A Dissertation Entitled Towards Improvement of Numerical

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Towards Improvement of Numerical A Dissertation entitled Towards Improvement of Numerical Accuracy for Unstructured Grid Flow Solver by Qiuying Zhao Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Mechanical Engineering _________________________________________ Dr. Chunhua Sheng, Committee Chair _________________________________________ Dr. Abdollah A. Afjeh, Committee Member _________________________________________ Dr. Glenn Lipscomb, Committee Member _________________________________________ Dr. Ray Hixon, Committee Member _________________________________________ Dr. Terry Ng, Committee Member _________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo December 2012 Copyright 2012, Qiuying Zhao This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Towards Improvement of Numerical Accuracy for Unstructured Grid Flow Solver by Qiuying Zhao Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Mechanical Engineering The University of Toledo December 2012 An effort to improve the numerical accuracy of a three dimensional unstructured grid finite volume scheme is pursued in the present work. Unstructured grid methods have been widely used in computational fluid dynamics for the convenience of modeling complex geometries in realistic applications. In the present work, improvements towards high order unstructured grid schemes are proposed using high order flux formula for spatial discretizations. The Riemann variables on the left and right sides of the interface are reconstructed using quadratic and quartic polynomials composed of both flow variables and their gradients. The high order flux is then calculated using the concept of MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) approach. In order to maintain the accuracy for the finite volume scheme, an innovative method based on Radial Basis Function interpolation is introduced as a substitution to Gaussian quadrature to achieve the higher order surface integration on mixed element unstructured grids. iii The proposed high order improvements for unstructured grid schemes have been tested for a wide range of flows from very low Mach number to supersonic speeds. The observed accuracy for the improved schemes is verified using a benchmark case about an inviscid vortex transporting in a free stream flow. In addition, the ability to capture the tip trailing vortex, which is a major challenge in computational fluid dynamics today, is extensively verified on two vortex dominated viscous flows, a fixed NACA0015 wing at a subsonic Mach number and a rotating NACA0012 hovering rotor at a transonic tip speed. The numerical validations are also performed on two realistic industrial applications including a marine propeller P5168 and a Bell Helicopter aircraft 427 main rotor. Computational results indicate that the methods proposed in the present work can significantly improve numerical accuracy in predicting the strong vortical flows in smooth regions, while maintaining the stability of the schemes in discontinuous regions such as shockwaves. iv To my parents Acknowledgements First, I sincerely thank my advisor, Dr. Chunhua Sheng, for his support and guidance involved in this thesis. His patient supervision, encouragement, and inspiration have helped me as a PhD student over the years at the University of Toledo. His challenging and rigorous research approach has impressed and trained me as a research assistant, as well as, shown me the importance and responsibility of being an engineer. I would like to express my appreciation to Dr. Abdollah A. Afjeh, Chair of Mechanical, Industrial, and Manufacturing Engineering, Dr. Glenn Lipscomb, Chair of Chemical and Environmental Engineering, Dr. Ray Hixon, and Dr. Terry Ng. for serving on my thesis committee. Their advice and suggestions are very valuable to my dissertation work. I thank Dr. Hixon’s systematic tutoring on the CFD course, from which the knowledge laid the foundation of my research work afterwards. I would like to especially thank Dr. Christian Allen from the Department of Aerospace Engineering, University of Bristol, UK, for his patient explanation of the Radial Basic Function method and longtime discussion on my research work. His practical suggestions have gone a long way in shaping my ideas and helped me conquer the difficulties of developing a robust and efficient CFD tool. I am very grateful to Dr. Li Wang from the Graduate School of Computational Engineering, the University of Tennessee at Chattanooga, for discussions about the higher order methods and suggestions on code verifications. vi I would like to thank my colleagues and friends, Kenneth Miller, Ahmed Magdy, and Jingyu Wang in Dr. Sheng’s CFD group, for the good atmosphere of research discussion and friendship. I express my gratitude to my great colleagues and friends from MIME, Adrian Sescu, Daniel Ingraham, Nima Mansouri, Chuanbo Yang, Steven Koester, Boya Zhang, Hao Jiang, Yue Hou, Ting Wen, Yaoying Wang, and Xiaotong Li for the friendships and memories we shared. I truly thank my friend Qi Zhao for her continuous friendship since high school. I would like to express my appreciation to Aaron Kirgesner for his valuable help in correcting this dissertation. Their encouragement and support cheered me up to face challenges from both daily life and research work. I am deeply indebted to my parents for their endless love, encouragement, and understanding throughout my life. Their selfless affection is my great source of power and gives me the confidence to face anything in my life fearlessly. I express my true love and gratitude and dedicate this dissertation to them. vii Table of Contents Abstract ............................................................................................................................. iii Acknowledgements ............................................................................................................ vi Table of Contents ............................................................................................................. viii List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xiii List of Abbreviations ....................................................................................................... xix List of Symbols ................................................................................................................ xxi 1 Introduction ...................................................................................................................... 1 1.1 Motivation ............................................................................................................ 1 1.2 Literature Review about Higher Order Schemes ................................................. 3 1.2.1 Finite Difference Schemes ............................................................................ 3 1.2.2 Compact Schemes ......................................................................................... 4 1.2.3 Spectral Difference Schemes ........................................................................ 5 1.2.4 Finite Volume Schemes ................................................................................ 5 1.2.5 Spectral Volume Schemes ............................................................................ 7 1.2.6 END and WEND Schemes ........................................................................... 7 1.2.7 Finite Element Schemes ................................................................................ 8 1.2.8 Discontinuous Galerkin Method ................................................................... 9 1.3 Current State of CFD .......................................................................................... 10 viii 1.4 Research Objectives and Scope .......................................................................... 10 1.5 Organization of Dissertation .............................................................................. 12 2 Computational Fluid Dynamics Overview .................................................................... 14 2.1 Historical Perspective of CFD............................................................................ 15 2.2 The Importance of CFD in Virtual Prototyping ................................................. 20 2.3 Procedures of Applying CFD ............................................................................. 22 3 Computational Methodology ......................................................................................... 24 3.1 The CFD Solver ................................................................................................. 24 3.2 Mathematical Formulation ................................................................................. 25 3.2.1 Governing Equations in an Absolute Frame ............................................... 25 3.2.2 Governing Equations in an Rotating Relative Frame ................................. 28 3.2.3 Non-Dimensionalization of Governing Equations ...................................... 29 3.2.4 Preconditioned Governing Equations ........................................................
Recommended publications
  • Conservative High Order Semi-Lagrangian Finite Difference WENO Methods for Advection in Incompressible Flow Jing-Mei Qiu1 and Ch
    Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow Jing-Mei Qiu1 and Chi-Wang Shu 2 Abstract In this paper, we propose a semi-Lagrangian finite difference formulation for approximat- ing conservative form of advection equations with general variable coefficients. Compared with the traditional semi-Lagrangian finite difference schemes [4, 21], which approximate the advective form of the equation via direct characteristics tracing, the scheme proposed in this paper approximates the conservative form of the equation. This essential difference makes the proposed scheme naturally conservative for equations with general variable coef- ficients. The proposed conservative semi-Lagrangian finite difference framework is coupled with high order essentially non-oscillatory (ENO) or weighted ENO (WENO) reconstructions to achieve high order accuracy in smooth parts of the solution and to capture sharp inter- faces without introducing spurious oscillations. The scheme is extended to high dimensional problems by Strang splitting. The performance of the proposed schemes is demonstrated by linear advection, rigid body rotation and swirling deformation. As the information is propa- gating along characteristics, the proposed scheme does not have CFL time step restriction of the Eulerian method, allowing for a more efficient numerical realization for many application problems. Keywords: advection in incompressible flow; conservative scheme; semi-Lagrangian meth- ods; WENO reconstruction. 1Department of Mathematical and Computer Science, Colorado School of Mines, Golden, 80401. E-mail: [email protected]. Research supported by NSF grant number 0914852 and Air Force Office of Scientific Research grant number FA9550-09-1-0344. 2Division of Applied Mathematics, Brown University, Providence, 02912.
    [Show full text]
  • A Truncation Error Analysis of Third-Order MUSCL Scheme for Nonlinear Conservation Laws
    A Truncation Error Analysis of Third-Order MUSCL Scheme for Nonlinear Conservation Laws Hiroaki Nishikawa∗ National Institute of Aerospace, Hampton, VA 23666, USA Abstract This paper is a rebuttal to the claim found in the literature that the MUSCL scheme cannot be third-order accurate for nonlinear conservation laws. We provide a rigorous proof for third-order accuracy of the MUSCL scheme based on a careful and detailed truncation error analysis. Throughout the analysis, the distinction between the cell average and the point value will be strictly made for the numerical solution as well as for the target operator. It is shown that the average of the solutions reconstructed at a face by Van Leer’s κ-scheme recovers a cubic solution exactly with κ = 1/3, the same is true for the average of the nonlinear fluxes evaluated by the reconstructed solutions, and a dissipation term is already sufficiently small with a third-order truncation error. Finally, noting that the target spatial operator is a cell-averaged flux derivative, we prove that the leading truncation error of the MUSCL finite-volume scheme is third-order with κ = 1/3. The importance of the diffusion scheme is also discussed: third-order accuracy will be lost when the third-order MUSLC scheme is used with a wrong fourth-order diffusion scheme for convection-diffusion problems. Third-order accuracy is verified by thorough numerical experiments for both steady and unsteady problems. This paper is intended to serve as a reference to clarify confusions about third-order accuracy of the MUSCL scheme, as a guide to correctly analyze and verify the MUSCL scheme for nonlinear equations, and eventually as the basis for clarifying third-order unstructured-grid schemes in a subsequent paper.
    [Show full text]
  • The QUICK Scheme Is a Third-Order Finite-Volume Scheme with Point
    The QUICK Scheme is a Third-Order Finite-Volume Scheme with Point-Valued Numerical Solutions Hiroaki Nishikawa∗ National Institute of Aerospace, Hampton, VA 23666, USA June 30, 2020 Abstract In this paper, we resolve the ever-present confusion over the QUICK scheme: it is a second-order scheme or a third-order scheme. The QUICK scheme, as proposed in the original reference [B. P. Leonard, Comput. Methods. Appl. Mech. Eng., 19, (1979), 59-98], is a third-order (not second-order) finite-volume scheme for the integral form of a general nonlinear conservation law with point-valued solutions stored at cell centers as numerical solutions. Third-order accuracy is proved by a careful and detailed truncation error analysis and demonstrated by a series of thorough numerical tests. The QUICK scheme requires a careful spatial discretization of a time derivative to preserve third-order accuracy for unsteady problems. Two techniques are discussed, including the QUICKEST scheme of Leonard. Discussions are given on how the QUICK scheme is mistakenly found to be second-order accurate. This paper is intended to serve as a reference to clarify any confusion about third-order accuracy of the QUICK scheme and also as the basis for clarifying economical high-order unstructured- grid schemes as we will discuss in a subsequent paper. 1 Introduction This paper is a sequel to the previous paper [1], where we discussed the third-order MUSCL scheme. The main motivation behind this work is to clarify some economical high-order unstructured-grid finite-volume schemes used in practical computational fluid dynamics solvers but largely confused in their mechanisms to achieve third- and possibly higher-order accuracy (e.g., third-order U-MUSCL with κ =1/2 [2], κ =1/3 [3, 4], κ = 0 [5, 6]).
    [Show full text]
  • PROGRAM and ABSTRACTS
    LASERENANUM E´ R I C A II Octavo Encuentro de Analisis´ Numerico´ de Ecuaciones Diferenciales Parciales Departamento de Matem´aticas,Universidad de La Serena La Serena, Chile, Enero 14 - 16, 2015 PROGRAM and ABSTRACTS Contents 1 Introduction 2 2 Wednesday, January 14 3 3 Thursday, January 15 4 4 Friday, January 16 5 5 Abstracts 6 1 1 Introduction The Octavo Encuentro de An´alisisNum´ericode Ecuaciones Diferenciales Parciales has been organized in sequential talks of 45 and 30 minutes length (40 and 25 minutes of presentation, respectively, and 5 minutes for questions and comments). All the talks will be given at Salon´ Multiuso, CETECFI (3th floor), Facultad de Ingenier´ıa, Universi- dad de la Serena. In the following pages we describe the corresponding program. In case of a multi-authored contribution, the speaker is underlined. The organizers acknowledge financial support by: • CONICYT-Chile through Project Anillo ACT 1118 ANANUM, • Departamento de Matem´aticas, Universidad de La Serena, • Centro de Modelamiento Matem´atico(CMM), Universidad de Chile, and • Centro de Investigaci´onen Ingenier´ıaMatem´atica(CI2MA), Universidad de Concepci´on. In addition, we express our recognition and gratitude to all speakers for making La Serena Num´ericaII possible. Organizing Committee Raimund B¨urger Gabriel N. Gatica Ricardo Oyarz´ua H´ectorTorres La Serena, January 2015 2 2 Wednesday, January 14 8.30-9.15 REGISTRATION 9.15-9.30 WELCOME SPEECH [Chairman: N. HEUER] 9.30-10.15 Alexandre Ern, Martin Vohral´ık: Polynomial-degree-robust a posteri- ori estimates in a unified setting. 10.15-10.45 Dante Kalise: High-order semi-Lagrangian schemes for static Hamilton- Jacobi-Bellman equations.
    [Show full text]
  • Finite-Volume Simulations of Maxwell's Equations On
    Finite-Volume Simulations of Maxwell's Equations on Unstructured Grids Ian Jeffrey PhD Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Electrical and Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Copyright c 2011 by Ian Jeffrey Abstract Herein a fully parallel, upwind and flux-split Finite-Volume Time-Domain (FVTD) numerical engine for solving Maxwell's Equations on unstructured grids is developed. The required background theory for solving Maxwell's Equations using FVTD is given in sufficient detail, including a description of both the temporal and spatial approx- imations used. The details of the local-time stepping strategy of Fumeaux et al. is included. A global mesh-truncation scheme using field integration over a Huygens' surface is also presented. The capabilities of the FVTD algorithm are augmented with thin-wire and subcell circuit models that permit very flexible and accurate simulations of circuit-driven wire structures. Numerical and experimental validation shows that the proposed models have a wide-range of applications. Specifically, it appears that the thin-wire and subcell circuit models may be very well suited to the simulation of radio-frequency coils used in magnetic resonance imaging systems. A parallelization scheme for the volumetric field solver, combined with the local-time stepping, global mesh-truncation and subcell models is developed that theoretically provides both linear time- and memory scaling in a distributed parallel environment. Finally, the FVTD code is converted to the frequency domain and the possibility of using different flux-reconstruction schemes to improve the iterative convergence of the Finite-Volume Frequency-Domain algorithm is investigated.
    [Show full text]
  • Méthode De Décomposition De Domaine Avec Adaptation De
    UNIVERSIT E´ PARIS 13 No attribu´epar la biblioth`eque TH ESE` pour obtenir le grade de DOCTEUR DE L’UNIVERSIT E´ PARIS 13 Discipline: Math´ematiques Appliqu´ees Laboratoire d’accueil: ONERA - Le centre fran¸cais de recherche a´erospatiale Pr´esent´ee et soutenue publiquement le 19 d´ecembre 2014 par Oana Alexandra CIOBANU Titre M´ethode de d´ecomposition de domaine avec adaptation de maillage en espace-temps pour les ´equations d’Euler et de Navier–Stokes devant le jury compos´ede: Fran¸cois Dubois Rapporteur Laurence Halpern Directrice de th`ese Rapha`ele Herbin Rapporteure Xavier Juvigny Examinateur Olivier Lafitte Examinateur Juliette Ryan Encadrante UNIVERSITY PARIS 13 THESIS Presented for the degree of DOCTEUR DE L’UNIVERSIT E´ PARIS 13 In Applied Mathematics Hosting laboratory: ONERA - The French Aerospace Lab presented for public discussion on 19 decembre 2014 by Oana Alexandra CIOBANU Subject Adaptive Space-Time Domain Decomposition Methods for Euler and Navier–Stokes Equations Jury: Fran¸cois Dubois Reviewer Laurence Halpern Supervisor Rapha`ele Herbin Reviewer Xavier Juvigny Examiner Olivier Lafitte Examiner Juliette Ryan Supervisor newpage Remerciements Tout d’abord, je remercie grandement Juliette Ryan pour avoir accept´e d’ˆetre mon encad- rante de stage puis mon encadrante de th`ese. Pendant plus de trois ans, elle m’a fait d´ecouvrir mon m´etier de jeune chercheuse avec beaucoup de patience et de professionnalisme. Elle m’a soutenue, elle a ´et´ed’une disponibilit´eet d’une ´ecoute extraordinaires, tout en sachant ˆetre rigoureuse et exigeante avec moi comme avec elle-mˆeme. Humainement, j’ai beaucoup appr´eci´e la relation d’amiti´eque nous avons entretenue, le climat de confiance que nous avons maintenu et les discussions extra-math´ematiques que nous avons pu avoir et qui ont renforc´ele lien que nous avions.
    [Show full text]
  • AN13 and CT13 Abstracts
    AN13 and CT13 Abstracts Abstracts are printed as submitted by the authors. Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215-386-7999 Conference E-mail: [email protected] Conference web: www.siam.org/meetings/ Membership and Customer Service: 800-447-7426 (US & Canada) or +1-215-382-9800 (worldwide) 2 2013 SIAM Annual Meeting • SIAM Conference on Control & Its Applications Table of Contents Annual Meeting (AN13) Abstracts ...............................................3 Control & Its Applications (CT13) .............................................127 SIAM Presents Since 2008, SIAM has recorded many Invited Lectures, Prize Lectures, and selected Minisymposia from various conferences. These are available by visiting SIAM Presents (http://www.siam.org/meetings/presents.php). 2013 SIAM Annual Meeting • SIAM Conference on Control & Its Applications 3 AN13 Abstracts 4 AN13 Abstracts IC1 system including cars, buses, pedestrians, ants and molecu- Social Networks as Information Filters lar motors, which are considered as ”self-driven particles”. We recently call this interdisciplinary research on jamming Social networks, especially online social networks, are of self-driven particles as ”jamology”. This is based on driven by information sharing. But just how much informa- mathematical physics, and and includes engineering appli- tion sharing is influenced by social networks? A large-scale cations as well. In the talk, starting from the backgroud experiment measured the effect of the social network on the of this research, simple mathematical models, such as the quantity and diversity of information being shared within asymmetric simple exclusion process and the Burgers equa- Facebook. While strong ties were found to be individu- tion, are introduced as basis of all kinds of traffic flow.
    [Show full text]
  • AN17-CT17-GD17 Abstracts
    AN17-CT17-GD17 Abstracts Abstracts are printed as submitted by the authors. SIAM 2017 Events Mobile App Scan the QR code with any QR reader and download the TripBuilder EventMobile™ app to your iPhone, iPad, iTouch or Android mobile device. You can also visit www.tripbuildermedia.com/apps/siamevents Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215-386-7999 Conference E-mail: [email protected] Conference Web: www.siam.org/meetings/ Membership and Customer Service: (800) 447-7426 (USA & Canada) or +1-215-382-9800 (worldwide) www.siam.org/meetings/ 2 2017 SIAM Annual Meeting Table of Contents AN17 Annual Meeting Abstracts ................................................3 CT17 Abstracts .........................................................................130 GD17 Abstracts .........................................................................183 SIAM Presents Since 2008, SIAM has recorded many Invited Lectures, Prize Lectures, and selected Minisymposia from various conferences. These are available by visiting SIAM Presents (http://www.siam.org/meetings/presents.php). 2017 SIAM Annual Meeting AN17 Abstracts 4 AN17 Abstracts IP1 for mapping services this is obtained from mobile phones, Genetic Consequences of Range Expansion Under while for ambulance fleets it is obtained from automatic ve- Climate Change hicle location devices. We demonstrate greatly improved accuracy relative to a system used in Bing Maps, and show Range expansion is a crucial population response to cli- the impact of our methods for improving ambulance fleet mate change. Genetic consequences are coupled to ecolog- management decisions. ical dynamics that, in turn, are driven by shifting climate conditions. We model a population with a reactiondiffu- Dawn Woodard sion system, coupled to a heterogeneous environment that Uber, USA shifts with time due to climate change.
    [Show full text]
  • A Comparison of High-Resolution, Finite-Volume, Adaptive±Stencil
    Advances in Water Resources 24 (2001) 29±48 www.elsevier.com/locate/advwatres A comparison of high-resolution, ®nite-volume, adaptive±stencil schemes for simulating advective±dispersive transport Matthew W. Farthing, Cass T. Miller * Department of Environmental Sciences and Engineering, Center for the Advanced Study of the Environment, University of North Carolina, Chapel Hill, NC 27599-7400, USA Received 1 February 2000; received in revised form 8 May 2000; accepted 16 May 2000 Abstract We investigate a set of adaptive±stencil, ®nite-volume schemes used to capture sharp fronts and shocks in a wide range of ®elds. Our objective is to determine the most promising methods available from this set for solving sharp-front advective±dispersive transport problems. Schemes are evaluated for a range of initial conditions, and for Peclet and Courant numbers. Based upon results from this work, we identify the most promising schemes based on eciency and robustness. Ó 2000 Elsevier Science Ltd. All rights reserved. 1. Introduction ecient for solving relatively simple advective-domi- nated problems. These approaches, however, can pose The processes of solute and energy transport in nat- mass conservation problems, are not well suited for ural systems are most often described using an advec- problems with multiple sources and non-linear mass tive±dispersive equation (ADE) with additional terms transfer terms, and can be diusive and oscillatory for sources, reactions, and interphase exchange of mass [3,19,38,44]. or energy [34]. For many problems, especially those in- Over the last decade, simulators in the water re- volving multiple species, ADE solutions can be a sub- sources ®eld have employed so-called high-resolution stantial part of the computational eort involved for a methods more and more for discretizing the advective given ¯ow and transport simulator.
    [Show full text]
  • 4 AN10 Abstracts
    4 AN10 Abstracts IC1 IC4 On Dispersive Equations and Their Importance in Kinematics and Numerical Algebraic Geometry Mathematics Kinematics underlies applications ranging from the design Dispersive equations, like the Schr¨odinger equation for ex- and control of mechanical devices, especially robots, to the ample, have been used to model several wave phenom- biomechanical modelling of human motion. The major- ena with the distinct property that if no boundary con- ity of kinematic problems can be formulated as systems ditions are imposed then in time the wave spreads out of polynomial equations to be solved and so fall within spatially. In the last fifteen years this field has seen an the domain of algebraic geometry. While symbolic meth- incredible amount of new and sophisticated results proved ods from computer algebra have a role to play, numerical with the aid of mathematics coming from different fields: methods such as polynomial continuation that make strong Fourier analysis, differential and symplectic geometry, an- use of algebraic-geometric properties offer advantages in alytic number theory, and now also probability and a bit of efficiency and parallelizability. Although these methods, dynamical systems. In this talk it is my intention to present collectively called Numerical Algebraic Geometry, are ap- few simple, but still representative examples in which one plicable wherever polynomials arise, e.g., chemistry, biol- can see how these different kinds of mathematics are used ogy, statistics, and economics, this talk will concentrate on in this context. applications in mechanical engineering. A brief review of the main algorithms of the field will indicate their broad Gigliola Staffilani applicability.
    [Show full text]
  • High Order ADER Schemes and GLM Curl Cleaning for a First Order Hyperbolic Formulation of Compressible Flow with Surface Tension
    High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension Simone Chiocchetti∗a, Ilya Peshkova, Sergey Gavrilyukb, Michael Dumbsera aLaboratory of Applied Mathematics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy bIUSTI UMR 7343-CNRS, D´epartement de M´ecanique, Aix-Marseille Universit´e,5 rue Enrico Fermi, 13453 Marseille, France Abstract In this work, we introduce two novel reformulations of the weakly hyperbolic model for two-phase flow with surface tension, recently forwarded by Schmidmayer et al. In the model, the tracking of phase boundaries is achieved by using a vector interface field, rather than a scalar tracer, so that the surface-force stress tensor can be expressed directly as an algebraic function of the state variables, without requiring the computation of gradients of the scalar tracer. An interesting and important feature of the model is that this interface field obeys a curl involution constraint, that is, the vector field is required to be curl-free at all times. The proposed modifications are intended to restore the strong hyperbolicity of the model, and are closely related to divergence-preserving numerical approaches developed in the field of numerical magnetohydrody- namics (MHD). The first strategy is based on the theory of Symmetric Hyperbolic and Thermodynamically Compatible (SHTC) systems forwarded by Godunov in the 60s and 70s and yields a modified system of governing equations which includes some symmetrisation terms, in analogy to the approach adopted later by Powell et al in the 90s for the ideal MHD equations.
    [Show full text]
  • Final Program
    Final Program The SIAM Conference on the Life Sciences is sponsored by the SIAM Activity Group on Life Sciences (SIAG/LS) The SIAM Activity Group on the Life Sciences was established to foster the application of mathematics to the life sciences and research in mathematics that leads to new methods and techniques useful in the life sciences. The life sciences have become quantitative as new technologies facilitate collection and analysis of vast amounts of data ranging from complete genomic sequences of organisms to satellite imagery of forest landscapes on continental scales. Computers enable the study of complex models of biological processes. The activity group brings together researchers who seek to develop and apply mathematical and computational methods in all areas of the life sciences. It provides a forum that cuts across disciplines to catalyze mathematical research relevant to the life sciences and rapid diffusion of advances in mathematical and computational methods. AN16/LS16 Mobile App Scan the QR code with any QR reader and download the TripBulder EventMobileTM app to your iPhone, iPad, iTouch, or Android devices. You can also visit www.tripbuildermedia.com/apps/siam2016events Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215- 386-7999 Conference E-mail: [email protected] Conference Web: www.siam.org/meetings/ Membership and Customer Service: (800) 447-7426 (US & Canada) or +1-215-382-9800 (worldwide) www.siam.org/meetings 2 2016 SIAM Annual Meeting General Information Table of Contents C. David Levermore SIAM Registration Desk University of Maryland, College Park, USA General Information ...............................2 The SIAM registration desk is located on Rachel Levy Exhibitor and Sponsor Information .6 the Concourse Level of the Westin Boston Harvey Mudd College, USA Waterfront.
    [Show full text]