Nonlinear Mixed Integer Based Optimization Technique for Space Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MIDACO on MINLP Space Applications
MIDACO on MINLP Space Applications Martin Schlueter Division of Large Scale Computing Systems, Information Initiative Center, Hokkaido University, Sapporo 060-0811, Japan [email protected] Sven O. Erb European Space Agency (ESA), ESTEC (TEC-ECM), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands [email protected] Matthias Gerdts Institut fuer Mathematik und Rechneranwendung, Universit¨atder Bundeswehr, M¨unchen,D-85577 Neubiberg/M¨unchen,Germany [email protected] Stephen Kemble Astrium Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2AS, United Kingdom [email protected] Jan-J. R¨uckmann School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom [email protected] November 15, 2012 Abstract A numerical study on two challenging MINLP space applications and their optimization with MIDACO, which is a recently developed general purpose optimization software, is pre- sented. The applications are in particular the optimal control of the ascent of a multiple-stage space launch vehicle and the space mission trajectory design from Earth to Jupiter using mul- tiple gravity assists. Additionally an NLP aerospace application, the optimal control of an F8 aircraft manoeuvre, is furthermore discussed and solved. In order to enhance the opti- mization performance of MIDACO a hybridization technique, coupling MIDACO with a SQP algorithm, is presented for two of the three applications. The numerical results show, that the applications can be solved to their best known solution (or even new best solutions) in a reasonable time by the here considered approach. As the concept of MINLP is still a novelty in the field of (aero)space engineering, the here demonstrated capabilities are seen as promising. -
Treball (1.484Mb)
Treball Final de Màster MÀSTER EN ENGINYERIA INFORMÀTICA Escola Politècnica Superior Universitat de Lleida Mòdul d’Optimització per a Recursos del Transport Adrià Vall-llaura Salas Tutors: Antonio Llubes, Josep Lluís Lérida Data: Juny 2017 Pròleg Aquest projecte s’ha desenvolupat per donar solució a un problema de l’ordre del dia d’una empresa de transports. Es basa en el disseny i implementació d’un model matemàtic que ha de permetre optimitzar i automatitzar el sistema de planificació de viatges de l’empresa. Per tal de poder implementar l’algoritme s’han hagut de crear diversos mòduls que extreuen les dades del sistema ERP, les tracten, les envien a un servei web (REST) i aquest retorna un emparellament òptim entre els vehicles de l’empresa i les ordres dels clients. La primera fase del projecte, la teòrica, ha estat llarga en comparació amb les altres. En aquesta fase s’ha estudiat l’estat de l’art en la matèria i s’han repassat molts dels models més importants relacionats amb el transport per comprendre’n les seves particularitats. Amb els conceptes ben estudiats, s’ha procedit a desenvolupar un nou model matemàtic adaptat a les necessitats de la lògica de negoci de l’empresa de transports objecte d’aquest treball. Posteriorment s’ha passat a la fase d’implementació dels mòduls. En aquesta fase m’he trobat amb diferents limitacions tecnològiques degudes a l’antiguitat de l’ERP i a l’ús del sistema operatiu Windows. També han sorgit diferents problemes de rendiment que m’han fet redissenyar l’extracció de dades de l’ERP, el càlcul de distàncies i el mòdul d’optimització. -
Optimization of Circuitry Arrangements for Heat Exchangers Using
Optimization of circuitry arrangements for heat exchangers using derivative-free optimization Nikolaos Ploskas1, Christopher Laughman2, Arvind U. Raghunathan2, and Nikolaos V. Sahinidis1 1Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA 2Mitsubishi Electric Research Laboratories, Cambridge, MA, USA Abstract Optimization of the refrigerant circuitry can improve a heat exchanger’s performance. Design engineers currently choose the refrigerant circuitry according to their experience and heat exchanger simulations. However, the design of an optimized refrigerant circuitry is difficult. The number of refrigerant circuitry candidates is enormous. Therefore, exhaustive search algorithms cannot be used and intelligent techniques must be developed to explore the solution space efficiently. In this paper, we formulate refrigerant circuitry design as a binary constrained optimization problem. We use CoilDesigner, a simulation and design tool of air to refrigerant heat exchangers, in order to simulate the performance of different refrigerant circuitry designs. We treat CoilDesigner as a black-box system since the exact relationship of the objective function with the decision variables is not explicit. Derivative-free optimization (DFO) algorithms are suitable for solving this black-box model since they do not require explicit functional representations of the objective function and the constraints. The aim of this paper is twofold. First, we compare four mixed-integer constrained DFO solvers and one box-bounded DFO solver and evaluate their ability to solve a difficult industrially relevant problem. Second, we demonstrate that the proposed formulation is suitable for optimizing the circuitry configuration of heat exchangers. We apply the DFO solvers to 17 heat exchanger design problems. Results show that TOMLAB/glcDirect and TOMLAB/glcSolve can find optimal or near-optimal refrigerant circuitry designs arXiv:1705.10437v1 [cs.CE] 30 May 2017 after a relatively small number of circuit simulations. -
Discoversim™ Version 2 Workbook
DiscoverSim™ Version 2 Workbook Contact Information: Technical Support: 1-866-475-2124 (Toll Free in North America) or 1-416-236-5877 Sales: 1-888-SigmaXL (888-744-6295) E-mail: [email protected] Web: www.SigmaXL.com Published: December 2015 Copyright © 2011 - 2015, SigmaXL, Inc. Table of Contents DiscoverSim™ Feature List Summary, Installation Notes, System Requirements and Getting Help ..................................................................................................................................1 DiscoverSim™ Version 2 Feature List Summary ...................................................................... 3 Key Features (bold denotes new in Version 2): ................................................................. 3 Common Continuous Distributions: .................................................................................. 4 Advanced Continuous Distributions: ................................................................................. 4 Discrete Distributions: ....................................................................................................... 5 Stochastic Information Packet (SIP): .................................................................................. 5 What’s New in Version 2 .................................................................................................... 6 Installation Notes ............................................................................................................... 8 DiscoverSim™ System Requirements .............................................................................. -
Near-Earth Asteroid 2012 TC4 Observing Campaign Results From
Icarus 326 (2019) 133–150 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Near-Earth asteroid 2012 TC4 observing campaign: Results from a global T planetary defense exercise ⁎ Vishnu Reddya, , Michael S. Kelleyb, Davide Farnocchiac, William H. Ryand, Cristina A. Thomase, Lance A.M. Bennerc, Jessie Dotsonf, Marco Michelig, Melissa J. Bruckera, Schelte J. Bush, Marina Brozovicc, Lorien Wheeleri, Viqar Abbasij, James M. Bauerk, Amber Bonsalll, Zarah L. Browna, Michael W. Buschm, Paul Chodasc, Young-Jun Choin,o, Nicolas Erasmusp, Kelly E. Fastb, John P. Faucherq, Rachel B. Fernandesa, Frank D. Ghigol, David G. Gilbankp, Jon D. Giorginic, Annika Gustafssone, Olivier Hainautr, Walter M. Harrisa, Joseph S. Jaoc, Lindley S. Johnsonb, Theodore Karetaa, Myung-Jin Kimn, Detlef Koschnys, Emily A. Kramerc, Rob R. Landisb, Denis G. Laurinj, Jeffrey A. Larsenq, Clement G. Leec, Cassandra Lejolya, Tim Listert, Robert McMillana, Joseph R. Masieroc, Donovan Mathiasu, Michael Mommertv, Hong-Kyu Moonw, Nicholas A. Moskovitzx, Shantanu P. Naiduc, Ravi Teja Nallapuy, Haris Khan Niaziz, John W. Noonana, David Polishookaa, Eileen V. Ryand, Lauren Schatzab, James V. Scottia, Benjamin Sharkeya, Boris M. Shustovac, Amanda A. Sickafoosep,ad, Marc A. Silvaae, Martin A. Sladec, Lindsay R. Slicka, Lawrence G. Snedekerae, Alessondra Springmanna, David Tholenaf, David E. Trillinge,p, Alberto Q. Vodnizaag, Richard Wainscoataf, Robert Werykaf, Makoto Yoshikawaah a Lunar and Planetary Laboratory, University of Arizona, 1629 E University Blvd, Tucson, AZ 85721, USA b Planetary Defense Coordination Office, Planetary Science Division, NASA Headquarters, 300 E St SW, Washington, DC20546,USA c Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA d Magdalena Ridge Observatory, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA e Dept. -
Introduction to MIDACO-SOLVER Software
Title Introduction to MIDACO-SOLVER Software Author(s) Schlueter, Martin; Munetomo, Masaharu Citation Information Initiative Center, Hokkaido University Issue Date 2013-03-29 Doc URL http://hdl.handle.net/2115/52782 Rights(URL) http://creativecommons.org/licenses/by-nc-sa/2.1/jp/ Type learningobject File Information MIDACO_Report.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Introduction to MIDACO-SOLVER Software Martin Schlueter, Masaharu Munetomo Information Initiative Center, Hokkaido University Sapporo, Japan [email protected] [email protected] May 29, 2013 Abstract MIDACO is a general-purpose software for solving mathematical optimization problems. The software implements an extended ant colony optimization algorithm, which is a heuristic method that stochastically approximates a solution to the mathematical problem. MIDACO can be applied on purely continuous (NLP), purely combinatorial (IP) or mixed integer (MINLP) optimization problems. Problems may be restricted to nonlinear equality and/or inequality constraints. The objective and constraint functions are treated as black box by MI- DACO. This user guide provides essential information on understanding the MIDACO screen and solution le output, how to adopt a problem to the MIDACO format and how to solve it with MIDACO (including parameter tuning and parallelization options). 1 1 Introduction MIDACO is a heuristic solver for mixed integer nonlinear programming (MINLP) problems. The mathematical formulation of a general MINLP is stated below in (1), where f(x; y) denotes the objective function to be minimized and gi(x; y) represents the vector of equality and inequality constraints. The components of the vector x are the continuous decision variables and the com- ponents of the vector y are the discrete decision variables. -
Datascientist Manual
DATASCIENTIST MANUAL . 2 « Approcherait le comportement de la réalité, celui qui aimerait s’epanouir dans l’holistique, l’intégratif et le multiniveaux, l’énactif, l’incarné et le situé, le probabiliste et le non linéaire, pris à la fois dans l’empirique, le théorique, le logique et le philosophique. » 4 (* = not yet mastered) THEORY OF La théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés PROBABILITY par le hasard et l'incertitude. Elle consistue le socle des statistiques appliqué. Rubriques ↓ Back to top ↑_ Notations Formalisme de Kolmogorov Opération sur les ensembles Probabilités conditionnelles Espérences conditionnelles Densités & Fonctions de répartition Variables aleatoires Vecteurs aleatoires Lois de probabilités Convergences et théorèmes limites Divergences et dissimilarités entre les distributions Théorie générale de la mesure & Intégration ------------------------------------------------------------------------------------------------------------------------------------------ 6 Notations [pdf*] Formalisme de Kolmogorov Phé nomé né alé atoiré Expé riéncé alé atoiré L’univérs Ω Ré alisation éléméntairé (ω ∈ Ω) Evé némént Variablé aléatoiré → fonction dé l’univér Ω Opération sur les ensembles : Union / Intersection / Complémentaire …. Loi dé Augustus dé Morgan ? Independance & Probabilités conditionnelles (opération sur des ensembles) Espérences conditionnelles 8 Variables aleatoires (discret vs reel) … Vecteurs aleatoires : Multiplét dé variablés alé atoiré (discret vs reel) … Loi marginalés Loi -
Numerical Analysis, Modelling and Simulation
Numerical Analysis, Modelling and Simulation Griffin Cook Numerical Analysis, Modelling and Simulation Numerical Analysis, Modelling and Simulation Edited by Griffin Cook Numerical Analysis, Modelling and Simulation Edited by Griffin Cook ISBN: 978-1-9789-1530-5 © 2018 Library Press Published by Library Press, 5 Penn Plaza, 19th Floor, New York, NY 10001, USA Cataloging-in-Publication Data Numerical analysis, modelling and simulation / edited by Griffin Cook. p. cm. Includes bibliographical references and index. ISBN 978-1-9789-1530-5 1. Numerical analysis. 2. Mathematical models. 3. Simulation methods. I. Cook, Griffin. QA297 .N86 2018 518--dc23 This book contains information obtained from authentic and highly regarded sources. All chapters are published with permission under the Creative Commons Attribution Share Alike License or equivalent. A wide variety of references are listed. Permissions and sources are indicated; for detailed attributions, please refer to the permissions page. Reasonable efforts have been made to publish reliable data and information, but the authors, editors and publisher cannot assume any responsibility for the validity of all materials or the consequences of their use. Copyright of this ebook is with Library Press, rights acquired from the original print publisher, Larsen and Keller Education. Trademark Notice: All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy. -
The Planetary Report December Solstice 2011 Volume 31, Number 5
THE PLANETARY REPORT DECEMBER SOLSTICE 2011 VOLUME 31, NUMBER 5 www.planetary.org REMEMBERING THE YEAR IN PICTURES NEW (OLD) VENUS IMAGES C POLITICAL ACTION 2011 UPDATE C SHOEMAKER GRANT RECIPIENTS SNAPSHOTS FROM SPACE EMILY STEWART LAKDAWALLA blogs at planetary.org/blog. New images, old camera 1975 was a good-looking year for Venus VENERA 9 BECAME THE FIRST ARTIFICIAL satellite of Venus, and its lander was the first to photograph Venus’ surface, on October 20, 1975. One of its two cameras, a line-scanner that rotated in order to build a complete image, returned two views of a rock-strewn hillside. The scanner was angled from the spacecraft’s body, so this panorama shows the horizon at its edges and the Images: Russian Academy of Sciences/Don Mitchell Sciences/Don of Academy Russian Images: ground in front of the lander at its center. This view was reconstructed by Don Mitchell from data on tapes exchanged between the Soviet Union and Brown University. More recently, digital data have become available online, and Mitchell used those data to reconstruct a view of Venus (at right) captured by the Venera 9 orbiter on December 11, 1975. For more Venera photos, visit Mitchell’s website at MENTALLANDSCAPE.COM. —Emily Stewart Lakdawalla LEARN MORE ABOUT THIS IMAGE PLANETARY.ORG/SNAPSHOTS DIS COVER MORE ABOUT AMATEUR IMAGE PROCESSING PLANETARY.ORG/PROGRAMS/PROJECTS/AMATEUR SEE MORE EVERY DAY! PLANETARY.ORG/BLOG CONTACT US The Planetary Society 85 South Grand Avenue Pasadena, CA 91105-1602 General Calls: 626-793-5100 E-mail: [email protected] Internet: planetary.org 2 THE PLANETARY REPORT C DECEMBER SOLSTICE 2011 SNAPSHOTS FROM SPACE CONTENTS DECEMBER SOLSTICE 2011 The Year in Pictures Stunning photography of breakthroughs 6 in space science from the the past year. -
Download Space Rocks Powerpoint Script
Space Rocks Suggested Script PRESENTATION NOTES This presentation can take from 20 minutes up to 45 minutes, depending on how many Optional Presentation Activities are included. Recommended for 7th grade to adult. (Use more activities with younger audiences) 1. What our smallest neighbors may be lacking in size, they make up for in their dynamic nature. Shown here are all of the asteroids and comets imaged up-close as of June 2010. The picture below shows their names. See a larger version here: http://www.planetary.org/blog/article/00002585/ - 1 - 2. Today we'll be talking about asteroids. Most asteroids orbit the Sun in the Asteroid Belt, between the orbits of Mars and Jupiter. Images like these show the location of the Asteroid Belt but can be confusing because it appears that the Asteroid Belt is littered with asteroids. In fact, on this scale, all of the asteroids and even the planets would be too small to see. ---- Credit: Lunar and Planetary Institute 3. Let's start at the very beginning. 4.6 billion years ago the Solar Nebula swirled from its own gravity. As it collapsed, planets began to form around the new Sun. In the region between Marsʼs and Jupiter's orbits, Jupiterʼs gravity pulled on the small objects. Instead of pieces slowly coming together and sticking due to their gravity, wild collisions sent primitive asteroids flying out of their orbits or smashing each other to bits. No large planets ever formed in this region. Models indicate the Asteroid Belt may have originally contained as much mass as Earth, but spread out in many small “proto-planets.” The Solar System calmed down by 3.8 billion years ago, after what astronomers call the Late Heavy Bombardment phase. -
MINLP Solver Software
MINLP Solver Software Michael R. Bussieck and Stefan Vigerske GAMS Development Corp., 1217 Potomac St, NW Washington, DC 20007, USA [email protected], [email protected] March 10, 2014 Abstract In this article we give a brief overview of the start-of-the-art in software for the solution of mixed integer nonlinear programs (MINLP). We establish several groupings with respect to various features and give concise individual descriptions for each solver. The provided information may guide the selection of a best solver for a particular MINLP problem. Keywords: mixed integer nonlinear programming, solver, software, MINLP, MIQCP 1 Introduction The general form of an MINLP is minimize f(x; y) subject to g(x; y) ≤ 0 (P) x 2 X y 2 Y integer n+s n+s m The function f : R ! R is a possibly nonlinear objective function and g : R ! R a possibly nonlinear constraint function. Most algorithms require the functions f and g to be continuous and differentiable, but some may even allow for singular discontinuities. The variables x and y are the decision variables, where y is required to be integer valued. The n s sets X ⊆ R and Y ⊆ R are bounding-box-type restrictions on the variables. Additionally to integer requirements on variables, other kinds of discrete constraints are commonly used. These are, e.g., special-ordered-set constraints (only one (SOS type 1) or two consecutive (SOS type 2) variables in an (ordered) set are allowed to be nonzero) [8], semicontinuous variables (the variable is allowed to take either the value zero or a value above some bound), semiinteger variables (like semicontinuous variables, but with an additional integer restric- tion), and indicator variables (a binary variable indicates whether a certain set of constraints has to be enforced). -
The Minor Planet Bulletin (Warner Et 2010 JL33
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 3, A.D. 2011 JULY-SEPTEMBER 127. ROTATION PERIOD DETERMINATION FOR 280 PHILIA – the lightcurve more readable these have been reduced to 1828 A TRIUMPH OF GLOBAL COLLABORATION points with binning in sets of 5 with time interval no greater than 10 minutes. Frederick Pilcher 4438 Organ Mesa Loop MPO Canopus software was used for lightcurve analysis and Las Cruces, NM 88011 USA expedited the sharing of data among the collaborators, who [email protected] independently obtained several slightly different rotation periods. A synodic period of 70.26 hours, amplitude 0.15 ± 0.02 Vladimir Benishek magnitudes, represents all of these fairly well, but we suggest a Belgrade Astronomical Observatory realistic error is ± 0.03 hours rather than the formal error of ± 0.01 Volgina 7, 11060 Belgrade 38, SERBIA hours. Andrea Ferrero The double period 140.55 hours was also examined. With about Bigmuskie Observatory (B88) 95% phase coverage the two halves of the lightcurve looked the via Italo Aresca 12, 14047 Mombercelli, Asti, ITALY same as each other and as in the 70.26 hour lightcurve. Furthermore for order through 14 the coefficients of the odd Hiromi Hamanowa, Hiroko Hamanowa harmonics were systematically much smaller than for the even Hamanowa Astronomical Observatory harmonics. A 140.55 hour period can be safely rejected. 4-34 Hikarigaoka Nukazawa Motomiya Fukushima JAPAN Observers and equipment: Observer code: VB = Vladimir Robert D. Stephens Benishek; AF = Andrea Ferrero; HH = Hiromi and Hiroko Goat Mountain Astronomical Research Station (GMARS) Hamanowa; FP = Frederick Pilcher; RS = Robert Stephens.