Multi-Objective Optimization of Unidirectional Non-Isolated Dc/Dcconverters

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Objective Optimization of Unidirectional Non-Isolated Dc/Dcconverters MULTI-OBJECTIVE OPTIMIZATION OF UNIDIRECTIONAL NON-ISOLATED DC/DC CONVERTERS by Andrija Stupar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Edward S. Rogers Department of Electrical and Computer Engineering University of Toronto © Copyright 2017 by Andrija Stupar Abstract Multi-Objective Optimization of Unidirectional Non-Isolated DC/DC Converters Andrija Stupar Doctor of Philosophy Graduate Department of Edward S. Rogers Department of Electrical and Computer Engineering University of Toronto 2017 Engineers have to fulfill multiple requirements and strive towards often competing goals while designing power electronic systems. This can be an analytically complex and computationally intensive task since the relationship between the parameters of a system’s design space is not always obvious. Furthermore, a number of possible solutions to a particular problem may exist. To find an optimal system, many different possible designs must be evaluated. Literature on power electronics optimization focuses on the modeling and design of partic- ular converters, with little thought given to the mathematical formulation of the optimization problem. Therefore, converter optimization has generally been a slow process, with exhaus- tive search, the execution time of which is exponential in the number of design variables, the prevalent approach. In this thesis, geometric programming (GP), a type of convex optimization, the execution time of which is polynomial in the number of design variables, is proposed and demonstrated as an efficient and comprehensive framework for the multi-objective optimization of non-isolated unidirectional DC/DC converters. A GP model of multilevel flying capacitor step-down convert- ers is developed and experimentally verified on a 15-to-3.3 V, 9.9 W discrete prototype, with sets of loss-volume Pareto optimal designs generated in under one minute. It is also demon- strated how the GP model can be used to determine the sensitivity of the optimized designs to the design parameters. Furthermore, a general procedure for deriving GP models is presented and demonstrated on the example of inductors for higher power applications. ii Finally, using the example of the seven-switch flying capacitor converter, it is shown how in cases where a converter-level GP model is not possible, component-level GP models can be coupled with a circuit simulator to perform efficiency optimization quickly. This hybrid approach is used to design a wide input and output voltage range, 2 A output current converter IC. The results show that GP is of great value to both researchers and practicing engineers. The methods demonstrated for deriving GP models of power converters are extendable to other converter topologies, allowing for the creation of a rigorous mathematical framework for the optimization of power electronics that guarantees globally optimum designs generated quickly. iii When sorrows come, they come not single spies But in battalions. — King Claudius in Shakespeare’s Hamlet (Act IV, Scene 5) For at the moment of the final division, the final miniaturization of matter, suddenly the whole cosmos opened up. — Thomas Mann, Der Zauberberg iv To Tanja, for sticking with me to the end Acknowledgements This doctoral degree has been a long, and often turbulent, eight years in the making and now that it is finally over there is a long list of people to thank, some of whom will be invariably missed in these few brief paragraphs - to them I wholeheartedly apologize in advance. I be- gan work towards a PhD degree at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, in February 2009, where I spent slightly more than four years as a full-time stu- dent and employee at the Power Electronic Systems Laboratory (PES), and a subsequent two as an “external” PhD student while working to develop a spin-off company, Gecko-Simulations AG, that my colleagues from PES and I had co-founded in 2012. Although my work at PES/ETH has found its way into many refereed publications, conference and workshop presentations, and Gecko-Simulations products, little of it is present directly in the text of this thesis. However, the work I did at PES has greatly informed this thesis, and has been a basis for the work pre- sented therein without which, I feel, this thesis would not be possible, and would certainly not have the form that it does. PES at ETH was and continues to be at the forefront of research into the optimization of power converters, and I was privileged not only to have taken part of that work myself, but also to have been able to absorb the knowledge and skills generated by my colleagues and supervisors there, both during and before my time. I was able to learn the state-of-the-art when it comes to optimizing power electronics, and how to improve it – which is what, as I hope the reader will in the end conclude, this thesis is about. I would therefore like to thank first and foremost my former supervisor at ETH Zurich and the Director of PES, Prof. Dr. Johann W. Kolar for giving me the opportunity to work and learn in a challenging and world-class academic environment, for all that I have learned under his supervision, and for accommodating the various arrangements over the years. I would also like to thank the post- docs under whose supervision I worked at PES: Dr. Uwe Drofenik, under whom I got started v and who provided some important words of encouragement; Dr. Dominik Bortis, who was of immense practical help in the early years; Dr. Florian Krismer, who was always ready to offer help and advice; and finally, Dr. Thomas Friedli, who was probably simultaneously the kindest, most committed and most knowledgeable person I have had the pleasure of working with. I would also like to thank my fellow PhD students whom I collaborated most closely with at PES and at Gecko-Simulations AG, Dr. Ivana Kovaˇcevi´c-Badstübner, Dr. Andreas Müsing, and Dr. Jonas Mühlethaler, from whom I learned and with whom I built a lot. They provided great pro- fessional and personal support during my time at ETH Zurich. I would also like to thank other colleagues from PES I have the opportunity to work with and know: Dr. Uwe Badstübner, who was especially helpful, Daniel Christen, Dr. David Boillat, Dr. Arda Tüysüz, Prof. Dr. Jürgen Biela, Dr. Toke Andersen, Dr. Matthias Kasper, Dr. Johann Miniböck, Dr. Cristoph Marxgut, Dr. Yannick Lobsiger, Dr. Hirofumi Uemura, Florian Vancu, Dr. Benjamin Wrzecionko, Dr. Thiago Soeiro, Dr. Christof Zwyssig, Dr. Thomas Baumgartner, staff members Monica Kohn-Müller and Peter Seitz, and others. Unfortunately it was not possible for my to bring my degree to completion at ETH Zürich, and a solution was found in my “transferring back”, in 2015, to my alma mater, the Univer- sity of Toronto, to which I transferred my course credits and research from ETH. Therefore most importantly, I would like to thank most of all, my PhD co-supervisors at the University of Toronto, Prof. Aleksandar Prodi´c and Asst. Prof. Joshua A. Taylor, for rescuing my academic career when it seemed at its lowest – and breaking – point and for giving me another chance. Moreover, I owe my start in power electronics research to Prof. Prodi´c, who invited my to work at his lab as an undergraduate student back in the summer of 2004. It was in his lab and under his supervision that I completed my Master’s degree in 2008. My return to the Laboratory for Power Management and Integrated Switch-Mode Power Supplies in the Energy Systems Group at the Faculty of Applied Science and Engineering of the University of Toronto was thus a home- coming - made successful not only by Prof. Prodi´c’s support and steady supply of challenging research projects, but also by support, guidance, and key insights provided by Prof. Taylor, whose insistence on using convex optimization re-oriented my research into a much more fruit- ful direction. I would like to stress that although greatly informed by my previous work, the major results of thesis and its major contribution – the use of geometric programming for the vi multi-objective optimization of power converters – have been developed only and fully during my time at the University of Toronto. I would once more like to thank my two co-supervisors Profs. Taylor and Prodi´c for all the support and guidance they have provided over the past two years, without which the – I believe – significant results of this thesis would not be possible. I would also like to thank my colleagues in Prof. Prodi´c’s lab for all I’ve learned from them and for the support they have provided. Specifically I’d like to thank Timothy McRae and Nenad Vukadinovi´c for their help with developing posynomial models of ML-FC converters, as well as for their help in all sorts of work-related matters and their friendship, and Tom Moiannou with whom I worked on the 7SFC converter project. I would also like to thank Dr. S.M. Ahsanuzzaman, Samuel Carvalho, Michael Halamicek, and others. Furthermore I would like to thank, from the University of Toronto, Assoc. Prof. Stark Draper, whose course on convex optimization I wish I had taken at least four years earlier, and where the use of geometric programming for power electronics got started as a course project, and Prof. Jason Anderson for being members of my PhD qualifying exam committee; Prof. Reza Iravani for being a member of my PhD thesis proposal and then departmental defense committee; Prof. Peter Lehn for being a member of my qualifying exam, thesis proposal, and final defense committees; Assoc.
Recommended publications
  • Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
    Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux..
    [Show full text]
  • Numericaloptimization
    Numerical Optimization Alberto Bemporad http://cse.lab.imtlucca.it/~bemporad/teaching/numopt Academic year 2020-2021 Course objectives Solve complex decision problems by using numerical optimization Application domains: • Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...) • Engineering (engineering design, process optimization, embedded control, ...) • Artificial intelligence (machine learning, data science, autonomous driving, ...) • Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...) ©2021 A. Bemporad - Numerical Optimization 2/102 Course objectives What this course is about: • How to formulate a decision problem as a numerical optimization problem? (modeling) • Which numerical algorithm is most appropriate to solve the problem? (algorithms) • What’s the theory behind the algorithm? (theory) ©2021 A. Bemporad - Numerical Optimization 3/102 Course contents • Optimization modeling – Linear models – Convex models • Optimization theory – Optimality conditions, sensitivity analysis – Duality • Optimization algorithms – Basics of numerical linear algebra – Convex programming – Nonlinear programming ©2021 A. Bemporad - Numerical Optimization 4/102 References i ©2021 A. Bemporad - Numerical Optimization 5/102 Other references • Stephen Boyd’s “Convex Optimization” courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu • Lieven Vandenberghe’s courses at UCLA: http://www.seas.ucla.edu/~vandenbe/ • For more tutorials/books see http://plato.asu.edu/sub/tutorials.html ©2021 A. Bemporad - Numerical Optimization 6/102 Optimization modeling What is optimization? • Optimization = assign values to a set of decision variables so to optimize a certain objective function • Example: Which is the best velocity to minimize fuel consumption ? fuel [ℓ/km] velocity [km/h] 0 30 60 90 120 160 ©2021 A.
    [Show full text]
  • Specifying “Logical” Conditions in AMPL Optimization Models
    Specifying “Logical” Conditions in AMPL Optimization Models Robert Fourer AMPL Optimization www.ampl.com — 773-336-AMPL INFORMS Annual Meeting Phoenix, Arizona — 14-17 October 2012 Session SA15, Software Demonstrations Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 1 New and Forthcoming Developments in the AMPL Modeling Language and System Optimization modelers are often stymied by the complications of converting problem logic into algebraic constraints suitable for solvers. The AMPL modeling language thus allows various logical conditions to be described directly. Additionally a new interface to the ILOG CP solver handles logic in a natural way not requiring conventional transformations. Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 2 AMPL News Free AMPL book chapters AMPL for Courses Extended function library Extended support for “logical” conditions AMPL driver for CPLEX Opt Studio “Concert” C++ interface Support for ILOG CP constraint programming solver Support for “logical” constraints in CPLEX INFORMS Impact Prize to . Originators of AIMMS, AMPL, GAMS, LINDO, MPL Awards presented Sunday 8:30-9:45, Conv Ctr West 101 Doors close 8:45! Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 3 AMPL Book Chapters now free for download www.ampl.com/BOOK/download.html Bound copies remain available purchase from usual
    [Show full text]
  • COSMO: a Conic Operator Splitting Method for Convex Conic Problems
    COSMO: A conic operator splitting method for convex conic problems Michael Garstka∗ Mark Cannon∗ Paul Goulart ∗ September 10, 2020 Abstract This paper describes the Conic Operator Splitting Method (COSMO) solver, an operator split- ting algorithm for convex optimisation problems with quadratic objective function and conic constraints. At each step the algorithm alternates between solving a quasi-definite linear sys- tem with a constant coefficient matrix and a projection onto convex sets. The low per-iteration computational cost makes the method particularly efficient for large problems, e.g. semidefi- nite programs that arise in portfolio optimisation, graph theory, and robust control. Moreover, the solver uses chordal decomposition techniques and a new clique merging algorithm to ef- fectively exploit sparsity in large, structured semidefinite programs. A number of benchmarks against other state-of-the-art solvers for a variety of problems show the effectiveness of our approach. Our Julia implementation is open-source, designed to be extended and customised by the user, and is integrated into the Julia optimisation ecosystem. 1 Introduction We consider convex optimisation problems in the form minimize f(x) subject to gi(x) 0; i = 1; : : : ; l (1) h (x)≤ = 0; i = 1; : : : ; k; arXiv:1901.10887v2 [math.OC] 9 Sep 2020 i where we assume that both the objective function f : Rn R and the inequality constraint n ! functions gi : R R are convex, and that the equality constraints hi(x) := ai>x bi are ! − affine. We will denote an optimal solution to this problem (if it exists) as x∗. Convex optimisa- tion problems feature heavily in a wide range of research areas and industries, including problems ∗The authors are with the Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
    [Show full text]
  • Introduction to Mosek
    Introduction to Mosek Modern Optimization in Energy, 28 June 2018 Micha l Adamaszek www.mosek.com MOSEK package overview • Started in 1999 by Erling Andersen • Convex conic optimization package + MIP • LP, QP, SOCP, SDP, other nonlinear cones • Low-level optimization API • C, Python, Java, .NET, Matlab, R, Julia • Object-oriented API Fusion • C++, Python, Java, .NET • 3rd party • GAMS, AMPL, CVXOPT, CVXPY, YALMIP, PICOS, GPkit • Conda package, .NET Core package • Upcoming v9 1 / 10 Example: 2D Total Variation Someone sends you the left signal but you receive noisy f (right): How to denoise/smoothen out/approximate u? P 2 P 2 minimize ij(ui;j − ui+1;j) + ij(ui;j − ui;j+1) P 2 subject to ij(ui;j − fi;j) ≤ σ: 2 / 10 Conic problems A conic problem in canonical form: min cT x s:t: Ax + b 2 K where K is a product of cones: • linear: K = R≥0 • quadratic: q n 2 2 K = fx 2 R : x1 ≥ x2 + ··· + xng • semidefinite: n×n T K = fX 2 R : X = FF g 3 / 10 Conic problems, cont. • exponential cone: 3 K = fx 2 R : x1 ≥ x2 exp(x3=x2); x2 > 0g • power cone: 3 p−1 p K = fx 2 R : x1 x2 ≥ jx3j ; x1; x2 ≥ 0g; p > 1 q 2 2 2 x1 ≥ x2 + x3; 2x1x2 ≥ x3 x1 ≥ x2 exp(x3=x2) 4 / 10 Conic representability Lots of functions and constraints are representable using these cones. T jxj; kxk1; kxk2; kxk1; kAx + bk2 ≤ c x + d !1=p 1 X xy ≥ z2; x ≥ ; x ≥ yp; t ≥ jx jp = kxk y i p i p 1=n t ≤ xy; t ≤ (x1 ··· xn) ; geometric programming (GP) X 1 t ≤ log x; t ≥ ex; t ≤ −x log x; t ≥ log exi ; t ≥ log 1 + x i 1=n det(X) ; t ≤ λmin(X); t ≥ λmax(X) T T convex (1=2)x Qx + c x + q 5 / 10 Challenge Find a • natural, • practical, • important, • convex optimization problem, which cannot be expressed in conic form.
    [Show full text]
  • AJINKYA KADU 503, Hans Freudenthal Building, Budapestlaan 6, 3584 CD Utrecht, the Netherlands
    AJINKYA KADU 503, Hans Freudenthal Building, Budapestlaan 6, 3584 CD Utrecht, The Netherlands Curriculum Vitae Last Updated: Oct 15, 2018 Contact Ph.D. Student +31{684{544{914 Information Mathematical Institute [email protected] Utrecht University https://ajinkyakadu125.github.io Education Mathematical Institute, Utrecht University, The Netherlands 2015 - present Ph.D. Candidate, Numerical Analysis and Scientific Computing • Dissertation Topic: Discrete Seismic Tomography • Advisors: Dr. Tristan van Leeuwen, Prof. Wim Mulder, Prof. Joost Batenburg • Interests: Seismic Imaging, Computerized Tomography, Numerical Optimization, Level-Set Method, Total-variation, Convex Analysis, Signal Processing Indian Institute of Technology Bombay, Mumbai, India 2010 - 2015 Bachelor and Master of Technology, Department of Aerospace Engineering • Advisors: Prof. N. Hemachandra, Prof. R. P. Shimpi • GPA: 8.7/10 (Specialization: Operations Research) Work Mitsubishi Electric Research Labs, Cambridge, MA, USA May - Oct, 2018 Experience • Mentors: Dr. Hassan Mansour, Dr. Petros Boufounos • Worked on inverse scattering problem arising in ground penetrating radar. University of British Columbia, Vancouver, Canada Jan - Apr, 2016 • Mentors: Prof. Felix Herrmann, Prof. Eldad Haber • Worked on development of framework for large-scale inverse problems in geophysics. Rediff.com Pvt. Ltd., Mumbai, India May - July, 2014 • Mentor: A. S. Shaja • Worked on the development of data product `Stock Portfolio Match' based on Shiny & R. Honeywell Technology Solutions, Bangalore, India May - July, 2013 • Mentors: Kartavya Mohan Gupta, Hanumantha Rao Desu • Worked on integration bench for General Aviation(GA) to recreate flight test scenarios. Research: Journal • A convex formulation for Discrete Tomography. Publications Ajinkya Kadu, Tristan van Leeuwen, (submitted to) IEEE Transactions on Computational Imaging (arXiv: 1807.09196) • Salt Reconstruction in Full Waveform Inversion with a Parametric Level-Set Method.
    [Show full text]
  • Open Source Tools for Optimization in Python
    Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints.
    [Show full text]
  • Benchmarks for Current Linear and Mixed Integer Optimization Solvers
    ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 63 207 Number 6, 2015 http://dx.doi.org/10.11118/actaun201563061923 BENCHMARKS FOR CURRENT LINEAR AND MIXED INTEGER OPTIMIZATION SOLVERS Josef Jablonský1 1 Department of Econometrics, Faculty of Informatics and Statistics, University of Economics, Prague, nám. W. Churchilla 4, 130 67 Praha 3, Czech Republic Abstract JABLONSKÝ JOSEF. 2015. Benchmarks for Current Linear and Mixed Integer Optimization Solvers. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(6): 1923–1928. Linear programming (LP) and mixed integer linear programming (MILP) problems belong among very important class of problems that fi nd their applications in various managerial consequences. The aim of the paper is to discuss computational performance of current optimization packages for solving large scale LP and MILP optimization problems. Current market with LP and MILP solvers is quite extensive. Probably among the most powerful solvers GUROBI 6.0, IBM ILOG CPLEX 12.6.1, and XPRESS Optimizer 27.01 belong. Their attractiveness for academic research is given, except their computational performance, by their free availability for academic purposes. The solvers are tested on the set of selected problems from MIPLIB 2010 library that contains 361 test instances of diff erent hardness (easy, hard, and not solved). Keywords: benchmark, linear programming, mixed integer linear programming, optimization, solver INTRODUCTION with integer variables need not be solved even Solving linear and mixed integer linear in case of a very small size of the given problem. optimization problems (LP and MILP) that Real-world optimization problems have usually belong to one of the most o en modelling tools, many thousands of variables and/or constraints.
    [Show full text]
  • Combining Simulation and Optimization for Improved Decision Support on Energy Efficiency in Industry
    Linköping Studies in Science and Technology, Dissertation No. 1483 Combining simulation and optimization for improved decision support on energy efficiency in industry Nawzad Mardan Division of Energy Systems Department of Management and Engineering Linköping Institute of Technology SE-581 83, Linköping, Sweden Copyright © 2012 Nawzad Mardan ISBN 978-91-7519-757-9 ISSN 0345-7524 Printed in Sweden by LiU-Tryck, Linköping 2012 ii Abstract Industrial production systems in general are very complex and there is a need for decision support regarding management of the daily production as well as regarding investments to increase energy efficiency and to decrease environmental effects and overall costs. Simulation of industrial production as well as energy systems optimization may be used in such complex decision-making situations. The simulation tool is most powerful when used for design and analysis of complex production processes. This tool can give very detailed information about how the system operates, for example, information about the disturbances that occur in the system, such as lack of raw materials, blockages or stoppages on a production line. Furthermore, it can also be used to identify bottlenecks to indicate where work in process, material, and information are being delayed. The energy systems optimization tool can provide the company management additional information for the type of investment studied. The tool is able to obtain more basic data for decision-making and thus also additional information for the production-related investment being studied. The use of the energy systems optimization tool as investment decision support when considering strategic investments for an industry with complex interactions between different production units seems greatly needed.
    [Show full text]
  • Insight MFR By
    Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC.
    [Show full text]
  • Computational Aspects of Infeasibility Analysis in Mixed Integer Programming
    Takustr. 7 Zuse Institute Berlin 14195 Berlin Germany JAKOB WITZIG TIMO BERTHOLD STEFAN HEINZ Computational Aspects of Infeasibility Analysis in Mixed Integer Programming ZIB Report 19-54 (November 2019) Zuse Institute Berlin Takustr. 7 14195 Berlin Germany Telephone: +49 30-84185-0 Telefax: +49 30-84185-125 E-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 Computational Aspects of Infeasibility Analysis in Mixed Integer Programming Jakob Witzig,1 Timo Berthold,2 and Stefan Heinz3 1Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany [email protected] 2Fair Isaac Germany GmbH, Stubenwald-Allee 19, 64625 Bensheim, Germany [email protected] 3Gurobi GmbH, Ulmenstr. 37–39, 60325 Frankfurt am Main, Germany [email protected] November 6, 2019 Abstract The analysis of infeasible subproblems plays an important role in solv- ing mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to gener- ate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in con- straint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint.
    [Show full text]
  • Using SCIP to Solve Your Favorite Integer Optimization Problem
    Using SCIP to Solve Your Favorite Integer Optimization Problem Gregor Hendel, [email protected] Hiroshima University October 5, 2018 Gregor Hendel, [email protected] – Using SCIP 1/76 What is SCIP? SCIP (Solving Constraint Integer Programs) … • provides a full-scale MIP and MINLP solver, • is constraint based, • incorporates • MIP features (cutting planes, LP relaxation), and • MINLP features (spatial branch-and-bound, OBBT) • CP features (domain propagation), • SAT-solving features (conflict analysis, restarts), • is a branch-cut-and-price framework, • has a modular structure via plugins, • is free for academic purposes, • and is available in source-code under http://scip.zib.de ! Gregor Hendel, [email protected] – Using SCIP 2/76 Meet the SCIP Team 31 active developers • 7 running Bachelor and Master projects • 16 running PhD projects • 8 postdocs and professors 4 development centers in Germany • ZIB: SCIP, SoPlex, UG, ZIMPL • TU Darmstadt: SCIP and SCIP-SDP • FAU Erlangen-Nürnberg: SCIP • RWTH Aachen: GCG Many international contributors and users • more than 10 000 downloads per year from 100+ countries Careers • 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV • 7 former developers are now building commercial optimization sotware at CPLEX, FICO Xpress, Gurobi, MOSEK, and GAMS Gregor Hendel, [email protected] – Using SCIP 3/76 Outline SCIP – Solving Constraint Integer Programs http://scip.zib.de Gregor Hendel, [email protected] – Using SCIP 4/76 Outline SCIP – Solving Constraint Integer Programs http://scip.zib.de Gregor Hendel, [email protected] – Using SCIP 5/76 ZIMPL • model and generate LPs, MIPs, and MINLPs SCIP • MIP, MINLP and CIP solver, branch-cut-and-price framework SoPlex • revised primal and dual simplex algorithm GCG • generic branch-cut-and-price solver UG • framework for parallelization of MIP and MINLP solvers SCIP Optimization Suite • Toolbox for generating and solving constraint integer programs, in particular Mixed Integer (Non-)Linear Programs.
    [Show full text]