Anthropomorphic Phantom Developments for the Characterization and Evaluations of Mri Rf Coils
Total Page:16
File Type:pdf, Size:1020Kb
ANTHROPOMORPHIC PHANTOM DEVELOPMENTS FOR THE CHARACTERIZATION AND EVALUATIONS OF MRI RF COILS by Sossena Cherise Wood Bachelor of Science in Electrical Engineering, University of Pittsburgh, 2011 Submitted to the Graduate Faculty of Swanson School of Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2018 UNIVERSITY OF PITTSBURGH SWANSON SCHOOL OF ENGINEERING This dissertation was presented by Sossena Wood It was defended on November 6, 2018 and approved by George D. Stetten, M.D., Ph.D., Professor, Department of Bioengineering Howard Aizenstein, M.D., Ph.D., Professor of Psychiatry and Associate Professor, Department of Bioengineering, and Clinical and Translational Science John Brigham, Ph.D., Associate Professor, Department of Civil Engineering and Bioengineering Dissertation Director: Tamer S. Ibrahim, Ph.D., Associate Professor, Departments of Bioengineering, Psychiatry and Radiology ii ANTHROPOMORPHIC PHANTOM DEVELOPMENTS FOR THE CHARACTERIZATION AND EVALUATIONS OF MRI RF COILS Sossena Wood, Ph.D. University of Pittsburgh, 2018 Over the past few decades, Magnetic Resonance Imaging (MRI/MR) has proven to be one of the most resourceful diagnostic tools to non-invasively exam various parts of the human body. As MRI technology improved, research scanners were developed at greater field strengths to offer greater resolution and improved tissue contrast in comparison to clinical MR machines. In late 2017, the FDA approved the first clinical 7 Tesla (T) MR scanner, Siemens MAGNETOM Terra. The FDA’s approval met the scientific demand for 7T MR imaging and ultra-high field (UHF) (≥ 7 Tesla) imaging’s growing capability to detect human disease and tissue damage within the human body. While these machines offer promise, there are several issues experienced at higher field strengths that hinder its clinical feasibility. UHF MRI is presented with challenges such as + 1) magnetic field (B1 ) homogeneity, 2) increased global/local specific absorption rate (SAR) in biological tissue, and (3) addressing concerns regarding the unclear RF safety assurance due to temperature rise at UHF. iii To address these challenges, the work of this dissertation develops tools to characterize RF coil designs for RF engineers. These tools are realized through hardware and other software methodologies for the evaluation of RF coil designs. The results and the broad conclusion will support our long-term goal of achieving homogeneity and minimized RF power absorption at 7T in-vivo and further the UHF MRI community’s understanding of 7T imaging. Thus, progress in this proposed work strengthens 7T’s potential clinical feasibility and its ability to detect human disease and premature symptoms of brain damage. iv TABLE OF CONTENTS PREFACE …………………………………………………………………………..……. XXVII DEDICATION …………………………………………………………………………...... XXIX 1.0 INTRODUCTION ................................................................................................................ 1 1.1 MOTIVATION ......................................................................................................... 3 1.1.1 Challenges of UHF MRI Systems: Basic Phantoms ...................................... 4 1.1.2 Challenges of UHF MRI Systems: RF Inhomogeneity and Elevated Specific Absorption Rate and Local Temperature Rise ............................................. 5 1.2 SPECIFIC AIMS OF THIS DISSERTATION ...................................................... 6 1.3 OUTLINE OF THIS DISSERTATION ................................................................. 9 2.0 BACKGROUND ................................................................................................................. 17 2.1 ELECTROMAGNETIC WAVES ........................................................................ 18 2.2 MAGNETIC RESONANCE IMAGING .............................................................. 20 2.2.1 Macroscopic Magnetization and Atomic Model.......................................... 20 2.2.2 Static Field (B0) ............................................................................................... 23 2.2.3 Radiofrequency Field (B1) ............................................................................. 24 2.2.4 Free Inductance Decay (FID) ........................................................................ 24 2.2.5 RF Pulse Design and Sequences .................................................................... 25 2.2.5.1 Types of Contrast Mechanisms in MR Imaging Protocols ............. 25 2.2.6 B1 Mapping ..................................................................................................... 26 2.2.6.1 Saturated Turbo Flash (SatTFL)....................................................... 26 v 2.2.7 Thermal Heating in MRI ............................................................................... 27 2.3 MRI SYSTEM AND MR INSTRUMENTATION .............................................. 28 2.3.1 MR scanner ..................................................................................................... 29 2.3.2 Gradient Coils ................................................................................................ 30 2.3.3 Computer System and Console ..................................................................... 30 2.3.4 Radiofrequency Coils ..................................................................................... 30 2.3.4.1 History of UHF RF Coils .................................................................... 32 2.4 RADIOFREQUENCY SAFETY ........................................................................... 33 2.5 MODELING ELECTROMAGNETIC FIELDS ................................................. 36 2.5.1 Designing and Evaluating RF Coils .............................................................. 36 2.6 FINITE-DIFFERENCE TIME-DOMAIN ........................................................... 37 2.6.1 Background ..................................................................................................... 37 2.6.2 Motivation for Choosing Finite-Difference Time-Domain ......................... 37 2.6.3 Formulation of Finite-Difference Time-Domain with Maxwell’s Equations ......................................................................................................................... 38 2.6.3.1 Boundary Conditions .......................................................................... 44 2.6.3.2 Stability Criterion ............................................................................... 44 2.6.4 Formulation of Finite-Difference Time-Domain with Penne’s Equations 44 2.6.4.1 Boundary Conditions .......................................................................... 46 2.6.4.2 Stability Criterion ............................................................................... 47 2.7 ANATOMICALLY DETAILED HEAD MODELS/ PHANTOMS .................. 47 2.8 NONLINEAR ALGORITHMS FOR RF SHIMMING ...................................... 49 3.0 DEVELOP AN ANTHROPOMORPHIC HETEROGENEOUS HEAD PHANTOM THAT IS EVALUATED AND CHARACTERIZED THROUGH EXPERIMENTAL MRI STUDIES AT 7T ........................................................................................................ 51 3.1 INTRODUCTION .................................................................................................. 51 vi 3.1.1 MRI Phantoms ............................................................................................... 52 3.1.2 Prior Work in Developing Electromagnetically-Equivalent Head-Phantoms ......................................................................................................................... 52 3.1.3 3D Printing a Tool for Physical Phantom Construction............................. 54 3.2 MATERIALS AND METHODS ........................................................................... 55 3.2.1 Images Acquired ............................................................................................ 57 3.2.2 Phantom Segmentation, Design and Fabrication ........................................ 58 3.2.3 Physical Assembly .......................................................................................... 62 3.2.4 Preparation of the Phantom Tissue and Phantom Filling .......................... 63 3.2.5 Network Analyzer Measurements ................................................................ 67 3.2.6 7T MRI Experiments ..................................................................................... 70 3.3 RESULTS AND DISCUSSION ............................................................................. 71 3.3.1 Results ............................................................................................................. 71 3.3.1.1 Fabrication of Head Phantom ............................................................ 71 3.3.1.2 S-Matrix Simulation and Experimental Measurements of the Phantoms to the In-Vivo Volunteer ................................................... 72 3.3.1.3 Verification of Congruent Slices to the In-Vivo Volunteer ............. 72 3.3.1.4 Experimental Study of the Various Phantoms to the In-Vivo Volunteer .............................................................................................. 73 3.3.1.5 Magnetic field distributions and EPI testing of the various phantoms and the in-vivo volunteer. ................................................................... 74 3.3.2 Discussion .......................................................................................................