut-and-price solver UG • framework for parallelization of MIP and MINLP solvers SCIP Optimization Suite • Toolbox for generating and solving constraint integer programs, in particular Mixed Integer (Non-)Linear Programs.
    [Show full text]