Méthode De Décomposition De Domaine Avec Adaptation De

Total Page:16

File Type:pdf, Size:1020Kb

Méthode De Décomposition De Domaine Avec Adaptation De UNIVERSIT E´ PARIS 13 No attribu´epar la biblioth`eque TH ESE` pour obtenir le grade de DOCTEUR DE L’UNIVERSIT E´ PARIS 13 Discipline: Math´ematiques Appliqu´ees Laboratoire d’accueil: ONERA - Le centre fran¸cais de recherche a´erospatiale Pr´esent´ee et soutenue publiquement le 19 d´ecembre 2014 par Oana Alexandra CIOBANU Titre M´ethode de d´ecomposition de domaine avec adaptation de maillage en espace-temps pour les ´equations d’Euler et de Navier–Stokes devant le jury compos´ede: Fran¸cois Dubois Rapporteur Laurence Halpern Directrice de th`ese Rapha`ele Herbin Rapporteure Xavier Juvigny Examinateur Olivier Lafitte Examinateur Juliette Ryan Encadrante UNIVERSITY PARIS 13 THESIS Presented for the degree of DOCTEUR DE L’UNIVERSIT E´ PARIS 13 In Applied Mathematics Hosting laboratory: ONERA - The French Aerospace Lab presented for public discussion on 19 decembre 2014 by Oana Alexandra CIOBANU Subject Adaptive Space-Time Domain Decomposition Methods for Euler and Navier–Stokes Equations Jury: Fran¸cois Dubois Reviewer Laurence Halpern Supervisor Rapha`ele Herbin Reviewer Xavier Juvigny Examiner Olivier Lafitte Examiner Juliette Ryan Supervisor newpage Remerciements Tout d’abord, je remercie grandement Juliette Ryan pour avoir accept´e d’ˆetre mon encad- rante de stage puis mon encadrante de th`ese. Pendant plus de trois ans, elle m’a fait d´ecouvrir mon m´etier de jeune chercheuse avec beaucoup de patience et de professionnalisme. Elle m’a soutenue, elle a ´et´ed’une disponibilit´eet d’une ´ecoute extraordinaires, tout en sachant ˆetre rigoureuse et exigeante avec moi comme avec elle-mˆeme. Humainement, j’ai beaucoup appr´eci´e la relation d’amiti´eque nous avons entretenue, le climat de confiance que nous avons maintenu et les discussions extra-math´ematiques que nous avons pu avoir et qui ont renforc´ele lien que nous avions. Je la remercie pour tout ¸ca, et je sais que j’en oublie. Je remercie sinc`erement Rapha`ele Herbin et Fran¸cois Dubois d’avoir accept´ela lourde tˆache d’ˆetre mes rapporteurs, et je les remercie pour l’attention qu’ils ont port´e`amon travail dans un d´elai plus que raisonnable. C’est un plaisir et un honneur pour moi d’avoir dans mon jury Olivier Lafitte. C’est grˆace `alui que je suis arriv´ee en MACS, et je suis tr`es fi`ere de le retrouver pour cette soutenance de th`ese, c’est une jolie mani`ere de boucler la boucle. Je remercie ´egalement mes coll`egues de l’Onera, pour les nombreuses discussions que nous avons eues au cours de ces trois ann´ees et pour les moments sympathiques que nous avons pass´es au laboratoire. En particulier je voudrais remercier Xavier Juvigny, tout d’abord parce qu’il a suivi de tr`es pr`es l’avanc´ee de mon travail, et surtout pour sa disponibilit´eet ses facult´es pour me d´epatouiller de tous mes probl`emes informatiques. J’ai eu ´enorm´ement de plaisir `ale cˆotoyer durant ces trois ann´ees, `a´echanger avec lui sur la th`ese, sur la vie, et sur plein de choses en g´en´eral. Sans lui, la th`ese n’aurait pas ´et´edrˆole du tout et je suis vraiment contente d’avoir fait sa connaissance et de m’ˆetre li´ed’amiti´eavec lui. Je vais `apr´esent remercier mes proches. Je remercie mes parents et mes fr`eres pour leur soutien et la confiance aveugle qu’ils ont eue envers ma r´eussite. Je remercie Mikael, Roxana, Raluca, Luciana, Diana et Alina pour leur soutien moral. Je remercie Roxana pour avoir relu une partie de ma th`ese et pour leurs corrections, Alina pour l’aide qu’elle m’a apport´ee pour pr´eparer le pot, et Mikael pour les deux. Je tiens `aexprimer ma profonde reconnaissance `aLaurence Halpern, qui m’a fait l’honneur d’ˆetre ma directrice de th`ese et pour toutes les discussions constructives et conseils autour mon travail. Ma th`ese ne se serait sans doute jamais achev´ee sans leur soutien et je les remercie pour tous les moments qu’on a pass´es ensemble. Contents Introduction iii 1 Numerical Methods for Euler and Navier–Stokes Equations 1 1.1 FluidDynamicsEquations.............................. 2 1.1.1 Compressible Navier–Stokes Equations . 4 1.1.2 EulerEquations ................................ 5 1.2 FiniteVolume(FV)Method............................. 5 1.2.1 Space discretisation . 7 1.2.2 Space-Time Boundary Conditions . 8 1.2.3 Development of the numerical Euler flux . 16 1.2.4 Development of the numerical viscous flux . 24 1.3 ExplicitandImplicitTimeSchemes . 25 1.3.1 First and Second order Explicit Methods . 26 1.3.2 Second order Implicit Backward Differentiation Methods . 28 2 Schwarz based Domain Decomposition Methods (DDMs) 39 2.1 Classical Schwarz domain decomposition methods . 41 2.1.1 Alternating Schwarz Algorithm . 42 2.1.2 Parallel Schwarz Algorithm . 43 2.2 Schwarz Waveform Relaxation (SWR) Method . 45 2.3 Adaptive Schwarz Waveform Relaxation (ASWR) Method . 47 2.4 SchwarzMethodsappliedtoimplicitsolvers . 50 2.5 Transmission conditions on artificial boundaries . 51 2.5.1 Dirichlet type boundary conditions . 54 2.5.2 Mixed Dirichlet/Robin boundary conditions . 55 2.5.3 Robin (Fourier) Boundary Condition . 58 2.6 Convergence and Stopping criteria . 61 3 CFD Code organisation and description 71 3.1 Code description and programming techniques . 73 3.2 Parallelisation techniques . 77 3.2.1 Parallel computing inside loops (OpenMP) . 78 3.2.2 Parallel computing via message passing (MPI) . 80 3.2.3 Graphic Processor Unit (GPU) . 81 3.3 Parallelism efficiency evaluation . 87 4 Numerical results and discussions 91 4.1 Comparisons of numerical convective fluxes schemes . 92 4.1.1 1Dshocktubeproblem ............................ 92 4.1.2 2D Forward Facing Step . 98 4.2 Applications of Domain Decomposition techniques . 105 i ii Contents 4.2.1 GPUversusCPU................................105 4.2.2 Exact solution for Euler equations: 2D isentropic vortex . 106 4.2.3 Sound generation in a 2D low-Reynolds mixing layer . 113 4.3 Vortex shedding from rectangles . 117 Conclusion and Perspectives 129 A Computation of diffusive Jacobians 133 B List of GPU libraries 141 C Example of CUDA programming. Minimum reduction 143 Nomenclature 149 Bibliography 151 Introduction This work focuses on the research field of laminar flow of an ideal gas around solid bodies, on the resolution of aerodynamic multi-scale problems that are costly and difficult to solve in their original form. In the aerodynamic field, scientists are facing many different problems, geometrical problems due to the complex design of civil aircraft, military aircraft, helicopters, space transport, missile systems, launchers, air intakes, nozzles, propulsive jets and other bodies in movement. Other problems are issued from the model used to describe the physical configu- ration. Most of the models are robust only for particular cases, coefficients are established on particular cases as well, for simplified models and small range data problems. Thus, phenomena too complex to be reliably predicted by theory and too dangerous or expensive to be reproduced in the laboratories must be simulated by computational scientists. A simulation with low range precisions can lead to false results, unrealistic behaviour and even damages if used in experi- mental work. At all levels, in order to better approach the geometry and to better validate a model, for physical viability precision, large data systems must be solved. Several techniques of parallel computing have been developed as they allow to solve large data systems of equa- tions. They essentially depend on the chosen domain decomposition method, but convergence problems may occur for large numbers of sub-domains. In what concerns the numerical point of view on solving the Navier–Stokes system of equa- tions, robust and fast methods are now available, which combine non-linear and linear solvers requiring less memory capacity. In the context of long term simulations, the class of global implicit approaches has proved its superiority as they are able to simulate a quasi-steady-state behaviour without being restricted to short time steps to ensure convergence. However, in in- dustrial applications explicit methods are preferred, as they are easy to compute and to adapt, but very expensive since they are restricted to a small time step. Between the range of existing algorithms the choice of an appropriate one is still uncertain. The performance of both, explicit and implicit methods can be improved when combined with a domain decomposition method. Domain decomposition methods split large problems into smaller sub-problems that can be solved in parallel. Space domain decomposition method is used to provide high-performing algorithms in many fields of numerical applications. Yet, the technology evolution towards multi-cores, multi-processors, GPU and multi-GPUs is not completely exploited. To achieve full performance on large clusters with up to 100 000 nodes (such as recently the IBM Sequoia, or GPUs) the time dimension has to be taken into account. An essential gain to be obtained from time-space domain decomposition is the ability to apply different time-space discretisations on sub-domains thus improving efficiency and convergence of implicit schemes. The idea of domain decomposition is quite old, it was proposed for the first time in 1869 by H.A. Schwarz [87] with the purpose of solving a linear problem (Laplace equation) over a geometry, which it was impossible to solve in its initial form. Schwarz splits the global problem into two overlapping problems and solves them alternately by exchanging interface conditions. He manages in this way to solve for the first time the Laplace equation for a complex geometry and gives the main goal to the domain decomposition method, the one of managing complicated geometries.
Recommended publications
  • A Truncation Error Analysis of Third-Order MUSCL Scheme for Nonlinear Conservation Laws
    A Truncation Error Analysis of Third-Order MUSCL Scheme for Nonlinear Conservation Laws Hiroaki Nishikawa∗ National Institute of Aerospace, Hampton, VA 23666, USA Abstract This paper is a rebuttal to the claim found in the literature that the MUSCL scheme cannot be third-order accurate for nonlinear conservation laws. We provide a rigorous proof for third-order accuracy of the MUSCL scheme based on a careful and detailed truncation error analysis. Throughout the analysis, the distinction between the cell average and the point value will be strictly made for the numerical solution as well as for the target operator. It is shown that the average of the solutions reconstructed at a face by Van Leer’s κ-scheme recovers a cubic solution exactly with κ = 1/3, the same is true for the average of the nonlinear fluxes evaluated by the reconstructed solutions, and a dissipation term is already sufficiently small with a third-order truncation error. Finally, noting that the target spatial operator is a cell-averaged flux derivative, we prove that the leading truncation error of the MUSCL finite-volume scheme is third-order with κ = 1/3. The importance of the diffusion scheme is also discussed: third-order accuracy will be lost when the third-order MUSLC scheme is used with a wrong fourth-order diffusion scheme for convection-diffusion problems. Third-order accuracy is verified by thorough numerical experiments for both steady and unsteady problems. This paper is intended to serve as a reference to clarify confusions about third-order accuracy of the MUSCL scheme, as a guide to correctly analyze and verify the MUSCL scheme for nonlinear equations, and eventually as the basis for clarifying third-order unstructured-grid schemes in a subsequent paper.
    [Show full text]
  • Phd Thesis, Universit´Elibre De Bruxelles, Chauss´Eede Waterloo, 72, 1640 Rhode- St-Gen`Ese,Belgium, 2004
    Universit´eLibre de Bruxelles von Karman Institute for Fluid Dynamics Aeronautics and Aerospace Department PhD. Thesis Algorithmic Developments for a Multiphysics Framework Thomas Wuilbaut Promoter: Prof. Herman Deconinck Contact information: Thomas Wuilbaut von Karman Institute for Fluid Dynamics 72 Chauss´eede Waterloo 1640 Rhode-St-Gen`ese BELGIUM email: [email protected] webpage: http://www.vki.ac.be/~wuilbaut To Olivia and her wonderful mother... Summary v Summary In this doctoral work, we adress various problems arising when dealing with multi-physical simulations using a segregated (non-monolithic) approach. We concentrate on a few specific problems and focus on the solution of aeroelastic flutter for linear elastic structures in compressible flows, conju- gate heat transfer for re-entry vehicles including thermo-chemical reactions and finally, industrial electro-chemical plating processes which often include stiff source terms. These problems are often solved using specifically devel- oped solvers, but these cannot easily be reused for different purposes. We have therefore considered the development of a flexible and reusable software platform for the simulation of multi-physics problems. We have based this development on the COOLFluiD framework developed at the von Karman Institute in collaboration with a group of partner institutions. For the solution of fluid flow problems involving compressible flows, we have used the Finite Volume method and we have focused on the applica- tion of the method to moving and deforming computational domains using the Arbitrary Lagrangian Eulerian formulation. Validation on a series of testcases (including turbulence) is shown. In parallel, novel time integration methods have been derived from two popular time discretization methods.
    [Show full text]
  • The QUICK Scheme Is a Third-Order Finite-Volume Scheme with Point
    The QUICK Scheme is a Third-Order Finite-Volume Scheme with Point-Valued Numerical Solutions Hiroaki Nishikawa∗ National Institute of Aerospace, Hampton, VA 23666, USA June 30, 2020 Abstract In this paper, we resolve the ever-present confusion over the QUICK scheme: it is a second-order scheme or a third-order scheme. The QUICK scheme, as proposed in the original reference [B. P. Leonard, Comput. Methods. Appl. Mech. Eng., 19, (1979), 59-98], is a third-order (not second-order) finite-volume scheme for the integral form of a general nonlinear conservation law with point-valued solutions stored at cell centers as numerical solutions. Third-order accuracy is proved by a careful and detailed truncation error analysis and demonstrated by a series of thorough numerical tests. The QUICK scheme requires a careful spatial discretization of a time derivative to preserve third-order accuracy for unsteady problems. Two techniques are discussed, including the QUICKEST scheme of Leonard. Discussions are given on how the QUICK scheme is mistakenly found to be second-order accurate. This paper is intended to serve as a reference to clarify any confusion about third-order accuracy of the QUICK scheme and also as the basis for clarifying economical high-order unstructured- grid schemes as we will discuss in a subsequent paper. 1 Introduction This paper is a sequel to the previous paper [1], where we discussed the third-order MUSCL scheme. The main motivation behind this work is to clarify some economical high-order unstructured-grid finite-volume schemes used in practical computational fluid dynamics solvers but largely confused in their mechanisms to achieve third- and possibly higher-order accuracy (e.g., third-order U-MUSCL with κ =1/2 [2], κ =1/3 [3, 4], κ = 0 [5, 6]).
    [Show full text]
  • Multigrid and Saddle-Point Preconditioners for Unfitted Finite
    Multigrid and saddle-point preconditioners for unfitted finite element modelling of inclusions Hardik Kothari∗and Rolf Krause† Institute of Computational Science, Universit`adella Svizzera italiana, Lugano, Switzerland February 17, 2021 Abstract In this work, we consider the modeling of inclusions in the material using an unfitted finite element method. In the unfitted methods, structured background meshes are used and only the underlying finite element space is modified to incorporate the discontinuities, such as inclusions. Hence, the unfitted methods provide a more flexible framework for modeling the materials with multiple inclusions. We employ the method of Lagrange multipliers for enforcing the interface conditions between the inclusions and matrix, this gives rise to the linear system of equations of saddle point type. We utilize the Uzawa method for solving the saddle point system and propose preconditioning strategies for primal and dual systems. For the dual systems, we review and compare the preconditioning strategies that are developed for FETI and SIMPLE methods. While for the primal system, we employ a tailored multigrid method specifically developed for the unfitted meshes. Lastly, the comparison between the proposed preconditioners is made through several numerical experiments. Keywords: Unfitted finite element method, multigrid method, saddle-point problem 1 Introduction In the modeling of many real-world engineering problems, we encounter material discontinuities, such as inclusions. The inclusions are found naturally in the materials, or can be artificially introduced to produce desired mechanical behavior. The finite element (FE) modeling of such inclusions requires to generate meshes that can resolve the interface between the matrix and inclusions, which can be a computationally cumbersome and expensive task.
    [Show full text]
  • Finite-Volume Simulations of Maxwell's Equations On
    Finite-Volume Simulations of Maxwell's Equations on Unstructured Grids Ian Jeffrey PhD Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Electrical and Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Copyright c 2011 by Ian Jeffrey Abstract Herein a fully parallel, upwind and flux-split Finite-Volume Time-Domain (FVTD) numerical engine for solving Maxwell's Equations on unstructured grids is developed. The required background theory for solving Maxwell's Equations using FVTD is given in sufficient detail, including a description of both the temporal and spatial approx- imations used. The details of the local-time stepping strategy of Fumeaux et al. is included. A global mesh-truncation scheme using field integration over a Huygens' surface is also presented. The capabilities of the FVTD algorithm are augmented with thin-wire and subcell circuit models that permit very flexible and accurate simulations of circuit-driven wire structures. Numerical and experimental validation shows that the proposed models have a wide-range of applications. Specifically, it appears that the thin-wire and subcell circuit models may be very well suited to the simulation of radio-frequency coils used in magnetic resonance imaging systems. A parallelization scheme for the volumetric field solver, combined with the local-time stepping, global mesh-truncation and subcell models is developed that theoretically provides both linear time- and memory scaling in a distributed parallel environment. Finally, the FVTD code is converted to the frequency domain and the possibility of using different flux-reconstruction schemes to improve the iterative convergence of the Finite-Volume Frequency-Domain algorithm is investigated.
    [Show full text]
  • A FETI-DP Method for the Parallel Iterative Solution of Indefinite And
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng (in press) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1282 A FETI-DP method for the parallel iterative solution of indefinite and complex-valued solid and shell vibration problems Charbel Farhat1,∗,†, Jing Li2 and Philip Avery1 1Department of Mechanical Engineering and Institute for Computational and Mathematical Engineering, Stanford University, Building 500, Stanford, CA 94305-3035, U.S.A. 2Department of Mathematical Sciences, Kent State University, Kent, OH 44242, U.S.A. SUMMARY The dual-primal finite element tearing and interconnecting (FETI-DP) domain decomposition method (DDM) is extended to address the iterative solution of a class of indefinite problems of the form K − 2M u = f, and a class of complex problems of the form K − 2M + iD u = f, where K, M, and D are three real symmetric matrices arising from the finite element discretization of solid and shell dynamic problems, i is the imaginary complex number, and is a real positive number. A key component of this extension is a new coarse problem based on the free-space solutions of Navier’s equations of motion. These solutions are waves, and therefore the resulting DDM is reminiscent of the FETI-H method. For this reason, it is named here the FETI-DPH method. For a practically large range, FETI-DPH is shown numerically to be scalable with respect to all of the problem size, substructure size, and number of substructures. The CPU performance of this iterative solver is illustrated on a 40-processor computing system with the parallel solution, for various ranges, of several large-scale, indefinite, or complex-valued systems of equations associated with shifted eigenvalue and forced frequency response structural dynamics problems.
    [Show full text]
  • An Extension of the FETI Domain Decomposition Method for Incompressible and Nearly Incompressible Problems Benoit Vereecke, Henri Bavestrello, David Dureisseix
    An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems Benoit Vereecke, Henri Bavestrello, David Dureisseix To cite this version: Benoit Vereecke, Henri Bavestrello, David Dureisseix. An extension of the FETI domain decomposi- tion method for incompressible and nearly incompressible problems. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2003, 192 (31-32), pp.3409-3429. 10.1016/S0045-7825(03)00313- X. hal-00141163 HAL Id: hal-00141163 https://hal.archives-ouvertes.fr/hal-00141163 Submitted on 12 Apr 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems B. Vereecke,∗ H. Bavestrello,† D. Dureisseix‡ Abstract Incompressible and nearly incompressible problems are treated herein with a mixed finite element formulation in order to avoid ill-conditioning that prevents accuracy in pressure estimation and lack of convergence for iterative solution algorithms. A multilevel dual domain decomposition method is then chosen as an iterative algorithm: the original FETI and FETI-DP methods are extended to deal with such problems, when the dis- cretization of the pressure field is discontinuous throughout the elements.
    [Show full text]
  • FETI-DP Domain Decomposition Method
    ECOLE´ POLYTECHNIQUE FED´ ERALE´ DE LAUSANNE Master Project FETI-DP Domain Decomposition Method Supervisors: Author: Davide Forti Christoph Jaggli¨ Dr. Simone Deparis Prof. Alfio Quarteroni A thesis submitted in fulfilment of the requirements for the degree of Master in Mathematical Engineering in the Chair of Modelling and Scientific Computing Mathematics Section June 2014 Declaration of Authorship I, Christoph Jaggli¨ , declare that this thesis titled, 'FETI-DP Domain Decomposition Method' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly at- tributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: ii ECOLE´ POLYTECHNIQUE FED´ ERALE´ DE LAUSANNE Abstract School of Basic Science Mathematics Section Master in Mathematical Engineering FETI-DP Domain Decomposition Method by Christoph Jaggli¨ FETI-DP is a dual iterative, nonoverlapping domain decomposition method. By a Schur complement procedure, the solution of a boundary value problem is reduced to solving a symmetric and positive definite dual problem in which the variables are directly related to the continuity of the solution across the interface between the subdomains.
    [Show full text]
  • Feti-Dp Method for Dg Discretization of Elliptic Problems with Discontinuous Coefficients
    FETI-DP METHOD FOR DG DISCRETIZATION OF ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS MAKSYMILIAN DRYJA∗ AND MARCUS SARKIS∗† Abstract. In this paper a discontinuous Galerkin (DG) discretization of an elliptic two- dimensional problem with discontinuous coefficients is considered. The problem is posed on a polyg- onal region Ω which is a union of disjoint polygonals Ωi of diameter O(Hi) and forms a geometrically conforming partition of Ω. The discontinuities of the coefficients are assumed to occur only across ∂Ωi. Inside of each substructure Ωi, a conforming finite element space on a quasiuniform triangula- tion with triangular elements and mesh size O(hi) is introduced. To handle the nonmatching meshes across ∂Ωi, a discontinuous Galerkin discretization is considered. For solving the resulting discrete problem, a FETI-DP method is designed and analyzed. It is established that the condition number 2 of the method is estimated by C(1 + maxi log Hi/hi) with a constant C independent of hi, Hi and the jumps of the coefficients. The method is well suited for parallel computations and it can be straightforwardly extended to three-dimensional problems. Key words. Interior penalty discretization, discontinuous Galerkin, elliptic problems with discontinuous coefficients. finite element method, FETI-DP algorithms, preconditioners AMS subject classifications. 65F10, 65N20, 65N30 1. Introduction. In this paper a discontinuous Galerkin (DG) approximation of an elliptic problem with discontinuous coefficients is considered. The problem is posed on a polygonal region Ω which is a union of disjoint polygonal subregions Ωi of diameter O(Hi) and forms a geometrically partition of Ω, i.e., for i 6= j, ∂Ωi ∩ ∂Ωj is empty or is a common corner or edge of ∂Ωi and ∂Ωj, where an edge means a curve of continuous intervals.
    [Show full text]
  • A Comparison of High-Resolution, Finite-Volume, Adaptive±Stencil
    Advances in Water Resources 24 (2001) 29±48 www.elsevier.com/locate/advwatres A comparison of high-resolution, ®nite-volume, adaptive±stencil schemes for simulating advective±dispersive transport Matthew W. Farthing, Cass T. Miller * Department of Environmental Sciences and Engineering, Center for the Advanced Study of the Environment, University of North Carolina, Chapel Hill, NC 27599-7400, USA Received 1 February 2000; received in revised form 8 May 2000; accepted 16 May 2000 Abstract We investigate a set of adaptive±stencil, ®nite-volume schemes used to capture sharp fronts and shocks in a wide range of ®elds. Our objective is to determine the most promising methods available from this set for solving sharp-front advective±dispersive transport problems. Schemes are evaluated for a range of initial conditions, and for Peclet and Courant numbers. Based upon results from this work, we identify the most promising schemes based on eciency and robustness. Ó 2000 Elsevier Science Ltd. All rights reserved. 1. Introduction ecient for solving relatively simple advective-domi- nated problems. These approaches, however, can pose The processes of solute and energy transport in nat- mass conservation problems, are not well suited for ural systems are most often described using an advec- problems with multiple sources and non-linear mass tive±dispersive equation (ADE) with additional terms transfer terms, and can be diusive and oscillatory for sources, reactions, and interphase exchange of mass [3,19,38,44]. or energy [34]. For many problems, especially those in- Over the last decade, simulators in the water re- volving multiple species, ADE solutions can be a sub- sources ®eld have employed so-called high-resolution stantial part of the computational eort involved for a methods more and more for discretizing the advective given ¯ow and transport simulator.
    [Show full text]
  • Software Concepts and Algorithms for an Efficient and Scalable Parallel Finite Element Method
    Fakultät Mathematik und Naturwissenschaften, Institut für Wissenschaftliches Rechnen SOFTWARE CONCEPTS AND ALGORITHMS FOR AN EFFICIENT AND SCALABLE PARALLEL FINITE ELEMENT METHOD Der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden zur Erlangung des akademischen Grades Dr. rer. nat. eingereichte Dissertation von Thomas Witkowski geboren am 24. Mai 1982 in Loslau/Polen. Die Dissertation wurde in der Zeit von 07/2007 bis 12/2012 am Institut für Wissenschaftliches Rechnen angefertigt. Tag der Einreichung: ... Tag der Verteidigung: ... Gutachter: Prof. Dr. rer. nat. habil. A. Voigt Technische Universität Dresden ... ... Contents 1 Introduction 5 1.1 Overview ..................................... 6 1.2 Technicalnotes .................................. 6 2 Adaptivemeshesforfiniteelementmethod 9 2.1 Data structures of adaptive meshes . 9 2.2 Error estimation and adaptive strategies . 10 2.3 Meshstructurecodes............................... 11 3 Scalable parallelization 15 3.1 Formaldefinitions ................................ 18 3.2 Distributedmeshes................................ 20 3.2.1 Mesh structure codes for parallel mesh adaptivity . 23 3.2.2 Mesh partitioning and mesh distribution . 25 3.2.3 Parallel DOF mapping . 26 3.2.4 Efficiency and parallel scaling . 29 3.2.5 Limitations of coarse element based partitioning . 32 3.3 Linearsolvermethods .............................. 33 3.4 FETI-DP ..................................... 35 3.4.1 Implementationissues . 39 3.4.2 Numerical results . 42 3.5 Extensions of the standard FETI-DP . 48 3.5.1 InexactFETI-DP............................. 48 3.5.2 MultilevelFETI-DP ........................... 50 3.6 ANavier-Stokessolver .............................. 57 3.6.1 Implementationissues . 59 3.6.2 Numerical results . 60 3.6.3 Diffuse domain approach . 61 3.7 Softwareconcepts................................. 62 4 Multi-mesh method for Lagrange finite elements 69 4.1 Virtualmeshassembling............................. 70 4.1.1 CouplingtermsinsystemsofPDEs .
    [Show full text]
  • New Roe Scheme for All Speed Flow
    Role of Momentum Interpolation Mechanism of the Roe Scheme in Shock Instability Xiao-dong Ren1,2 Chun-wei Gu1 Xue-song Li1,* 1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, PR China 2. Department of Mathematics, School of Science, Hong Kong University of Science and Technology, Hong Kong, China Abstract: The shock instability phenomenon is a famous problem for the shock-capturing scheme. By subdividing the numerical dissipation of the Roe scheme, the pressure-difference-driven modification for the cell face velocity is regarded as a version of the momentum interpolation method (MIM). The MIM is necessary for low Mach number flows to suppress the pressure checkerboard problem. Through the analysis and numerical tests, MIM has been discovered to have the most important function in shock instability. In fact, MIM should be completely removed for non-linear flows. However, unexpected MIM is activated on the cell face nearly parallel to the flow for high Mach number flows or low Mach number flows in shock. Therefore, the MIM should be kept for low Mach number flows and be completely removed for high Mach number flows and low Mach number flows in shock. For such conditions, two coefficients are designed on the basis of the local Mach number and a shock detector. The improved Roe scheme is then proposed. This scheme considers the requirement of MIM for incompressible and compressible flows and is validated for good performance of numerical tests. It is also proved that the acceptable result can be obtained with only Mach number coefficient for general practical computation.
    [Show full text]