Aluminium Sulfate (Anhydrous)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Sodium Dodecyl Sulfate-Coated Alumina and C18 Cartridge for The
J. Braz. Chem. Soc., Vol. 19, No. 8, 1523-1530, 2008. Printed in Brazil - ©2008 Sociedade Brasileira de Química 0103 - 5053 $6.00+0.00 Article Sodium Dodecyl Sulfate-Coated Alumina and C18 Cartridge for the Separation and Preconcentration of Cationic Surfactants Prior to their Quantitation by Spectrophotometric Method Mohammad Ali Karimi,*,a,b Reza Behjatmanesh-Ardakani,b Ali Aghaei Goudi b and Sara Zali b aDepartment of Chemistry, Faculty of Science, Payame Noor University (PNU), Sirjan, Iran bDepartment of Chemistry, Faculty of Science, Payame Noor University (PNU), Ardakan, Iran Um novo método de extração em fase sólida foi desenvolvido para separar e pré-concentrar traços de tensoativos catiônicos, tais como, brometo de dodeciltrimetilamônio (DTAB), brometo de cetiltrimetilamônio (CTAB) e cloreto de cetilpiridínio (CPC). Esse método é baseado na sorção do tensoativo aniônico (AS−), dodecilssulfato de sódio (SDS), sobre a superfície de γ-alumina, + enquanto um cartucho C18 é utilizado para a pré-concentração dos tensoativos catiônicos (CS ). O método espectrofotométrico, utilizado para a determinação dos tensoativos catiônicos, baseia-se na competição entre o corante catiônico, azul de metileno (MB+), e o CS+, para associação e formação do complexo SDS. O íon complexo formado (MB+) pode ser quantitativamente substituído pelo CS+, levando a um aumento da absorvância medida em 662 nm. Foram estabelecidas ótimas condições experimentais para a separação, pré-concentração e determinação dos tensoativos catiônicos. Sob essas condições otimizadas, realizou-se a pré-concentração (2×) e os resultados mostraram que a determinação do CPC, DTAB e CTAB poderia ser realizada nas faixas de concentração de 1×10-5-2×10-4, 4×10-5-5×10-4 and 5×10-5-5×10-4 mol L-1, respectivamente. -
The Determination of Sulfate and Sulfide Sulfur in Rocks Or Minerals
The Determination of Sulfate and Sulfide Sulfur in Rocks or Minerals By ANGELINA C. VLISIDIS CONTRIBUTIONS TO GEOCHEMISTRY GEOLOGICAL SURVEY BULLETIN 1214-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 15 cents (paper cover) CONTENTS Page Abstract_____--__-___-_______-__---____,__-_-__-_---_-_______-_- Dl Introduction. ______________________________________________________ 1 Preparations. _________._.-.__-_-.__.._-_---__----.________._.._____ 2 Standard samples____________________________________________ 2 Reagents. _______________.-_-___-____-__-_-__-_-___-_______-_- 2 Procedure._______________________________________________________ 2 Results__ __________-______-_____----__--_--_----_-_-_-___-___--_ 3 References.._ _____________________________________________________ 5 TABLE Page TABLE 1. Results of sulfide and sulfate sulfur analyses in which varying amounts of a sulfate standard were added to sulfide minerals.. _ D4 m 209-517 66 CONTRIBUTIONS TO GEOCHEMISTRY THE DETERMINATION OF SULFATE AND SULFIDE SULFUR IN ROCKS OR MINERALS By ANGELINA C. VLISEDIS , ABSTRACT A method for the determination of sulfate and sulfide sulfur that occur together in rocks or minerals is presented. All the sulfate sulfur is converted to barium sulfate in an inert atmosphere to prevent oxidation of any sulfide sulfur. Cadmium chloride is added to precipitate any sulfide ion that may be liberated. The sulfate sulfur is then measured indirectly by the determination of the barium and is therefore unaffected by any. subsequent oxidation of the sulfide sulfur. -
EPDM & FKM Chemical Resistance Guide
EPDM & FKM Chemical Resistance Guide SECOND EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 2nd Edition © 2020 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations. -
Sulfur and Tennessee Row Crops
W 435 SULFUR AND TENNESSEE ROW CROPS Sulfur (S) deficiencies have become more common in recent years. This publication outlines the importance and role of S in higher plants, summarizes recent research, and defines the University of Tennessee’s current S recommendations for row crops. Tyson B. Raper1, Angela T. McClure2, Frank Yin3 and Blake Brown4 1Assistant Professor, Cotton and Small Grains Specialist, Department of Plant Sciences 2Associate Professor, Corn and Soybean Specialist, Department of Plant Sciences 3Associate Professor, Cropping Systems Agronomist, Department of Plant Sciences 4Director, AgResearch and Education Center at Milan INTRODUCTION Sulfur (S) deficiencies have become more common in recent years due to a reduction in S deposition. Research at the University of Tennessee has begun to answer several key questions on crop response to applications of this nutrient. The objective of this publication is to outline the importance of S and the role it plays within higher plants, describe why the deficiencies are becoming more common, summarize recent research and define the University of Tennessee’s current S recommendations for Tennessee row crops. THE ROLE AND IMPORTANCE OF SULFUR IN HIGHER PLANTS Sulfur is an important nutrient in living systems; it is contained within four common amino acids that assist in the synthesis, structure and function of proteins (Brosnan & Brosnan, 2006). In plant nutrition, S is classified as a macronutrient since it is required in quantities much larger than most micronutrients. Within the macronutrient classification, S falls within the secondary nutrient subclassification along with calcium and magnesium. Although S isn’t a primary macronutrient, it is occasionally referred to as the fourth major nutrient (Stewart, 2010), and if contained within a fertilizer, the S percentage is commonly listed as the fourth Figure 1: Most S containing fertilizers have four number in the fertilizer analysis or grade numbers reported in the analysis or grade, with the first (Figure 1). -
Introduction to Chemistry
Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable. -
ELGA Veolia Water Guide V6.Pdf
A GUIDE FOR LABORATORIES Pure labwater guide An essential overview of lab water purification applications, monitoring and standards. Dedicated to Discovery 2 Dedicated to Discovery PURE LABWATER GUIDE Inside 3-5 Introduction 6-16 Research and analysis applications 17-20 Clinical diagnostics 21-23 Healthcare 23-47 Water purification overview 48 Glossary 51 Further reading 3 Dedicated to Discovery PURE LABWATER GUIDE The pure labwater guide Introduction The Pure LabWater Guide is an essential resource for individuals who use pure water or wish to learn more about the subject. Providing an overview of water purification requirements, techniques and applications in science and medicine, this educational guide will enable you to choose the correct grade of water and most reliable method of production at an economical cost to both your budget and the environment. CHALLENGES: vary significantly in purity both from There are 5 classes of impurities found IMPURITIES AND one geographical region to another in natural and drinking water: and from season to season. VARIATIONS IN • Suspended particles In today’s laboratories, the availability DRINKING WATER • Dissolved inorganic compounds of pure water is essential, and Water for most laboratory and clinical while domestic consumers consider • Dissolved organic compounds applications is usually purified from tap water to be “pure”, laboratory • Microorganisms & biomolecules drinking water. However, the unique scientists and healthcare professionals ability of water to dissolve (to some regard it as -
Drinking Water Treatment: Distillation Bruce I
® ® University of Nebraska–Lincoln Extension, Institute of Agriculture and Natural Resources Know how. Know now. G1493 (Revised December 2013) Drinking Water Treatment: Distillation Bruce I. Dvorak, Extension Environmental Engineering Specialist Sharon O. Skipton, Extension Water Quality Educator water as it is boiled in the distiller. Such compounds will not Homeowners are increasingly concerned about be completely removed unless another process is used prior contaminants in their water supply that may affect to condensation. See the section in this NebGuide on treat- health or cause taste, odor, or nuisance problems. Dis- ment principles for further discussion of ways distillers may tillation, one of the oldest methods of water treatment, remove VOCs. is an effective method for reducing many impurities The boiling process during distillation generally inacti- found in water. This NebGuide discusses the process vates microorganisms. However, if the distiller is idle for an and related equipment used for household drinking extended period, bacteria can be reintroduced from the outlet water treatment by distillation. spigot and may recontaminate the water. Water Testing Contaminants Removed from Water by Distillation Regardless of which water treatment system is con- Distillation can remove nearly all impurities from sidered, the water first should be tested to determine what water. Compounds removed include sodium, hardness substances are present. Public water systems routinely test compounds such as calcium and magnesium, other dis- for contaminants. Water utilities are required to publish solved solids (including iron and manganese), fluoride, Consumer Confidence Reports (CCRs), which inform con- and nitrate. Operated properly, it effectively inactivates sumers on the source of the water, contaminants present, microorganisms such as bacteria, viruses, and protozoan potential health effects of those contaminants, and methods cysts (though protozoan cysts are not likely to be found in of treatment used by the utility. -
A Novel Exchange Method to Access Sulfated Molecules Jaber A
www.nature.com/scientificreports OPEN A novel exchange method to access sulfated molecules Jaber A. Alshehri, Anna Mary Benedetti & Alan M. Jones* Organosulfates and sulfamates are important classes of bioactive molecules but due to their polar nature, they are both difcult to prepare and purify. We report an operationally simple, double ion- exchange method to access organosulfates and sulfamates. Inspired by the novel sulfating reagent, TriButylSulfoAmmonium Betaine (TBSAB), we developed a 3-step procedure using tributylamine as the novel solubilising partner coupled to commercially available sulfating agents. Hence, in response to an increasing demand for complementary methods to synthesise organosulfates, we developed an alternative sulfation route based on an inexpensive, molecularly efcient and solubilising cation exchanging method using of-the-shelf reagents. The disclosed method is amenable to a range of diferentially substituted benzyl alcohols, benzylamines and aniline and can also be performed at low temperature for sensitive substrates in good to excellent isolated yield. Organosulfates and sulfamates contain polar functional groups that are important for the study of molecu- lar interactions in the life sciences, such as: neurodegeneration1; plant biology2; neural stem cells3; heparan binding4; and viral infection5. Recent total syntheses including 11-saxitoxinethanoic acid6, various saccharide assemblies7–10, and seminolipid11 have all relied on the incorporation of a highly polar organosulfate motif. Importantly, the frst in class organosulfate containing antibiotic, Avibactam12, has led to the discovery of other novel β-lactamase inhibitors 13,14. Despite the importance of the sulfate group, there remain difculties with the ease of their synthesis to enable further biological study. Our own interest in developing sulfated molecules resulted from a medicinal chemistry challenge to reliably synthesise sulfated glycomimetics 15–18. -
[Technical Information] Aluminium Sulphate – 200 Mesh Polysol
[Technical Information] Aluminium sulphate – 200 Mesh Polysol Industries Plot no.-C1B-106/1 to 106/4, G.I.D.C, Sarigam(Gujarat)-INDIA Tel-091-0260-2431587, E-mail: [email protected] Aluminium sulfate is mainly use as a flocculating agent in the purification of drinking water and waste water treatment plants, and also in paper manufacturing. It is widely use in the concrete technology as accelerating agent. Nature: Aluminium sulfate, is a chemical compound with the formula Al2(SO4)3 14-18H2O CAS Number 7784-31-8 Specification: Form : Powder Appearance : White fine free flowing Powder pH value (1:10) : Min. 2.0 Solubility : Completely soluble in hot water. Al as Al2O3 : Min. 15 % Insoluble matter : Max. 0.8 % (In water) Iron content as Fe : Below 50 ppm Particle size (Retention on) 100 Mesh sieve : Max 2.0 % 200 Mesh sieve : Max 35.0 % 300 Mesh sieve : Max 95.0 % Properties: Aluminium sulfate, alternatively spelt either aluminum or sulphate, is a chemical compound with the formula Al2(SO4)3. Aluminium sulfate is sometimes referred to as a type of alum. Application: Sizing paper, lakes, mordent for drying, foaming agent in fire foams for leather and clarifying agent for fat and oil. Aluminium sulfate is used in water purification and as a mordant in dyeing and printing textiles. In water purification, it causes impurities to coagulate which are removed as the particulate settles to the bottom of the container or more easily filtered. This process is called coagulation or flocculation.When dissolved in a large amount of neutral or slightly alkaline water, aluminium sulfate produces a gelatinous precipitate of aluminium hydroxide, Al(OH)3. -
Product Specification
PRODUCT SPECIFICATION Product Name: ALUMINIUM SULFATE 14-hydrate Granular TG Alternate Name(s) Alum; aluminum trisulfate; cake alum; patent alum; aluminium sulfate Description octadecahydrate. Free flowing, white granules. Sweet taste. Properties Chemical Formula: Al2(SO4)3.14H2O Product Code: AT038 Molecular Weight: 594.02 General Information: CAS No. 17927-65-0 Insoluble in alcohol. Incompatible with water, strong bases and strong oxidising agents. Corrosive to metals if in contact with moisture. Potential for accumulation Hazard and Safety Data upon ingestion. Non combustible. UN Group: None Allocated Quality Specification Class: None Allocated Assay: 17.3 % (Al2O3) min. UN Number: None Allocated Specific Properties and Impurities [Typical levels]: Hazchem code: None Allocated CS MSDS Code: 1CH0R Total Sulfate 38.0% SiO2 0.15% Poison schedule: Not Scheduled Emergency Fe2O3 0.02% Procedure Guide No.: N/A Water Insoluble 0.2% TiO2 <0.01% Moisture 0.1% Size Greater than 2.8mm 13.0% 2.0mm to 2.8mm 16.0% 1.4mm to 2.0mm 20.0% 1.0mm to 1.4mm 26.0% 0.71mm to 1.0 17.0% 0.5mm to 0.71mm 5.0% Less than 0.25mm 3.0% Melting Point (decomposition) 90 °C Specific Gravity (at 25 °C) 1.62 Solubility in Water (@ 20 °C) 364 g/L Decomposition Temp. 770 °C Chem-Supply Pty Ltd - An ISO 9001:2000 Accredited Company 38 - 50 Bedford Street, Gillman SA 5013, Australia ABN 19 008 264 211 PO Box 201, Port Adelaide SA 5015, Australia Telephone +61 8 8440 2000 Fax +61 8 8440 2001 E-mail: [email protected] Web: www.chemsupply.com.au Chem-Supply does not warrant that this product is suitable for any use or purpose. -
Sulfur Dioxide in Workplace Atmospheres (Bubbler)
Withdrawn Provided For Historical Reference Only SULFUR DIOXIDE IN WORKPLACE ATMOSPHERES (BUBBLER) ♦ Method Number: ID-104 Matrix: Air OSHA PEL Sulfur Dioxide (Final Rule Limit): 2 ppm (Time Weighted Limit) 5 ppm (Short-Term Exposure Limit) Sulfur Dioxide (Transitional Limit): 5 ppm (Time Weighted Limit) Collection Device: A calibrated personal sampling pump is used to draw a known volume of air through a midget-fritted glass bubbler containing 10 to 15 mL of 0.3 N hydrogen peroxide. Recommended Air Volume: 15 to 60 L Recommended Sampling Rate: 1 L/min Analytical Procedure: Samples are directly analyzed with no sample preparation by ion chromatography as total sulfate. Detection Limit Qualitative: 0.0041 ppm (60-L air volume) Quantitative: 0.010 ppm (60-L air volume) Precision and Accuracy Validation Level: 2.5 to 10.0 ppm (60-L air volume) CVT 0.012 Bias -0.046 Overall Error ±7% Method Classification: Validated Method Chemist: Ted Wilczek, Edward Zimowski Date (Date Revised): 1981 (December, 1989) Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted. Branch of Inorganic Methods Development OSHA Technical Center Salt Lake City, Utah 1 of 9 Note: OSHA no longer uses or supports this method (November 2019). Withdrawn Provided For Historical Reference Only 1. Introduction This method describes the collection and analysis of airborne sulfur dioxide (SO2) using midget-fritted glass bubblers (MFGBs) in the workplace. It is applicable for both short-term (STEL) and time weighted average (TWA) exposure evaluations. -
An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination
water Article Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination Seyedsaeid Ahmadvand 1,* , Behrooz Abbasi 1,*, Babak Azarfar 1, Mohammed Elhashimi 2, Xiang Zhang 2 and Bahman Abbasi 2,* 1 Department of Mining and Metallurgical Engineering, University of Nevada, Reno, NV 89557, USA; [email protected] 2 School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Bend, OR 97702, USA; [email protected] (M.E.); [email protected] (X.Z.) * Correspondence: [email protected] (S.A.); [email protected] (B.A.); [email protected] (B.A.) Received: 4 March 2019; Accepted: 1 April 2019; Published: 4 April 2019 Abstract: Most notable emerging water desalination technologies and related publications, as examined by the authors, investigate opportunities to increase energy efficiency of the process. In this paper, the authors reason that improving energy efficiency is only one route to produce more cost-effective potable water with fewer emissions. In fact, the grade of energy that is used to desalinate water plays an equally important role in its economic viability and overall emission reduction. This paper provides a critical review of desalination strategies with emphasis on means of using low-grade energy rather than solely focusing on reaching the thermodynamic energy limit. Herein, it is argued that large-scale commercial desalination technologies have by-and-large reached their engineering potential. They are now mostly limited by the fundamental process design rather than process optimization, which has very limited room for improvement without foundational change to the process itself. The conventional approach toward more energy efficient water desalination is to shift from thermal technologies to reverse osmosis (RO).