Deposits and Basalts from Ori Massif, Shatsky Rise Oceanic Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Deposits and Basalts from Ori Massif, Shatsky Rise Oceanic Plateau VOLCANOLOGY AND GEOCHEMISTRY OF THE CRETACEOUS VOLCANICLASTIC DEPOSITS AND BASALTS FROM ORI MASSIF, SHATSKY RISE OCEANIC PLATEAU Irina Romanova BSc (2007), MSc (2009) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Earth, Environmental and Biological Sciences Science and Engineering Faculty Queensland University of Technology 2017 Keywords Shatsky Rise IODP Expedition 324 Large Igneous Province Oceanic plateau Cretaceous magmatism Basalt Volcaniclastic deposits Phreatomagmatic volcanism Surtseyan-style shallow-marine volcanism Paleoelevation Nd-Hf isotope geochemistry Magmatic sources Seawater alteration Magnesium Element mobility Mantle plume and spreading ridge interaction North-western Pacific i Abstract Oceanic plateaus are an important class of Large Igneous Provinces (LIPs) and represent the most voluminous examples of oceanic intraplate magmatism, with crustal thicknesses reaching 10-40 km and areal extents exceeding 0.1 Mkm2. Formation of oceanic plateaus remains highly debated, with arguments that they form during impact of a mantle plume head with oceanic lithosphere or that they represent anomalously high degrees of melting associated with shallow plate tectonic processes. Shatsky Rise in the North-Western Pacific is one of the largest (~500,000 km2) and oldest (145-135 Ma) non-accreted oceanic plateaus and provides evidence that is consistent with both models for oceanic plateau formation. Studies of magnetic lineations and bathymetry showed that Shatsky Rise was formed at a triple junction of oceanic spreading ridges and has three edifices (Tamu, Ori and Shirshov Massifs) progressively decreasing in age and in volume. Research from this thesis has been focused on Ori Massif, the second largest and oldest edifice from the central part of the Shatsky Rise, to provide constraints on its formation and evolution. The Ori Massif has been investigated in terms of paleoelevations that this edifice reached upon formation, source contributions to this edifice, and seawater alteration effect on the primary magmatic signatures of basalts from this edifice. This was achieved with the petrographic, lithostratigraphic, major and trace element and Hf-Nd isotope geochemical, mineralogical and multivariate analyses of samples retrieved from Ori Massif during the Integrated Ocean Drilling Program Expedition 324. Volcaniclastic deposits from the summit of Ori Massif, are ~30 m thick and predominantly composed of juvenile fragments (from 70 to 100 modal % on a cement- free basis) with minor amounts of accidental lithics and singular shallow-marine fossils. The abundance of poorly to moderately vesicular quenched glass fragments, mainly angular lithics along with cored juvenile clasts within the volcaniclastic succession suggests explosive fragmentation of basaltic magma and pre-existing rocks during phreatomagmatic eruptions. The volcaniclastic succession from Ori Massif is characterised by poor sorting, thick-bedded to massive structure and contains no sharp erosional boundaries or sedimentary interbeds, and therefore is interpreted to represent ii one eruptive unit. Preservation of gentle textures and forms of the glass fragments within the deposits imply relatively limited reworking processes during transportation from the vent. The volcaniclastic material was produced during shallow-marine to near sea-level Surtseyan style phreatomagmatic eruptions at the summit of Ori Massif, transported by mass flow processes and deposited below wave base. This indicates that Ori Massif reached very shallow water depths during its formation, but that there is no direct evidence for plateau emergence. Basaltic fragments from the volcaniclastic deposits, Ori Massif, demonstrate N- MORB-like and transitional to depleted MORB trace element and Hf-Nd isotope compositions, that are different to the underlying picrite-like lavas. This indicates change in chemical composition of magma during final stages of Ori Massif formation. The Hf-Nd isotope data (εHft = 13.3-18; εNdt = 8.9-10.8) suggest presence of a relatively more depleted Pacific MORB component in the source of Shatsky Rise. The Hf-Nd isotope compositions from Shatsky Rise, Hess Rise, Ojin Rise and Cooperation seamount follow a common compositional trend, suggesting mixing of a common most depleted Pacific MORB source mantle with an enriched component, such as PREMA or HIMU. Overall, basalts from Shatsky Rise demonstrate more depleted Hf-Nd isotope compositions and more variety within the MORB field, compared to those of Ontong Java, Manihiki and Hikurangi oceanic plateaus. Such compositional differences are interpreted as a result of Shatsky Rise magma interaction with an active MOR-system upon emplacement. Whole-rock samples from the flanks of Ori and Tamu Massifs show similar, predominantly smectitic and minor calcite alteration. The onset of seawater alteration of oceanic basalts is largely dependent on the initial crystallinity and presence and abundance of olivine. Two compositionally-contrasting alteration processes are defined: 1) olivine-normative Higher-Mg tholeiitic basalts undergo olivine decomposition to saponite clays and calcite, resulting in Mg-loss by 2-3 wt.%, which releases significant amounts of Mg2+ into seawater providing a source of Mg2+ for redistribution throughout the oceanic crust and to the ocean; and 2) Higher-Fe tholeiitic basalts contain traces of olivine phenocrysts and act as sinks for Mg2+ during low temperature alteration. High crystallinity rocks from both groups are associated with Ca-gain, whereas increasing contents of altered glass lead to Mg-uptake and Ca-loss. iii The HFSE and REE predominantly behave conservatively and correlate with MgO enrichment or depletion. Ori Massif is associated with the greatest range in vertical dynamics, compositional variability and alteration styles across the Shatsky Rise. Formation of Ori Massif can be explained by less intense interaction with an active spreading ridge system, relative to Tamu and Shirshov Massifs, and a more pronounced involvement of a mantle plume during construction of this Shatsky Rise edifice. iv Table of Contents Keywords ...................................................................................................................... i Abstract ........................................................................................................................ ii Table of Contents ......................................................................................................... v List of Figures ............................................................................................................. ix List of Tables............................................................................................................... xi List of Abbreviations.................................................................................................. xii Statement of Original Authorship ............................................................................. xiv Acknowledgements .................................................................................................... xv Chapter 1: Introduction ...................................................................................... 1 1.1 Research background and problem ..................................................................... 1 1.2 Research focus and questions ............................................................................. 6 1.3 Significance of this PhD project ......................................................................... 8 1.4 Research plan ...................................................................................................... 8 1.4.1 Research project 1 (Chapter 3) .................................................................. 9 1.4.2 Contribution to collaborative research and research project 2 .................. 9 1.4.2.1 Participation in IODP Expedition 324 collaborative research .... 9 1.4.2.2 Research project 2 (Chapter 4) ................................................... 9 1.4.3 Research project 3 (Chapter 5) ................................................................ 10 1.5 Sample database and materials ......................................................................... 10 1.6 Thesis structure ................................................................................................. 11 1.7 List of publications ........................................................................................... 11 Chapter 2: Previous investigations on LIPs and Shatsky Rise ...................... 13 2.1 Large Igneous Province formation hypotheses................................................. 13 2.2 Previous studies on Shatsky Rise ..................................................................... 20 2.2.1 Geological location and structure ............................................................ 20 2.2.2 Tectonic setting ....................................................................................... 21 2.2.3 Age of magmatism .................................................................................. 24 2.2.4 Basement stratigraphy ............................................................................. 25 2.2.5 Paleoelevations and subsidence .............................................................. 28 2.2.6 Igneous and alteration petrology ............................................................. 29 2.2.7 Geochemistry .........................................................................................
Recommended publications
  • Hikurangi Plateau: Crustal Structure, Rifted Formation, and Gondwana Subduction History
    Article Geochemistry 3 Volume 9, Number 7 Geophysics 3 July 2008 Q07004, doi:10.1029/2007GC001855 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Click Here for Full Article Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history Bryan Davy Institute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt, New Zealand ([email protected]) Kaj Hoernle IFM-GEOMAR, Wischhofstraße 1-3, D-24148 Kiel, Germany Reinhard Werner Tethys Geoconsulting GmbH, Wischhofstraße 1-3, D-24148 Kiel, Germany [1] Seismic reflection profiles across the Hikurangi Plateau Large Igneous Province and adjacent margins reveal the faulted volcanic basement and overlying Mesozoic-Cenozoic sedimentary units as well as the structure of the paleoconvergent Gondwana margin at the southern plateau limit. The Hikurangi Plateau crust can be traced 50–100 km southward beneath the Chatham Rise where subduction cessation timing and geometry are interpreted to be variable along the margin. A model fit of the Hikurangi Plateau back against the Manihiki Plateau aligns the Manihiki Scarp with the eastern margin of the Rekohu Embayment. Extensional and rotated block faults which formed during the breakup of the combined Manihiki- Hikurangi plateau are interpreted in seismic sections of the Hikurangi Plateau basement. Guyots and ridge- like seamounts which are widely scattered across the Hikurangi Plateau are interpreted to have formed at 99–89 Ma immediately following Hikurangi Plateau jamming of the Gondwana convergent margin at 100 Ma. Volcanism from this period cannot be separately resolved in the seismic reflection data from basement volcanism; hence seamount formation during Manihiki-Hikurangi Plateau emplacement and breakup (125–120 Ma) cannot be ruled out.
    [Show full text]
  • Geology of Hawaii Reefs
    11 Geology of Hawaii Reefs Charles H. Fletcher, Chris Bochicchio, Chris L. Conger, Mary S. Engels, Eden J. Feirstein, Neil Frazer, Craig R. Glenn, Richard W. Grigg, Eric E. Grossman, Jodi N. Harney, Ebitari Isoun, Colin V. Murray-Wallace, John J. Rooney, Ken H. Rubin, Clark E. Sherman, and Sean Vitousek 11.1 Geologic Framework The eight main islands in the state: Hawaii, Maui, Kahoolawe , Lanai , Molokai , Oahu , Kauai , of the Hawaii Islands and Niihau , make up 99% of the land area of the Hawaii Archipelago. The remainder comprises 11.1.1 Introduction 124 small volcanic and carbonate islets offshore The Hawaii hot spot lies in the mantle under, or of the main islands, and to the northwest. Each just to the south of, the Big Island of Hawaii. Two main island is the top of one or more massive active subaerial volcanoes and one active submarine shield volcanoes (named after their long low pro- volcano reveal its productivity. Centrally located on file like a warriors shield) extending thousands of the Pacific Plate, the hot spot is the source of the meters to the seafloor below. Mauna Kea , on the Hawaii Island Archipelago and its northern arm, the island of Hawaii, stands 4,200 m above sea level Emperor Seamount Chain (Fig. 11.1). and 9,450 m from seafloor to summit, taller than This system of high volcanic islands and asso- any other mountain on Earth from base to peak. ciated reefs, banks, atolls, sandy shoals, and Mauna Loa , the “long” mountain, is the most seamounts spans over 30° of latitude across the massive single topographic feature on the planet.
    [Show full text]
  • Playing Jigsaw with Large Igneous Provinces a Plate Tectonic
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Playing jigsaw with Large Igneous Provinces—A plate tectonic 10.1002/2015GC006036 reconstruction of Ontong Java Nui, West Pacific Key Points: Katharina Hochmuth1, Karsten Gohl1, and Gabriele Uenzelmann-Neben1 New plate kinematic reconstruction of the western Pacific during the 1Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany Cretaceous Detailed breakup scenario of the ‘‘Super’’-Large Igneous Province Abstract The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, Ontong Java Nui Ontong Java Nui ‘‘Super’’-Large and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong simi- Igneous Province as result of larities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein plume-ridge interaction referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences Correspondence to: in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java K. Hochmuth, [email protected] Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed ‘‘Super’’-LIP, a detailed scenario Citation: for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interac- Hochmuth, K., K. Gohl, and tion of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The G.
    [Show full text]
  • Subsidence and Growth of Pacific Cretaceous Plateaus
    ELSEVIER Earth and Planetary Science Letters 161 (1998) 85±100 Subsidence and growth of Paci®c Cretaceous plateaus Garrett Ito a,Ł, Peter D. Clift b a School of Ocean and Earth Science and Technology, POST 713, University of Hawaii at Manoa, Honolulu, HI 96822, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 10 November 1997; revised version received 11 May 1998; accepted 4 June 1998 Abstract The Ontong Java, Manihiki, and Shatsky oceanic plateaus are among the Earth's largest igneous provinces and are commonly believed to have erupted rapidly during the surfacing of giant heads of initiating mantle plumes. We investigate this hypothesis by using sediment descriptions of Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill cores to constrain plateau subsidence histories which re¯ect mantle thermal and crustal accretionary processes. We ®nd that total plateau subsidence is comparable to that expected of normal sea¯oor but less than predictions of thermal models of hotspot-affected lithosphere. If crustal emplacement was rapid, then uncertainties in paleo-water depths allow for the anomalous subsidence predicted for plumes with only moderate temperature anomalies and volumes, comparable to the sources of modern-day hotspots such as Hawaii and Iceland. Rapid emplacement over a plume head of high temperature and volume, however, is dif®cult to reconcile with the subsidence reconstructions. An alternative possibility that reconciles low subsidence over a high-temperature, high-volume plume source is a scenario in which plateau subsidence is the superposition of (1) subsidence due to the cooling of the plume source, and (2) uplift due to prolonged crustal growth in the form of magmatic underplating.
    [Show full text]
  • Another Clue for Fast Motion of the Hawaiian Hotspot 27 February 2018
    Another clue for fast motion of the Hawaiian hotspot 27 February 2018 Northwest Pacific. But soon there was doubt over whether hotspots are truly stationary. The biggest contradiction was a striking bend of about 60 degrees in this volcanic chain, which originated 47 million years ago. "If you try to explain this bend with just a sudden change in the movement of the Pacific Plate, you would expect a significantly different direction of motion at that time relative to adjacent tectonic plates," says Bernhard Steinberger of the GFZ German Research Center for Geosciences. "But we have not found any evidence for that." Recent studies have suggested that apparently two processes were effective: On the one hand, the Pacific Plate has changed its direction of motion. On the other hand, the Hawaiian hotspot moved relatively quickly southward in the period from 60 to about 50 million years ago - and then stopped. If this hotspot motion is considered, only a smaller change of Pacific plate motions is needed to explain the volcano chain. Graph shows the dates of volcanoes of the three volcanic chains in the Pacific and their relative movement over time (left). The location of the three This hypothesis is now supported by work in which volcanic chains shown in the map (right). The stars mark Steinberger is also involved. First author Kevin the youngest end or the active volcanoes today. Credit: Konrad, Oregon State University in Corvallis, Nature Communications, Kevin Konrad et al. Oregon, and his team have evaluated new rock dating of volcanoes in the Rurutu volcanic chain, including, for example, the Tuvalu volcanic islands in the Western Pacific.
    [Show full text]
  • SO225 MANIHIKI II Weekly Report No
    SO225 MANIHIKI II Weekly Report No. 1 R/V SONNE (19.11. – 25.11.2012) 10°13,6´S / 165°52,0´W The starting point of R/V SONNE expedition SO-225 was the port of Suva on Viti Levu island (Fiji). After 48 hours of travel the first group of scientists, engineers, and technicians from Germany arrived safe but somewhat tiered in Suva in the late evening of Saturday the 19th of November. There, the unloading of nine containers with scientific equipment for SO-225 and the mobilization of the remotely operated vehicle ROV Kiel 6000 kept us busy during the following days. In the evening of November 19th, the remaining scientists arrived in Suva, finally completing the scientific party of the SO-225 expedition. In tropical heat and occasionally heavy rain showers we managed to finish all port related cruise preparations on time thanks to the excellent support from the SONNE crew. Approximately one hour after a test program of the ROV Kiel 6000 was successfully completed, RV SONNE left Suva and headed towards the Manihiki Plateau, located ~1.000 nm to the northeast of Fiji in the area of the northern Cook Islands. Views of Suva/Fiji upon departure of R/V Sonne. RV Sonne cruises SO-224 and SO-225 are part of the cooperative project MANIHIKI II between GEOMAR and the Alfred Wegener Institute for Polar and Marine Research (AWI), funded by the German Ministry of Education and Research (BMBF). This multidisciplinary project continues previous research at the Manihiki Plateau conducted since 2007 (SO-193) on morphological, volcanological, geochemical, and geochronological studies and is now broadened by geophysical and paleoceanographic research foci.
    [Show full text]
  • Large Igneous Provinces: a Driver of Global Environmental and Biotic Changes, Geophysical Monograph 255, First Edition
    2 Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement Jennifer Kasbohm1, Blair Schoene1, and Seth Burgess2 ABSTRACT There is an apparent temporal correlation between large igneous province (LIP) emplacement and global envi- ronmental crises, including mass extinctions. Advances in the precision and accuracy of geochronology in the past decade have significantly improved estimates of the timing and duration of LIP emplacement, mass extinc- tion events, and global climate perturbations, and in general have supported a temporal link between them. In this chapter, we review available geochronology of LIPs and of global extinction or climate events. We begin with an overview of the methodological advances permitting improved precision and accuracy in LIP geochro- nology. We then review the characteristics and geochronology of 12 LIP/event couplets from the past 700 Ma of Earth history, comparing the relative timing of magmatism and global change, and assessing the chronologic support for LIPs playing a causal role in Earth’s climatic and biotic crises. We find that (1) improved geochronol- ogy in the last decade has shown that nearly all well-dated LIPs erupted in < 1 Ma, irrespective of tectonic set- ting; (2) for well-dated LIPs with correspondingly well-dated mass extinctions, the LIPs began several hundred ka prior to a relatively short duration extinction event; and (3) for LIPs with a convincing temporal connection to mass extinctions, there seems to be no single characteristic that makes a LIP deadly. Despite much progress, higher precision geochronology of both eruptive and intrusive LIP events and better chronologies from extinc- tion and climate proxy records will be required to further understand how these catastrophic volcanic events have changed the course of our planet’s surface evolution.
    [Show full text]
  • Hawaii Hotspot (Crustal Plate Movement)
    Earth Science Name: Dynamic Crust Laboratory # 13 Hawaii Hotspot (Crustal Plate Movement) Introduction: Plate tectonics has been an accepted theory since the 1960’s. According to this theory, the crust of the Earth is composed of plates that move over the asthenosphere. There are two basic types of plates: heavy, thin and dense oceanic plates, which are primarily composed of basalt; and thick, lighter continental plates, which are comprised of silicate rocks (granite). Movement of the Pacific plate over the Hawaiian Hot Spot: The idea behind plate tectonics is that the crustal plates are moving with respect to one another over geologic time. The rates of movement of crustal plates can be determined by using data from the plate margins along the mid-ocean ridges, or at regions known as “HOTSPOTS” where the distance and age can be measured. The Hawaiian Islands are volcanic islands that are produced as superheated molten material rises upward from deep within the mantle. As the molten material breaks through weak places in the crustal plate a new “island” will form. Hawaii Crustal Plate Lab.doc 10/6/2013 1 Procedures: 1. Using Map 1 on this page and the absolute dates of lava in bold black numbers that represent millions of years before the present. Calculate the age difference between the islands and enter the data in the table on page 3. When there is more than one age on an island use an average! 2. Make distance measurements between the “dots” of each circle using the scale on the diagram. 3. Convert the distance from kilometers to “land” or “real” centimeters (NOT cm on the map!) by multiplying the distance in KM by 100,000 (which is the number of cm in 1 km).
    [Show full text]
  • Cook Islands Seabed Minerals : a Precautionary Approach to Mining / Gerald Mccormack
    Cook Islands Seabed Minerals a precautionary approach to mining Gerald McCormack second edition, with corrections Cook Islands Natural Heritage Trust Rarotonga 2016 1° = primary 2° = secondary dt = dry tonnes M = million Ma = million years (from megaannus) for dates and duration mbsl = metres below sea level Mdt/y = million dry tonnes per year M/y = million per year ppm = parts per million t = tonne = 1,000kg (a.k.a. metric ton with symbol mt) wt = wet tonnes AABW = Antarctic Bottom Water BPA = Biodiversity Preservation Area CBD = Convention on Biological Diversity CISWF = Cook Islands Sovereign Wealth Fund CCD = Carbonate Compensation Depth CCZ = Clarion-Clipperton Zone DSC = Deep Sound Channel EEZ = Exclusive Economic Zone EIA - Environmental Impact Assessment GDP = Gross Domestic Product REY = Rare Earth Elements + Yttrium SBMA = Cook Islands Seabed Minerals Authority SMS = Seabed Massive Sulphides SPB = South Penrhyn Basin ISA = International Seabed Authority, a UN agency WCPFC = Western and Central Pacific Fisheries Commission Front cover An oblique view of the Cook Islands seafloor with the South Penrhyn Basin and its nodule fields in the foreground and the Manihiki Plateau in the background. Cook Islands Seabed Minerals a precautionary approach to mining Gerald McCormack second edition, with corrections Cook Islands Natural Heritage Trust Rarotonga 2016 Text and illustrations are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This means they are free for non-commercial use provided the author and illustrator are acknowledged. For other uses please contact the Cook Islands Natural Heritage Trust. The author extends his appreciation to the Minister of Natural Heritage, the Hon. Kiriau Turepu and to the Trust Chair, Ian Karika and his Board for their encouragement and support.
    [Show full text]
  • Hawaiian Hotspot
    V51B-0546 (AGU Fall Meeting) High precision Pb, Sr, and Nd isotope geochemistry of alkalic early Kilauea magmas from the submarine Hilina bench region, and the nature of the Hilina/Kea mantle component J-I Kimura*, TW Sisson**, N Nakano*, ML Coombs**, PW Lipman** *Department of Geoscience, Shimane University **Volcano Hazard Team, USGS JAMSTEC Shinkai 6500 81 65 Emperor Seamounts 56 42 38 27 20 12 5 0 Ma Hawaii Islands Ready to go! Hawaiian Hotspot N ' 0 3 ° 9 Haleakala 1 Kea trend Kohala Loa 5t0r6 end Mauna Kea te eii 95 ol Hualalai Th l 504 na io sit Mauna Loa Kilauea an 509 Tr Papau 208 Hilina Seamont Loihi lic ka 209 Al 505 N 98 ' 207 0 0 508 ° 93 91 9 1 98 KAIKO 99 SHINKAI 02 KAIKO Loa-type tholeiite basalt 209 Transitional basalt 95 504 208 Alkalic basalt 91 508 0 50 km 155°00'W 154°30'W Fig. 1: Samples obtained by Shinkai 6500 and Kaiko dives in 1998-2002 10 T-Alk Mauna Kea 8 Kilauea Basanite Mauna Loa -K M Hilina (low-Si tholeiite) 6 Hilina (transitional) Hilina (alkali) Kea Hilina (basanite) 4 Loa Hilina (nephelinite) Papau (Loa type tholeiite) primary 2 Nep Basaltic Basalt andesite (a) 0 35 40 45 50 55 60 SiO2 Fig. 2: TAS classification and comparison of the early Kilauea lavas to representative lavas from Hawaii Big Island. Kea-type tholeiite through transitional, alkali, basanite to nephelinite lavas were collected from Hilina bench. Loa-type tholeiite from Papau seamount 100 (a) (b) (c) OIB OIB OIB M P / e l p 10 m a S E-MORB E-MORB E-MORB Loa type tholeiite Low Si tholeiite Transitional 1 f f r r r r r r r f d y r r d b b
    [Show full text]
  • Ontong Java and Kerguelen Plateaux: Cretaceous Icelands?
    Journal of the Geological Society, London, Vol. 152, 1995, pp. 1047-1052, 4 figs. Printed in Northern Ireland Ontong Java and Kerguelen Plateaux: Cretaceous Icelands? M. F. COFFIN & L.M. GAHAGAN Institute for Geophysics, The University of Texas at Austin, 8701 North Mopac Expressway, Austin, Texas 78759-8397, USA Abstract: Together with Iceland, the two giant oceanic plateaux, Ontong Java in the western Pacific and Kerguelen/Broken Ridge in the Indian Ocean, are accumulations of mafic igneous rock which were not formed by 'normal' seafloor spreading. We compare published geochronological, crustal structure, and subsidence results with tectonic fabric highlighted in new satellite-derived free-air gravity data from the three igneous provinces, and conclude that existing evidence weighs lightly against the Ontong Java and Kerguelen plateaux originating at a seafloor spreading centre. Keywords: Iceland, Ontong Java Plateau, Kerguelen Plateau, plumes, hot spots. The two giant oceanic plateaux, Ontong Java in the western Age constraints Pacific, and Kerguelen in the south-central Indian Ocean (Fig. 1), and Iceland are among the best-studied examples of The vast bulk of crust in the ocean basins is dated using large-scale mafic magmatism not resulting solely from magnetic anomalies created by the interplay between the 'normal' seafloor spreading. Analogues on the continents, seafloor spreading process and the alternating polarity of the continental flood basalts, are demonstrably not created by Earth's magnetic field. Mesozoic and Cenozoic marine seafloor spreading, although controversy persists as to magnetic anomalies, summarized globally by Cande et al. whether or not lithospheric extension must precede their (1989), are most commonly tied to geological time through emplacement.
    [Show full text]
  • Large Igneous Provinces and Mass Extinctions: an Update
    Downloaded from specialpapers.gsapubs.org on April 29, 2015 OLD G The Geological Society of America Special Paper 505 2014 OPEN ACCESS Large igneous provinces and mass extinctions: An update David P.G. Bond* Department of Geography, Environment and Earth Science, University of Hull, Hull HU6 7RX, UK, and Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway Paul B. Wignall School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ABSTRACT The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capi- tanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always suffi cient recovery time between individual eruptions to negate any cumulative effect of successive fl ood basalt erup- tions. Instead, the environmental and climatic damage must be attributed to single- pulse gas effusions. It is notable that the best-constrained examples of death-by- volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO2 and SO2) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinc- tion scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality.
    [Show full text]