Datascientist Manual

Total Page:16

File Type:pdf, Size:1020Kb

Datascientist Manual DATASCIENTIST MANUAL . 2 « Approcherait le comportement de la réalité, celui qui aimerait s’epanouir dans l’holistique, l’intégratif et le multiniveaux, l’énactif, l’incarné et le situé, le probabiliste et le non linéaire, pris à la fois dans l’empirique, le théorique, le logique et le philosophique. » 4 (* = not yet mastered) THEORY OF La théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés PROBABILITY par le hasard et l'incertitude. Elle consistue le socle des statistiques appliqué. Rubriques ↓ Back to top ↑_ Notations Formalisme de Kolmogorov Opération sur les ensembles Probabilités conditionnelles Espérences conditionnelles Densités & Fonctions de répartition Variables aleatoires Vecteurs aleatoires Lois de probabilités Convergences et théorèmes limites Divergences et dissimilarités entre les distributions Théorie générale de la mesure & Intégration ------------------------------------------------------------------------------------------------------------------------------------------ 6 Notations [pdf*] Formalisme de Kolmogorov Phé nomé né alé atoiré Expé riéncé alé atoiré L’univérs Ω Ré alisation éléméntairé (ω ∈ Ω) Evé némént Variablé aléatoiré → fonction dé l’univér Ω Opération sur les ensembles : Union / Intersection / Complémentaire …. Loi dé Augustus dé Morgan ? Independance & Probabilités conditionnelles (opération sur des ensembles) Espérences conditionnelles 8 Variables aleatoires (discret vs reel) … Vecteurs aleatoires : Multiplét dé variablés alé atoiré (discret vs reel) … Loi marginalés Loi conjointé Loi dé f(X,Y) Loi conditionnéllé Couplé alé atoiré a dénsité ?? Fonction génératricé d’un couplé Loi dé sommé La loi ést un produit ∏ / Lois jointes / marginales / conditionnelle Loi d’uné transformé é (g o X) Calcul de Densités & Fonctions de répartition Fonction dé ré partition émpiriqué ? FX (x) = P(X ⩽ x) Thé oré mé dé Glivénko Iné galité dé Dvorétzky-Kiéfér Wolfowitz (DKW) Lois de probabilités { support fini vs semi-infini vs infini } Discrètes : Dirac [pdf*] Géometrique [pdf*] Binomiale (Bernouilli) [pdf*] Hypergeometrique [pdf*] Multinomiale [pdf*] Logarithmique [pdf*] Continues : Normal (Gaussienne) [pdf*] Student [pdf*] / Fisher-Snedecor [pdf*] Chi2 [pdf*] / Logistique [pdf*] Uniforme [pdf*] / Poisson [pdf*] Weibull [pdf*] / Fick [pdf*] Fourrier [pdf*] / Logistique [pdf*] Beta [pdf*] / Exponetiel [pdf*] Gamma [pdf*] / Laplace gauss [pdf*] Cauchy [pdf*] / Weibull [pdf*] Gumbel [pdf*] Lois Multidimensionnelles Discrètes : Ewéns [pdf*] Multinomialé [pdf*] Continues : Dirichlét [pdf*] Normalé multidiménsionnéllé [pdf*] Matricielles : Wishart / Wishart invérsé [pdf*] Lois Directionnelles Univariantes : Von Misés [pdf*] Sphériques bidimensionnelles : Ként [pdf*] Toroïdales bidimensionnelles : Von Misés bivarianté [pdf*] Multidimensionnelles : Bingham [pdf*] 10 Indices principaux [pdf*] : L’espérence : E(X) *quantifie la valeur attendu d’une v.a, pour une expérience longement répété La variance : V(X) *quantifie la dispersion d'un échantillon ou d'une distribution. L’écart type : σ * σ² = V(X) La covariance : Cov(X,Y) ou σxy *quantifie l’écart entre deux v.a par rapport à leur espérance La corrélation : Cor(X,Y) *version normalisé de la covariance, sans unités Moments : Convergence & théorèmes limites Typé : En normé Lp En probabilité Présqué surémént En loi Théorème central limite Théorie des grands nombres . Thé oré mé dé Borél-Cantélli [pdf*] . Loi du zé ro un dé Kolmogorov [pdf* . Loi faiblé dés grands nombrés . Loi forté dés grands nombrés . Convérgéncé én loi / Thé oré mé céntral limité . Dé P vérs N . Dé B vérs N . Théoré mé dé Moivré Laplacé.. Iné galité dé Biénaymé -Tchébychév [pdf*] Inegalité de Markov Inegalité de Cauchy-Schartz Probabilité discrète (dé nombrablé) Linéarité : Formulaire de synthèse Astuces calculatoire 12 Fondémént → Théorie de la mesure & Integration On parle d’une fonction qui mene a un reel.. Espaces mesurables ? Completion des mesures Mesure de Lebesgue sur Rd Integration sur les espaces produits Mesure de Hansdorff Bayesian Statistics Branching Processes Complexity in Systems Level Biology and Genetics: Statistical Perspectives Correlations in Complex Systems Extreme Value Statistics Field TheoreticMethods Fluctuations, Importance of: Complexity in the View of Stochastic Processes Hierarchical Dynamics Levy Statistics and Anomalous Transport: Levy Flights and Subdiffusion Probability and Statistics in Complex Systems, Introduction to Probability Densities in Complex Systems,Measuring Probability Distributions in Complex Systems Random Matrix Theory RandomWalks in Random Environment Record Statistics and Dynamics Stochastic Loewner Evolution: Linking Universality, Criticality and Conformal Invariance in Complex Systems Stochastic Processes Propagation des incertitudes 14 STOCHASTIC Le calcul classique des probabilités concerne des épreuves où chaque résultat possible PROCESS (ou réalisation) est mesuré par un nombre, ce qui conduit à la notion de variable aléatoire. Un processus stochastique ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire Back to top ↑_ (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Cette notion se généralise à plusieurs dimensions. Rubriques ↓ Chaine de Markov Martingales MonteCarlo Method Percolation ------------------------------------------------------------------------------------------------------------------------------------- Chaine de Markov Rappels sur les chaines de Markov: récurrence, transience, théorème ergodique et de convergence en loi. Méthode de Monte Carlo pour les chaines de Markov Chainés dé Markov continu, chainés dé Markov caché és. Champ aléatoire de Markov 16 Martingales Filtration ? Mouvémént Brownién / Procéssus dé Wiénér Random walk .. MonteCarlo Method Evaluer une quatité deterministe en utilisant des tirages aleatoire Métropolis & Ulam (1949) EM wavés Amorphous on random média Partially obsérvéd markov décision procéss Random Walk* Von Miés Fishér Distribution Isotropic Convolution dés dénsité ? Intégralé stochastiqué… Equation diff stochastiqué (=+bruit blanc)…. Procéssus d’Ito ? ? Intégralé = Espé réncé = moyénné.. Par la loi dés grands nombré.. L’éxémplé dés pluiés aléatoiré.. On fait une v.a qui va estimer la valeur de notre paramètre ?? On utilisé l’inégalité dé Byénaymé Tchébychéf.. On crée des intervales de confiances.. 18 Percolation Bootstrap Percolation Conduction and Diffusion in Percolating Systems Continuum Percolation Correlated Percolation Elastic Percolation Networks Invasion Percolation Networks, Flexibility andMobility in Percolation and Polymer Morphology and Rheology Percolation in Complex Networks Percolation in Porous Media Percolation Lattices, Efficient Simulation of Large Percolation Phase Transition Percolation Thresholds, Exact Percolation, and Faults and Fractures in Rock Percolation, Introduction to Scaling Properties, Fractals, and the Renormalization Group Approach to Percolation . EXPLORATORY Les statistiques exploratoires reprennent différentes techniques permettant d’explorer DATA ANALYSIS un jeu de donnée. Back to top ↑_ Rubriques ↓ Indices et caractéristique Analyse en composantes principales (ACP) Analyse en composantes principales à noyaux (KERNEL PCA) --/--- Analyse des correspondances multiples (ACM) --/--- Analyse factorielle des correspondances (AFC) Analyse factorielle des correspondances multiples (AFCM) Analyse factorielle multiple (AFM) Analyse factorielle multiple hiérarchique (AFMH) ------------------------------------------------------------------------------------------------------------------------------------- 20 Indices et caractéristiques Le positionnement multidimensionnel (multidimensional scaling) L'iconographie des corrélations ?? Diagramme de VENN Diagramme / Histogramme Distribution de fréquence Indices de dispersion d’un échantillon : • Eténdué • Variancé Indices de tendances centrales : • Modé • Mé diané • Moyénné Echelles de mesure : • Nominal • Ordinalé • D’intérvallés • Dé rapports Matrice des corrélations → Box Plot : Analyse de données : ACP [pdf] : L'analyse en composantes principales Les données sont des individus (en ligne) décrits par des variables quantitatives (en colonne) ACP [pdf] : L'analyse en composantes principales à noyaux (Kernel PCA) 22 ACM [pdf] : L’analyse des correspondances multiples Dédiée aux tableaux individus x variables qualitatives AFC [pdf]: L'analyse factorielle des correspondances AFDM [pdf]: L’analyse factorielle de données mixtes Traité dés tabléaux individus x variablés ou lés variablés sont soit quantitativés soit qualitativés AFCM [pdf] : L’analyse factorielle des correspondances multiples 24 AFM [pdf] : L’analyse factorielle multiple Sur des tableaux individus x variables où les variables, sont structurées en groupes AFMH [pdf] : L’Analyse Factorielle Multiple Hiérarchique Généralise l’AFM aux cas où les variables sont structurées selon une hiérarchie INFERENTIAL La statistique inferentielle est la science de la variation. STATISTICS Back to top ↑_ Rubriques ↓ Théorie générale de l’estimation Estimateur du Maximum de Vraisemblence (EMV) Information de Fisher --/--- A / Modèle Linéaire générale (GLM) B / Hierarchical / Multilevel Linear Model (HLM) C / Mixture Model / Gaussian Mixture Model D / Modèles à structure de covariance (LISREL) E / Modèles à équation structurelle et données dyadiques F / Modèles Non Linéaire sur des variétés différentielles (G-O-I) --/--- Propriétés Asymptotiques et applications --/--- Les tests d’Hypothèses
Recommended publications
  • MIDACO on MINLP Space Applications
    MIDACO on MINLP Space Applications Martin Schlueter Division of Large Scale Computing Systems, Information Initiative Center, Hokkaido University, Sapporo 060-0811, Japan [email protected] Sven O. Erb European Space Agency (ESA), ESTEC (TEC-ECM), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands [email protected] Matthias Gerdts Institut fuer Mathematik und Rechneranwendung, Universit¨atder Bundeswehr, M¨unchen,D-85577 Neubiberg/M¨unchen,Germany [email protected] Stephen Kemble Astrium Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2AS, United Kingdom [email protected] Jan-J. R¨uckmann School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom [email protected] November 15, 2012 Abstract A numerical study on two challenging MINLP space applications and their optimization with MIDACO, which is a recently developed general purpose optimization software, is pre- sented. The applications are in particular the optimal control of the ascent of a multiple-stage space launch vehicle and the space mission trajectory design from Earth to Jupiter using mul- tiple gravity assists. Additionally an NLP aerospace application, the optimal control of an F8 aircraft manoeuvre, is furthermore discussed and solved. In order to enhance the opti- mization performance of MIDACO a hybridization technique, coupling MIDACO with a SQP algorithm, is presented for two of the three applications. The numerical results show, that the applications can be solved to their best known solution (or even new best solutions) in a reasonable time by the here considered approach. As the concept of MINLP is still a novelty in the field of (aero)space engineering, the here demonstrated capabilities are seen as promising.
    [Show full text]
  • Bioimage Analysis Tools
    Bioimage Analysis Tools Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, Ulrike Schulze, Simon Norrelykke, Christian Tischer, Thomas Pengo To cite this version: Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, et al.. Bioimage Analysis Tools. Kota Miura. Bioimage Data Analysis, Wiley-VCH, 2016, 978-3-527-80092-6. hal- 02910986 HAL Id: hal-02910986 https://hal.archives-ouvertes.fr/hal-02910986 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Bioimage Analysis Tools 1 2 3 4 5 6 Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Pau/-Gilloteaux, - Ulrike Schulze,7 Simon F. Nerrelykke,8 Christian Tischer,9 and Thomas Penqo'" 1 European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany National Institute of Basic Biology, Okazaki, 444-8585, Japan 2/nstitute for Research in Biomedicine ORB Barcelona), Advanced Digital Microscopy, Parc Científic de Barcelona, dBaldiri Reixac 1 O, 08028 Barcelona, Spain 3German Center of Neurodegenerative
    [Show full text]
  • Sweave User Manual
    Sweave User Manual Friedrich Leisch and R-core June 30, 2017 1 Introduction Sweave provides a flexible framework for mixing text and R code for automatic document generation. A single source file contains both documentation text and R code, which are then woven into a final document containing • the documentation text together with • the R code and/or • the output of the code (text, graphs) This allows the re-generation of a report if the input data change and documents the code to reproduce the analysis in the same file that contains the report. The R code of the complete 1 analysis is embedded into a LATEX document using the noweb syntax (Ramsey, 1998) which is usually used for literate programming Knuth(1984). Hence, the full power of LATEX (for high- quality typesetting) and R (for data analysis) can be used simultaneously. See Leisch(2002) and references therein for more general thoughts on dynamic report generation and pointers to other systems. Sweave uses a modular concept using different drivers for the actual translations. Obviously different drivers are needed for different text markup languages (LATEX, HTML, . ). Several packages on CRAN provide support for other word processing systems (see Appendix A). 2 Noweb files noweb (Ramsey, 1998) is a simple literate-programming tool which allows combining program source code and the corresponding documentation into a single file. A noweb file is a simple text file which consists of a sequence of code and documentation segments, called chunks: Documentation chunks start with a line that has an at sign (@) as first character, followed by a space or newline character.
    [Show full text]
  • Click to Edit Master Title Style
    Click to edit Master title style MINLP with Combined Interior Point and Active Set Methods Jose L. Mojica Adam D. Lewis John D. Hedengren Brigham Young University INFORM 2013, Minneapolis, MN Presentation Overview NLP Benchmarking Hock-Schittkowski Dynamic optimization Biological models Combining Interior Point and Active Set MINLP Benchmarking MacMINLP MINLP Model Predictive Control Chiller Thermal Energy Storage Unmanned Aerial Systems Future Developments Oct 9, 2013 APMonitor.com APOPT.com Brigham Young University Overview of Benchmark Testing NLP Benchmark Testing 1 1 2 3 3 min J (x, y,u) APOPT , BPOPT , IPOPT , SNOPT , MINOS x Problem characteristics: s.t. 0 f , x, y,u t Hock Schittkowski, Dynamic Opt, SBML 0 g(x, y,u) Nonlinear Programming (NLP) Differential Algebraic Equations (DAEs) 0 h(x, y,u) n m APMonitor Modeling Language x, y u MINLP Benchmark Testing min J (x, y,u, z) 1 1 2 APOPT , BPOPT , BONMIN x s.t. 0 f , x, y,u, z Problem characteristics: t MacMINLP, Industrial Test Set 0 g(x, y,u, z) Mixed Integer Nonlinear Programming (MINLP) 0 h(x, y,u, z) Mixed Integer Differential Algebraic Equations (MIDAEs) x, y n u m z m APMonitor & AMPL Modeling Language 1–APS, LLC 2–EPL, 3–SBS, Inc. Oct 9, 2013 APMonitor.com APOPT.com Brigham Young University NLP Benchmark – Summary (494) 100 90 80 APOPT+BPOPT APOPT 70 1.0 BPOPT 1.0 60 IPOPT 3.10 IPOPT 50 2.3 SNOPT Percentage (%) 6.1 40 Benchmark Results MINOS 494 Problems 5.5 30 20 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Not worse than 2 times slower than
    [Show full text]
  • Click to Edit Master Title Style
    Click to edit Master title style APMonitor Modeling Language John Hedengren Brigham Young University Advanced Process Solutions, LLC http://apmonitor.com Overview of APM Software as a service accessible through: MATLAB, Python, Web-browser interface Linux / Windows / Mac OS / Android platforms Solvers 1 1 2 3 3 APOPT , BPOPT , IPOPT , SNOPT , MINOS Problem characteristics: min J (x, y,u, z) Large-scale x s.t. 0 f , x, y,u, z Nonlinear Programming (NLP) t Mixed Integer NLP (MINLP) 0 g(x, y,u, z) Multi-objective 0 h(x, y,u, z) n m m Real-time systems x, y u z Differential Algebraic Equations (DAEs) 1 – APS, LLC 2 – EPL 3 – SBS, Inc. Oct 14, 2012 APMonitor.com Advanced Process Solutions, LLC Overview of APM Vector / matrix algebra with set notation Automatic Differentiation st nd Exact 1 and 2 Derivatives Large-scale, sparse systems of equations Object-oriented access Thermo-physical properties Database of preprogrammed models Parallel processing Optimization with uncertain parameters Custom solver or model connections Oct 14, 2012 APMonitor.com Advanced Process Solutions, LLC Unique Features of APM Initialization with nonlinear presolve minJ(x, y,u) x s.t. 0 f ,x, y,u min J (x, y,u) t 0 g(x, y,u) 0h(x, y,u) x minJ(x, y,u) x s.t. 0 f ,x, y,u s.t. 0 f , x, y,u t 0 g(x, y,u) t 0 h(x, y,u) minJ(x, y,u) x s.t. 0 f ,x, y,u t 0g(x, y,u) 0h(x, y,u) 0 g(x, y,u) minJ(x, y,u) x s.t.
    [Show full text]
  • Robert Fourer, David M. Gay INFORMS Annual Meeting
    AMPL New Solver Support in the AMPL Modeling Language Robert Fourer, David M. Gay AMPL Optimization LLC, www.ampl.com Department of Industrial Engineering & Management Sciences, Northwestern University Sandia National Laboratories INFORMS Annual Meeting Pittsburgh, Pennsylvania, November 5-8, 2006 Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 1 AMPL What it is . A modeling language for optimization A system to support optimization modeling What I’ll cover . Brief examples, briefer history Recent developments . ¾ 64-bit versions ¾ floating license manager ¾ AMPL Studio graphical interface & Windows COM objects Solver support ¾ new KNITRO 5.1 features ¾ new CPLEX 10.1 features Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 2 Ex 1: Airline Fleet Assignment set FLEETS; set CITIES; set TIMES circular; set FLEET_LEGS within {f in FLEETS, c1 in CITIES, t1 in TIMES, c2 in CITIES, t2 in TIMES: c1 <> c2 and t1 <> t2}; # (f,c1,t1,c2,t2) represents the availability of fleet f # to cover the leg that leaves c1 at t1 and # whose arrival time plus turnaround time at c2 is t2 param leg_cost {FLEET_LEGS} >= 0; param fleet_size {FLEETS} >= 0; Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 3 Ex 1: Derived Sets set LEGS := setof {(f,c1,t1,c2,t2) in FLEET_LEGS} (c1,t1,c2,t2); # the set of all legs that can be covered by some fleet set SERV_CITIES {f in FLEETS} := union {(f,c1,c2,t1,t2)
    [Show full text]
  • Notes 1: Introduction to Optimization Models
    Notes 1: Introduction to Optimization Models IND E 599 September 29, 2010 IND E 599 Notes 1 Slide 1 Course Objectives I Survey of optimization models and formulations, with focus on modeling, not on algorithms I Include a variety of applications, such as, industrial, mechanical, civil and electrical engineering, financial optimization models, health care systems, environmental ecology, and forestry I Include many types of optimization models, such as, linear programming, integer programming, quadratic assignment problem, nonlinear convex problems and black-box models I Include many common formulations, such as, facility location, vehicle routing, job shop scheduling, flow shop scheduling, production scheduling (min make span, min max lateness), knapsack/multi-knapsack, traveling salesman, capacitated assignment problem, set covering/packing, network flow, shortest path, and max flow. IND E 599 Notes 1 Slide 2 Tentative Topics Each topic is an introduction to what could be a complete course: 1. basic linear models (LP) with sensitivity analysis 2. integer models (IP), such as the assignment problem, knapsack problem and the traveling salesman problem 3. mixed integer formulations 4. quadratic assignment problems 5. include uncertainty with chance-constraints, stochastic programming scenario-based formulations, and robust optimization 6. multi-objective formulations 7. nonlinear formulations, as often found in engineering design 8. brief introduction to constraint logic programming 9. brief introduction to dynamic programming IND E 599 Notes 1 Slide 3 Computer Software I Catalyst Tools (https://catalyst.uw.edu/) I AIMMS - optimization software (http://www.aimms.com/) Ming Fang - AIMMS software consultant IND E 599 Notes 1 Slide 4 What is Mathematical Programming? Mathematical programming refers to \programming" as a \planning" activity: as in I linear programming (LP) I integer programming (IP) I mixed integer linear programming (MILP) I non-linear programming (NLP) \Optimization" is becoming more common, e.g.
    [Show full text]
  • Treball (1.484Mb)
    Treball Final de Màster MÀSTER EN ENGINYERIA INFORMÀTICA Escola Politècnica Superior Universitat de Lleida Mòdul d’Optimització per a Recursos del Transport Adrià Vall-llaura Salas Tutors: Antonio Llubes, Josep Lluís Lérida Data: Juny 2017 Pròleg Aquest projecte s’ha desenvolupat per donar solució a un problema de l’ordre del dia d’una empresa de transports. Es basa en el disseny i implementació d’un model matemàtic que ha de permetre optimitzar i automatitzar el sistema de planificació de viatges de l’empresa. Per tal de poder implementar l’algoritme s’han hagut de crear diversos mòduls que extreuen les dades del sistema ERP, les tracten, les envien a un servei web (REST) i aquest retorna un emparellament òptim entre els vehicles de l’empresa i les ordres dels clients. La primera fase del projecte, la teòrica, ha estat llarga en comparació amb les altres. En aquesta fase s’ha estudiat l’estat de l’art en la matèria i s’han repassat molts dels models més importants relacionats amb el transport per comprendre’n les seves particularitats. Amb els conceptes ben estudiats, s’ha procedit a desenvolupar un nou model matemàtic adaptat a les necessitats de la lògica de negoci de l’empresa de transports objecte d’aquest treball. Posteriorment s’ha passat a la fase d’implementació dels mòduls. En aquesta fase m’he trobat amb diferents limitacions tecnològiques degudes a l’antiguitat de l’ERP i a l’ús del sistema operatiu Windows. També han sorgit diferents problemes de rendiment que m’han fet redissenyar l’extracció de dades de l’ERP, el càlcul de distàncies i el mòdul d’optimització.
    [Show full text]
  • Open Source Tools for Optimization in Python
    Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints.
    [Show full text]
  • ESS — Emacs Speaks Statistics
    ESS — Emacs Speaks Statistics ESS version 5.14 The ESS Developers (A.J. Rossini, R.M. Heiberger, K. Hornik, M. Maechler, R.A. Sparapani, S.J. Eglen, S.P. Luque and H. Redestig) Current Documentation by The ESS Developers Copyright c 2002–2010 The ESS Developers Copyright c 1996–2001 A.J. Rossini Original Documentation by David M. Smith Copyright c 1992–1995 David M. Smith Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Chapter 1: Introduction to ESS 1 1 Introduction to ESS The S family (S, Splus and R) and SAS statistical analysis packages provide sophisticated statistical and graphical routines for manipulating data. Emacs Speaks Statistics (ESS) is based on the merger of two pre-cursors, S-mode and SAS-mode, which provided support for the S family and SAS respectively. Later on, Stata-mode was also incorporated. ESS provides a common, generic, and useful interface, through emacs, to many statistical packages. It currently supports the S family, SAS, BUGS/JAGS, Stata and XLisp-Stat with the level of support roughly in that order. A bit of notation before we begin. emacs refers to both GNU Emacs by the Free Software Foundation, as well as XEmacs by the XEmacs Project. The emacs major mode ESS[language], where language can take values such as S, SAS, or XLS.
    [Show full text]
  • Nonlinear Mixed Integer Based Optimization Technique for Space Applications
    Nonlinear mixed integer based Optimization Technique for Space Applications by Martin Schlueter A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy School of Mathematics The University of Birmingham May 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract In this thesis a new algorithm for mixed integer nonlinear programming (MINLP) is developed and applied to several real world applications with special focus on space ap- plications. The algorithm is based on two main components, which are an extension of the Ant Colony Optimization metaheuristic and the Oracle Penalty Method for con- straint handling. A sophisticated implementation (named MIDACO) of the algorithm is used to numerically demonstrate the usefulness and performance capabilities of the here developed novel approach on MINLP. An extensive amount of numerical results on both, comprehensive sets of benchmark problems (with up to 100 test instances) and several real world applications, are presented and compared to results obtained by concurrent methods. It can be shown, that the here developed approach is not only fully competi- tive with established MINLP algorithms, but is even able to outperform those regarding global optimization capabilities and cpu runtime performance.
    [Show full text]
  • GEKKO Documentation Release 1.0.1
    GEKKO Documentation Release 1.0.1 Logan Beal, John Hedengren Aug 31, 2021 Contents 1 Overview 1 2 Installation 3 3 Project Support 5 4 Citing GEKKO 7 5 Contents 9 6 Overview of GEKKO 89 Index 91 i ii CHAPTER 1 Overview GEKKO is a Python package for machine learning and optimization of mixed-integer and differential algebraic equa- tions. It is coupled with large-scale solvers for linear, quadratic, nonlinear, and mixed integer programming (LP, QP, NLP, MILP, MINLP). Modes of operation include parameter regression, data reconciliation, real-time optimization, dynamic simulation, and nonlinear predictive control. GEKKO is an object-oriented Python library to facilitate local execution of APMonitor. More of the backend details are available at What does GEKKO do? and in the GEKKO Journal Article. Example applications are available to get started with GEKKO. 1 GEKKO Documentation, Release 1.0.1 2 Chapter 1. Overview CHAPTER 2 Installation A pip package is available: pip install gekko Use the —-user option to install if there is a permission error because Python is installed for all users and the account lacks administrative priviledge. The most recent version is 0.2. You can upgrade from the command line with the upgrade flag: pip install--upgrade gekko Another method is to install in a Jupyter notebook with !pip install gekko or with Python code, although this is not the preferred method: try: from pip import main as pipmain except: from pip._internal import main as pipmain pipmain(['install','gekko']) 3 GEKKO Documentation, Release 1.0.1 4 Chapter 2. Installation CHAPTER 3 Project Support There are GEKKO tutorials and documentation in: • GitHub Repository (examples folder) • Dynamic Optimization Course • APMonitor Documentation • GEKKO Documentation • 18 Example Applications with Videos For project specific help, search in the GEKKO topic tags on StackOverflow.
    [Show full text]