The Planetary Report December Solstice 2011 Volume 31, Number 5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Issue 106, May 2006
37 th Lunar and Planetary Science Conference THE CONFERENCE IN REVIEW Attendance at the 37th Lunar and Planetary Science Conference (LPSC) set yet another record for this conference, with 1546 participants from 24 countries attending the meeting held at the South Shore Harbour Resort and Conference Center in League City, Texas, on March 13–17, 2006 (see inset for attendance statistics). Rearrangement of the confi guration of the meeting rooms, along with additional overfl ow seating, allowed conference organizers and staff to accommodate the marked increase in attendance, thereby being able to maintain the current meeting venue and hence the low registration fee, which enables the high number of student attendees. LPSC continues to be recognized among the international science community as the most important planetary conference in the world, and this year’s meeting substantiated the merit of that reputation. More than 1400 abstracts were submitted in consideration for presentation at the conference, and hundreds of planetary scientists and students attended both oral and poster sessions focusing on such diverse topics as the Moon, Mars, Mercury, and Venus; outer planets and satellites; meteorites; comets, asteroids, and other small bodies; Limpacts; interplanetary dust particles and presolar grains; origins of planetary systems; planetary formation and early evolution; and astrobiology. Sunday night’s registration and reception were again held at the Center for Advanced Space Studies, which houses the Lunar and Planetary Institute. Featured on Sunday night was an open house for the display of education and public outreach activities and programs. Highlights of the conference program, established by the program committee under the guidance of co-chairs Dr. -
DEGRADATION of ENDEAVOUR CRATER, MARS. J. A. Grant1, L. S. Crumpler2, T
46th Lunar and Planetary Science Conference (2015) 2017.pdf DEGRADATION OF ENDEAVOUR CRATER, MARS. J. A. Grant1, L. S. Crumpler2, T. J. Parker3, M. P. Golombek3, S. A. Wilson1, and D. W. Mittlefehldt4, Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 ([email protected]), 2New Mexico Museum of Natural History & Science, 1801 Mountain Rd NW, Albuquerque, NM, 87104, 3Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, 4NASA JSC, 2101 NASA Parkway, Houston, TX 77058. Introduction: The Opportunity rover has traversed icant degradation. A paucity of debris from the Shoe- portions of two western rim segments of Endeavour, a maker and Matijevic Formations relegates most erosion 22 km-diameter crater in Meridiani Planum (Fig. 1), to before the surrounding plains were emplaced, imply- for the past three years (e.g., [1]). The resultant data ing more efficient erosion in the past [7]. enables the evaluation of the geologic expression [2] Moreover, ejecta comprise ~50-60% of the relief and degradation state of the crater. Endeavour is Noa- around selected Mars complex craters [8] and only 20- chian-aged, complex in morphology [3], and originally 25% around selected lunar complex craters [6]. Hence, may have appeared broadly similar to the more pristine original rim relief at Endeavour may have been only 20.5 km-diameter Santa Fe complex crater in Lunae ~200-500 m or as much as ~400-800 m based on com- Palus (19.5°N, 312.0°E). By contrast, Endeavour is parison with complex Martian and lunar craters of considerably subdued and largely buried by younger broadly similar size [4, 5, 8]. -
ISSUE 134, AUGUST 2013 2 Imperative: Venus Continued
Imperative: Venus — Virgil L. Sharpton, Lunar and Planetary Institute Venus and Earth began as twins. Their sizes and densities are nearly identical and they stand out as being considerably more massive than other terrestrial planetary bodies. Formed so close to Earth in the solar nebula, Venus likely has Earth-like proportions of volatiles, refractory elements, and heat-generating radionuclides. Yet the Venus that has been revealed through exploration missions to date is hellishly hot, devoid of oceans, lacking plate tectonics, and bathed in a thick, reactive atmosphere. A less Earth-like environment is hard to imagine. Venus, Earth, and Mars to scale. Which L of our planetary neighbors is most similar to Earth? Hint: It isn’t Mars. PWhy and when did Earth’s and Venus’ evolutionary paths diverge? This fundamental and unresolved question drives the need for vigorous new exploration of Venus. The answer is central to understanding Venus in the context of terrestrial planets and their evolutionary processes. In addition, however, and unlike virtually any other planetary body, Venus could hold important clues to understanding our own planet — how it has maintained a habitable environment for so long and how long it can continue to do so. Precisely because it began so like Earth, yet evolved to be so different, Venus is the planet most likely to cast new light on the conditions that determine whether or not a planet evolves habitable environments. NASA’s Kepler mission and other concurrent efforts to explore beyond our star system are likely to find Earth-sized planets around Sun-sized stars within a few years. -
Nonlinear Mixed Integer Based Optimization Technique for Space Applications
Nonlinear mixed integer based Optimization Technique for Space Applications by Martin Schlueter A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy School of Mathematics The University of Birmingham May 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract In this thesis a new algorithm for mixed integer nonlinear programming (MINLP) is developed and applied to several real world applications with special focus on space ap- plications. The algorithm is based on two main components, which are an extension of the Ant Colony Optimization metaheuristic and the Oracle Penalty Method for con- straint handling. A sophisticated implementation (named MIDACO) of the algorithm is used to numerically demonstrate the usefulness and performance capabilities of the here developed novel approach on MINLP. An extensive amount of numerical results on both, comprehensive sets of benchmark problems (with up to 100 test instances) and several real world applications, are presented and compared to results obtained by concurrent methods. It can be shown, that the here developed approach is not only fully competi- tive with established MINLP algorithms, but is even able to outperform those regarding global optimization capabilities and cpu runtime performance. -
Multispectral VNIR Evidence of Alteration Processes on Solander
Multispectral VNIR Evidence of Alteration Processes on W.H. Farrand1, J.F. Bell2, J.R. Johnson3, and D. W. Mittlefehldt4 1. Space Science Institute, Boulder, CO; [email protected] Solander Point, Endeavour Crater, Mars 2. Arizona State University, Tempe, AZ 3. Johns Hopkins University, Applied Physics Lab, Laurel, MD 1) Introduction: 4. NASA Johnson Space Center, Houston, TX The Mars Exploration Rover Opportunity has been exploring Noachian-aged rocks on the rim of Endeavour crater. This exploration began on the Cape York rim segment [1, 2] and has, from Sol 3393 of Opportunity’s mission to the present time, been over the rim segment known as Solander Point (Fig. 1). The visible and near infrared (VNIR) multispectral capability of the 4) Sulfates and oxide minerals in the sub- rover’s Pancam has been an important tool for use in selecting targets for in situ investigation and in it’s own right for surface? characterizing the VNIR reflectance of rock surfaces [3, 4]. Among the rock targets encountered on the Murray Ridge portion of Given the multispectral character of spectra collected by Pancam, a Solander Point were a set of outcrops that had the outward appearance of other occurrences of the Shoemaker formation impact unique identification of mineral phases is generally impractical. The drop breccia [1], but which had a distinct reflectance character. Also, the by chance overturning of the rocks Pinnacle and Stuart in reflectance from 934 to 1009 nm in the light-toned materials on Island revealed light-toned subsurface materials which were likely formed by subsurface aqueous alteration. -
High Concentrations of Manganese and Sulfur in Deposits on Murray Ridge, Endeavour Crater, Marsk
American Mineralogist, Volume 101, pages 1389–1405, 2016 High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Marsk RAYMOND E. ARVIDSON1,*, STEVEN W. SQUYreS2, RICHARD V. MOrrIS3, ANDrew H. KNOLL4, RALF GELLerT5, BENTON C. CLArk6, JEFFreY G. CATALANO1, BRAD L. JOLLIFF1, SCOTT M. MCLENNAN7, KENNETH E. HerkeNHOFF8, SCOTT VANBOMMEL5, DAVID W. MITTLEFEHLDT3, JOHN P. GROTZINger9, EDWARD A. GUINNESS1, JEFFreY R. JOHNSON10, JAMES F. BELL III11, WILLIAM H. FArrAND6, NATHAN STEIN1, VALerIE K. FOX1, MATTHew P. GOLOMbek12, MArgAreT A.G. HINKLE1, WENDY M. CALVIN13, AND PAULO A. DE SOUZA JR.14 1Department of Earth and Planetary Sciences, Washington University in Saint Louis, St. Louis, Missouri 63130, U.S.A. 2Department of Astronomy, Cornell University, Ithaca, New York 14853, U.S.A. 3Johnson Space Center, Houston, Texas 77058, U.S.A. 4Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, U.S.A. 5Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada 6Space Science Institute, Boulder, Colorado 80301, U.S.A. 7Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, U.S.A. 8U.S. Geological Survey, Astrogeology Science Center, Flagstaff, Arizona 86001, U.S.A. 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. 10Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723, U.S.A. 11School of Earth & Space Exploration, Arizona State University, Tempe, Arizona 85281, U.S.A. 12California Institute of Technology/Jet Propulsion Laboratory, Pasadena, California 91011 13Geological Sciences and Engineering, University of Nevada, Reno, Nevada 89503, U.S.A. 14CSIRO Digital Productivity Flagship, Hobart, Tasmania 7004, Australia ABSTRACT Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. -
Near-Earth Asteroid 2012 TC4 Observing Campaign Results From
Icarus 326 (2019) 133–150 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Near-Earth asteroid 2012 TC4 observing campaign: Results from a global T planetary defense exercise ⁎ Vishnu Reddya, , Michael S. Kelleyb, Davide Farnocchiac, William H. Ryand, Cristina A. Thomase, Lance A.M. Bennerc, Jessie Dotsonf, Marco Michelig, Melissa J. Bruckera, Schelte J. Bush, Marina Brozovicc, Lorien Wheeleri, Viqar Abbasij, James M. Bauerk, Amber Bonsalll, Zarah L. Browna, Michael W. Buschm, Paul Chodasc, Young-Jun Choin,o, Nicolas Erasmusp, Kelly E. Fastb, John P. Faucherq, Rachel B. Fernandesa, Frank D. Ghigol, David G. Gilbankp, Jon D. Giorginic, Annika Gustafssone, Olivier Hainautr, Walter M. Harrisa, Joseph S. Jaoc, Lindley S. Johnsonb, Theodore Karetaa, Myung-Jin Kimn, Detlef Koschnys, Emily A. Kramerc, Rob R. Landisb, Denis G. Laurinj, Jeffrey A. Larsenq, Clement G. Leec, Cassandra Lejolya, Tim Listert, Robert McMillana, Joseph R. Masieroc, Donovan Mathiasu, Michael Mommertv, Hong-Kyu Moonw, Nicholas A. Moskovitzx, Shantanu P. Naiduc, Ravi Teja Nallapuy, Haris Khan Niaziz, John W. Noonana, David Polishookaa, Eileen V. Ryand, Lauren Schatzab, James V. Scottia, Benjamin Sharkeya, Boris M. Shustovac, Amanda A. Sickafoosep,ad, Marc A. Silvaae, Martin A. Sladec, Lindsay R. Slicka, Lawrence G. Snedekerae, Alessondra Springmanna, David Tholenaf, David E. Trillinge,p, Alberto Q. Vodnizaag, Richard Wainscoataf, Robert Werykaf, Makoto Yoshikawaah a Lunar and Planetary Laboratory, University of Arizona, 1629 E University Blvd, Tucson, AZ 85721, USA b Planetary Defense Coordination Office, Planetary Science Division, NASA Headquarters, 300 E St SW, Washington, DC20546,USA c Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA d Magdalena Ridge Observatory, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA e Dept. -
THE PLANETARY REPORT DECEMBER SOLSTICE 2013 VOLUME 33, NUMBER 4 Planetary.Org
THE PLANETARY REPORT DECEMBER SOLSTICE 2013 VOLUME 33, NUMBER 4 planetary.org 10 YEARS ON MARS THE MAGIC BEHIND THE MARS EXPLORATION ROVERS CONTACT US The Planetary Society 85 South Grand Avenue Pasadena, CA 91105-1602 General Calls: 626-793-5100 E-mail: [email protected] Internet: planetary.org MURRAY RIDGE FOLD-OUT C THE YEAR IN PICTURES C A PLANETVAC MILESTONE CORRECTED FOLD FOR SPECIAL COVER CONTENTS DECEMBER SOLSTICE 2013 Murray Ridge Panorama 2 A special fold-out cover showcasing Mars’ Murray Ridge. COVER STORY 7 The Year in Pictures Emily Lakdawalla serves up some of 2013’s most significant. The Magic of MER 13 A.J.S. Rayl looks inside the MER missions’ success. Planetary Dirt Sampling Success 20 Bruce Betts reports on the Society-sponsored PlanetVac. ADVOCATING FOR SPACE 22 A Shift in the Wind Casey Dreier gives us an update. DEPARTMENTS 4 Your Place in Space Bill Nye looks back at a busy year. 6 Planetary Radio Online radio + exciting topics. 6 On Planetary.org A feast of space news coverage. 21 What’s Up? Mars, Jupiter, and Saturn. 23 MySky From Orange County, California. ON THE COVER: In this sunset view from sol 2847 (January 27, 2012), Opportunity gazed backward toward the distant peaks of Endeavour crater’s far rim. The setting Sun casts very long shadows from the low-standing ridge on which the rover stands. In fact, Opportunity’s own shadow is visible as a blurry speck atop the ridge’s shadow. To read more about how this image was processed, go to bit.ly/1i3qgl5. -
Newsletter 14-2 Published on Division for Planetary Sciences (
Newsletter 14-2 Published on Division for Planetary Sciences (https://dps.aas.org) Newsletter 14-2 Issue 14-2, January 22, 2014 +-----------------------------CONTENTS--------------------------------+ 1) NOTE FROM THE CHAIR 2) MESSAGE FROM THE FEDERAL RELATIONS SUBCOMMITTEE (FRS) CHAIR 3) REMINDER: CALL FOR DPS 2014 PRIZE NOMINATIONS 4) REMINDER : 2014 ONLINE MEMBERSHIP RENEWALS 5) CALL FOR MISSION CONCEPTS FOR THE LARGE-SIZE 'L2' MISSION OPPORTUNITY IN ESA'S SCIENCE PROGRAMME 6) DRAFT SOLICITATIONS OF SOME PSD R&A SOLICITATIONS FOR ROSES14 RELEASED TO PUBLIC 7) MARS CRITICAL DATA PRODUCTS PROGRAM (ROUND IX) 8) JOBS/POSITIONS OPPORTUNITIES 9) UPCOMING MEETINGS +---------------------------------------------------------------------+ 1---------1---------1---------1---------1---------1---------1---------1---------1 NOTE FROM THE CHAIR Washington DC may be currently covered in snow, but warm fuzzies abound here as a 2014 budget has passed into law (more details in the note below from the Federal Relations Subcommittee). Take a deep breath, and think about our DPS community’s successes. We’ve secured $1.3 Billion dollars to do planetary exploration. Our missions are healthy: Cassini, Curiosity, MESSENGER, JUNO, and more. ESA’s ROSETTA mission successfully reawakened from hibernation, ready to go comet hunting. Europa got a big boost with the news from the Hubble Space Telescope hinting at tidally-driven water geysers. What have you done to share this news with your family, your community, your representatives in Washington? Drop me a line; I’d like to share some of your stories. Regarding NASA’s R&A reorganization, please communicate your thoughts with the members of the Planetary Science Subcommittee (PSS), as well as the members of the various assessment groups (OPAG, SBAG, VEXAG, MEPAG, LEAG, etc). -
Degradation of Endeavour Crater, Mars
LPSC (2015) Abstract #2017 At CY, present relief along the exposed Wdowiak ridge (WR) is located EROSIONAL FORM OF RIM rim segment is ~10 m and consists of ENIGMATIC WDOWIAK RIDGE immediately west of 6-7 m of Shoemaker Formation over at least several meters of Matijevic Formation. Endeavour’s rim and oriented NE-SW (Figs. 1 and 7). The ridge is capped by Degradation of Endeavour Crater, Mars By contrast, relief along the MR segment is considerably higher and the Shoemaker more resistant dark rocks that are not breccia and are chemically and texturally distinct from the overlying Shoemaker Formation [20]. Origin of the ridge is 1 2 3 3 Formation/Matijevic Formation contact is not visible and up to ~150 m section of J. A. Grant , L. S. Crumpler , T. J. Parker , M. P. Golombek , Shoemaker Formation is preserved at MR. Offset between rim segments is possible uncertain, but possibilities include exhumation of a local pre-impact high or 1 4 S. A. Wilson and D. W. Mittlefehldt and could relate to faulting during late stage crater formation and fractures are ejecta megablock [20] or impact melt and would support estimates of significant observed at MR (Fig. 4). Such fractures may be similar to those around smaller erosion. 1Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC ([email protected]); terrestrial impacts [4]. 2New Mexico Museum of Natural History & Science, Albuquerque, NM 3Jet Propulsion Laboratory, Comparison to similar sized fresh, complex craters on Mars [5-8] suggests on Figure 7. False color mosaic of California Institute of Technology, Pasadena, CA 4NASA JSA, Houston, TX order of 300 m of ejecta was originally present at the rim of Endeavour crater. -
The Planetary Report, Page 10)
On the Cover: Volume XIX Not all ice is water. Not all water is on Earth. These are the first Table of Number 2 I. insights to come from studying th e various 'ices in our solar system. Comets, such as Hale-Bopp ~nset), are made primarily of Contents March/April1999 water ice, but frozen carbon dioxide often makes up a substantial part of a comet nu cleus . The Martian north polar cap (3~ back ground image, exaggerated vertically to show detail) is primarily frozen water, but the southern cap on Mars is mostly frozen carbon dioxide. The larg est of Jupiter's moo ns, Ganymede (full disk) , is Features bigger than the planet Mercury. Still, in composition, it is roughly half water ice, making it a truly giant snowball in space. 4 Grand Challenges for Space Exploration It's not often that a government official gets to layout a vision for the future that goes Hale-8opp image: Jerzy Giergielewicz Mars: MSSSlNASA beyond the next election cycle. But Wes Huntress, who recently stepped down as NASA's Ganymede: JPUNASA Associate Administrator for Space Science, did just that in a speech accepting the Carl Sagan Medal of the American Astronomical Society. Wes' text was far-ranging and detailed, and we had space in the printed magazine for only highlights of his talk. But the beauty of digital media is th at you can squeeze a lot of text into a little space. The full text is available Froln at the Planetary Society's World Wide Web site. S "Ices" Throughout the Solar Systenl: The A Tour of Condensable Species Editor Water is abundant throughout our solar system and probably in other solar systems as well. -
Download Space Rocks Powerpoint Script
Space Rocks Suggested Script PRESENTATION NOTES This presentation can take from 20 minutes up to 45 minutes, depending on how many Optional Presentation Activities are included. Recommended for 7th grade to adult. (Use more activities with younger audiences) 1. What our smallest neighbors may be lacking in size, they make up for in their dynamic nature. Shown here are all of the asteroids and comets imaged up-close as of June 2010. The picture below shows their names. See a larger version here: http://www.planetary.org/blog/article/00002585/ - 1 - 2. Today we'll be talking about asteroids. Most asteroids orbit the Sun in the Asteroid Belt, between the orbits of Mars and Jupiter. Images like these show the location of the Asteroid Belt but can be confusing because it appears that the Asteroid Belt is littered with asteroids. In fact, on this scale, all of the asteroids and even the planets would be too small to see. ---- Credit: Lunar and Planetary Institute 3. Let's start at the very beginning. 4.6 billion years ago the Solar Nebula swirled from its own gravity. As it collapsed, planets began to form around the new Sun. In the region between Marsʼs and Jupiter's orbits, Jupiterʼs gravity pulled on the small objects. Instead of pieces slowly coming together and sticking due to their gravity, wild collisions sent primitive asteroids flying out of their orbits or smashing each other to bits. No large planets ever formed in this region. Models indicate the Asteroid Belt may have originally contained as much mass as Earth, but spread out in many small “proto-planets.” The Solar System calmed down by 3.8 billion years ago, after what astronomers call the Late Heavy Bombardment phase.