Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 27, No. 01, pp. 153 - 171, January - March, 2010 A COMPARISON OF HYPERBOLIC SOLVERS II: AUSM-TYPE AND HYBRID LAX-WENDROFF- LAX-FRIEDRICHS METHODS FOR TWO-PHASE FLOWS R. M. L. Coelho1*, P. L. C. Lage2 and A. Silva Telles1 1Curso de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos (TPQB), Departamento de Engenharia Química, Escola de Química, Bloco E, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, CEP: 21949-900, Rio de Janeiro - RJ, Brazil. 2Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, CEP: 21945-970, Rio de Janeiro - RJ, Brazil. *Current address: Research and Development Center (PETROBRAS /CENPES/EB-E&P/EPEP), Phone: + (55) (21) 3865-7406, Fax: + (55) (21) 3865-6793, Cidade Universitária, Q.7, Ilha do Fundão, CEP: 21949-900, Rio de Janeiro - RJ, Brazil. E-mail:
[email protected] (Submitted: October 23, 2008 ; Revised: October 30, 2009 ; Accepted: January 4, 2010) Abstract - Riemann-solver based schemes are difficult and sometimes impossible to be applied for complex flows due to the required average state. Other methods that do not use Riemann-solvers are best suited for such cases. Among them, AUSM+, AUSMDV and the recently proposed Hybrid Lax-Friedrichs-Lax-Wendroff (HLFW) have been extended to two-phase flows. The eigenstructure of the two-fluid model is complex due to the phase interactions, leading to numerous numerical difficulties. One of them is the well-posedness of the equation system because it may lose hyperbolicity.