Potential for Large-Scale Submarine Slope Failure and Tsunami Generation Along the U.S

Total Page:16

File Type:pdf, Size:1020Kb

Potential for Large-Scale Submarine Slope Failure and Tsunami Generation Along the U.S NRC038 Potential for large-scale submarine slope failure and tsunami generation along the U.S. mid-Atlantic coast Neal W. Driscoll Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA Jeffrey K. Weissel Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA John A. Goff Institute for Geophysics, University of Texas, Austin, Texas 78759, USA ABSTRACT SUBMARINE LANDSLIDES AND The outer continental shelf off southern Virginia and North Carolina might be in the initial MARGIN MORPHOLOGY stages of large-scale slope failure. A system of en echelon cracks, resembling small-offset normal Coastal regions face increasing threats from a faults, has been discovered along the outer shelf edge. Swath bathymetric data indicate that about variety of natural hazards as their populations 50 m of down-to-the-east (basinward) normal slip has occurred on these features. From a societal grow and urban areas expand. Development of an perspective, we need to evaluate the degree of tsunami hazard that might be posed by a major sub- improved understanding and forecasting of these marine landslide, such as the nearby late Pleistocene Albemarle-Currituck slide, if it nucleated on hazards must be considered a priority in order to the newly discovered crack system. Toward this goal, a tsunami scenario is constructed for the mitigate future threats. Media coverage and nearby coastal zone based on the estimated volume and nature of the potential slide. Although a storm tracking has increased public awareness of maximum tsunami height of a few to several meters is predicted, the actual extent of flooding the damage to coastal communities caused by would depend on the tidal state at the time of tsunami arrival as well as the details of the hinterland severe storms. Tsunamis resulting from offshore topography. The Virginia–North Carolina coastline and lower Chesapeake Bay would be most at earthquakes, landslides, and volcanic activity are risk, being nearby, low lying, and in a direction opposite to potential slide motion. equally destructive but rarer events. As a result, public awareness of tsunamis is limited and our Keywords: slope failure, tsunami, submarine canyons, continental margin morphology. capability to forecast when or where they will 38°N strike is still underdeveloped (Synolakis et al., 1 1997; Kawatat et al., 1999). Marine geologists A. have long appreciated the importance of sub- marine landslides in the development of conti- 50 Mature Canyons nental margin seascapes (Booth et al., 1993; Baltimore-Accomac Slide Evans et al., 1996; Embley and Jacoby, 1986), but until recently little attention has been given to 100 the potential hazards that large submarine slides 500 1000 c. pose to coastal communities in terms of asso- Washington ciated tsunamis (Synolakis et al., 1997). The deva- Canyon 1500 stating tsunami that struck northern Papua New b. Guinea in July 1998, killing about 2000, brought 2000 the problem of tsunami hazards triggered by sea- floor deformation into sharp focus (Kawatat et al., 2500 1999; Tappin et al., 1999). It is often difficult to differentiate tsunamis generated by landslides en echelon cracks from those generated by earthquakes on the basis Norfolk Young Canyons of teleseismic records (Hasegawa and Kanamori, Canyon 1987; Julian et al., 1998). Tsunamis are com- ° 37 N Recent a. 3000 monly much larger than predicted from earth- Faults Hudson quake magnitude, suggesting that landslides play Canyon 100 500 an important role in tsunami generation (Tappin B. 250 1500 50 1000 et al., 1999). Most researchers agree on the need 2000 2500 for more and better bathymetric surveys to find 3000 3500 evidence for past landsliding, and to identify areas Wilmington Canyon 3500 Young Canyons of seafloor susceptible to future slope failure Baltimore (Synolakis et al., 1997). Canyon In this paper we draw attention to a system of 1 2 en echelon cracks recently discovered along a 40-km-long section of the outer continental shelf Albemarle-Currituck Slide 4000 3 Failure Recent Major Figure 1. System of en echelon cracks, resem- bling small offset normal faults, recently discovered off Virginia and North Carolina between Norfolk Canyon and Albemarle- Currituck submarine slide using NOAA Cape gridded bathymetry. Inset A shows enlarge- Hatteras 36°N ment of en echelon cracks and inset B shows 75°W 74°W 73û location map. Geology; May 2000; v. 28; no. 5; p. 407–410; 3 figures. 407 off southern Virginia and North Carolina. These slides nucleating on this en echelon crack system conduits for many small-scale events, and the features are located in water depths of 100– might trigger a tsunami that poses a danger to large-scale landslides to be temporally infre- 200 m between the Norfolk Canyon and the populations along the adjacent coast. quent, and spatially isolated events. When these Albemarle-Currituck submarine slide (Figs. 1 The swath data illustrate how large submarine infrequent large-scale slope failures occur, they and 2). The asymmetric shape of the features in slides and canyon systems shape the morphology effectively reset or smooth the continental slope vertical cross section suggests that about 50 m of of the U.S. Atlantic continental margin (Figs. 1–3). by undermining and removing canyon systems, down-to-the-east normal slip of the continental We recognize two different categories of slope which are forced to regenerate over time follow- shelf edge has already occurred on a failure failure: (1) smaller scale failures that either form ing the landslide event. Evidence for this is surface subparallel to the upper continental slope canyons, or occur within and are channeled by shown by the small canyons that are starting to (Fig. 3). This asymmetry is best explained by the existing canyon systems, regardless whether the regenerate within the Albemarle-Currituck slide existence of a normal fault with collapse and mode of failure was progressive (top down), or scar at depths of ~1500 m (Figs. 1 and 3). rollover of the hanging wall into the fault trace. retrogressive (bottom up); and (2) larger scale, The two scales of slope failure proposed here There are two reasons for studying these features. catastrophic failures like the Albemarle-Currituck predict that the morphology of the resulting debris First, knowledge about these incipient submarine slide (Figs. 1–3) that undermine large areas of deposits downslope from the failure scarp should landslides will lead to a better understanding of canyons and effectively erase preexisting canyon also vary as a function of failure mode. Funneled, how cycles of large-scale slope failure, canyon morphology. Because work on land has shown coalescing slide deposits like the Baltimore- cutting, and sedimentation interact to create the that landslide size cumulative frequency statistics Accomac slide (Figs. 1 and 2) reflect failures that observed margin morphology. Second, it is follow power-law or fractal distributions (e.g., form canyons or occur within canyon systems, important to understand the hazard implications Hovius et al., 1997), we expect the canyon sys- and their downslope morphology is affected by of these features. Any future submarine land- tems to be steady-state features because they are the evolving and/or preexisting canyon relief. In 38°N 2 A. 50 100 500 Baltimore-Accomac Slide Washington 1000 Canyon 1500 2000 Figure 2. GLORIA sidescan imagery collected by U.S. 2500 Geological Survey (EEZ- SCAN 87 Scientific Staff, 1991). Slide deposits ap- pear to vary as function of Norfolk failure mode and produce Canyon (1) funneled, coalescing ° slide deposits (e.g., Balti- 37 N 3000 more-Accomac slide) and (2) large blocky slide de- posits (e.g., Albemarle- Currituck slide). Contours en echelon cracks from Figure 1 are coregis- tered on GLORIA sidescan. Inset A shows enlargement 3500 of en echelon cracks. en echelon cracks Albemarle-Currituck Slide 4000 36°N 75°W 74°W 73°W 408 GEOLOGY, May 2000 the GLORIA sidescan data (Fig. 2), mass-wasting continental slope and gas hydrate decomposition TSUNAMI GENERATION AND HAZARD debris deposits can be recognized because of their may occur in slope sediments (Kvenvolden, Extremely large landslides are a feature of generally brighter backscatter compared to sea- 1993). We propose that secular warming of mid-ocean volcanic islands like the Hawaiian floor covered by hemipelagic finer grained sedi- bottom water during interglacials caused by com- Islands (Moore et al., 1989; Normark et al., 1993) ments (Schlee and Robb, 1991). Debris channeled petition and deflection of water masses could and the Canary Islands (Watts and Masson, in and by canyon systems tends to show as narrow also cause gas hydrate decomposition and conse- 1995). Passive continental margins are also sites ribbons of bright backscatter, as for the Norfolk quent slope failure. During glacial periods, intensi- of slope instability and major landslides (Embley and Washington Canyons and the coalescing fied North Atlantic Intermediate Water (Boyle and Jacobi, 1986). If a large submarine landslide deposits associated with the Baltimore-Accomac and Keigwin, 1987) could deflect the warmer were to occur on a margin adjacent to a popu- slide (Fig. 2). Conversely, large sheet-like areas Gulf Stream seaward away from the U.S. conti- lated coastal area, it could be catastrophic be- of bright backscatter are associated with the nental slope. As the production of North Atlantic cause of tsunami generation. Only 71 yr ago, a blocky debris fields of large slope failures like the Intermediate Water diminishes during inter- tsunami from the landslide associated with the Albemarle-Currituck slide that undermine several glacials (Boyle and Keigwin, 1987), the Gulf magnitude 7.2 Grand Banks earthquake of 1929 canyon systems. Stream would return to its present position. Be- left 51 dead along the south coast of Newfound- Prior et al. (1986) proposed that the Albemarle- cause of their extreme sensitivity to temperature land (NOAA, 1999).
Recommended publications
  • Submarine Landslides in the Santa Barbara Channel As Potential Tsunami Sources H
    Submarine landslides in the Santa Barbara Channel as potential tsunami sources H. G. Greene, L. Y. Murai, P. Watts, N. A. Maher, M. A. Fisher, C. E. Paull, P. Eichhubl To cite this version: H. G. Greene, L. Y. Murai, P. Watts, N. A. Maher, M. A. Fisher, et al.. Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Natural Hazards and Earth System Sciences, Copernicus Publ. / European Geosciences Union, 2006, 6 (1), pp.63-88. hal-00299251 HAL Id: hal-00299251 https://hal.archives-ouvertes.fr/hal-00299251 Submitted on 16 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Natural Hazards and Earth System Sciences, 6, 63–88, 2006 SRef-ID: 1684-9981/nhess/2006-6-63 Natural Hazards European Geosciences Union and Earth © 2006 Author(s). This work is licensed System Sciences under a Creative Commons License. Submarine landslides in the Santa Barbara Channel as potential tsunami sources H. G. Greene1, L. Y. Murai2, P. Watts3, N. A. Maher4, M. A. Fisher5, C. E. Paull1, and P. Eichhubl6 1Monterey Bay Aquarium Research Institute (MBARI), 7700 Sandholdt Road, Moss Landing, CA 95039; Moss Landing Marine Laboratories, 8272 Moss Landing Road Moss Landing, CA 95039, USA 2Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA 3Applied Fluids Engineering, Inc., 5710 E.
    [Show full text]
  • Geotechnical and Geologic Constraints on Tsunamigenic Submarine Landslides
    GEOTECHNICAL AND GEOLOGIC CONSTRAINTS ON TSUNAMIGENIC SUBMARINE LANDSLIDES H.J. LEE U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 USA Abstract Modeling submarine-landslide-induced tsunamis requires many simplifications of the landslide process, although the real world is much more complicated. Clearly tsunami modelers cannot consider all facets, but there is value in being aware of the complications. This paper describes the many environments in which submarine landslides can occur and the triggers that typically initiate them. Earthquakes acting on continental or canyon slopes comprise probably the most common scenario but many other combinations of environments and triggers are possible. Surprisingly, many sediment-covered slopes in highly seismically active areas have not failed. A possible explanation for this phenomenon is a process called “seismic strengthening.” The existence of such a process reduces somewhat the risk of landslide tsunamis along active margins while maintaining the risk along passive margins. Once a trigger has initiated a landslide in one of the vulnerable environments, failed masses begin to move downslope. Depending upon initial density state, the masses may convert into fluid-like sediment flows or even more dilute turbidity currents. A model for quantifying the tendency to flow is provided. Finally, a case study of the landslides and landslide tsunamis that occurred in Port Valdez, Alaska, during the 1964 Great Alaska Earthquake is provided. The excellent data base, including before and after bathymetry, shows that both large rigid block motion and mobilized sediment flows can occur near each other during the same event. The intact blocks are more efficient in producing tsunamis but the sediment flow can move farther and can erode and entrain considerable bottom sediment as they progress across the seafloor.
    [Show full text]
  • Submarine Slope Stability
    Submarine Slope Stability Based on M.S. Engineering Thesis Development of a Database and Assessment of Seafloor Slope Stability Based on Published Literature By James Johnathan Hance, B. S. The University of Texas at Austin Supervisor Dr. Stephen G. Wright The University of Texas at Austin Project Report Prepared for the Minerals Management Service Under the MMS/OTRC Cooperative Research Agreement 1435-01-99-CA-31003 Task Order 18217 MMS Project 421 August 2003 OTRC Library Number: 8/03B121 For more information contact: Offshore Technology Research Center Texas A&M University 1200 Mariner Drive College Station, Texas 77845-3400 (979) 845-6000 or Offshore Technology Research Center The University of Texas at Austin 1 University Station C3700 Austin, Texas 78712-0318 (512) 471-6989 A National Science Foundation Graduated Engineering Research Center Submarine Slope Stability Executive Summary Background and Context Oil and gas developments often require placing equipment, e.g., subsea wells, pipelines and flowlines, foundation systems for floating structures, in areas with sloping seafloors. Submarine slope failures can occur in such areas and create soil slides. Thus the stability of submarine slopes must be considered in selecting the site for installing and designing seafloor equipment. Assessing submarine slope stability requires estimating the likelihood, extent, and impact of a slide during the lifetime of the facility. This assessment is difficult due to the large difference in time scales between the project life (10’s of years) and the geologic processes and triggering mechanisms that cause the slides (10,000’s of years) Such an assessment is best approached through a probabilistic risk analysis that considers the risks to the equipment; the causes, likelihood, and behavior of submarine slides; and the uncertainties.
    [Show full text]
  • Submarine Landslide Flows Simulation Through Centrifuge Modelling
    SUBMARINE LANDSLIDE FLOWS SIMULATION THROUGH CENTRIFUGE MODELLING by Chang Shin GUE A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge Churchill College January 2012 “Do not go where the path may lead, go instead where there is no path and leave a trail” - Ralph Waldo Emerson “If I have seen further than others, it is by standing upon the shoulders of giants” - Isaac Newton “Continuous effort – not strength or intelligence – is the key to unlocking our potential” - Winston Churchill ABSTRACT SUBMARINE LANDSLIDE FLOWS SIMULATION THROUGH CENTRIFUGE MODELLING Chang Shin GUE Landslides occur both onshore and offshore. However, little attention has been given to offshore landslides (submarine landslides). Submarine landslides have significant impacts and consequences on offshore and coastal facilities. The unique characteristics of submarine landslides include large mass movements and long travel distances at very gentle slopes. This thesis is concerned with developing centrifuge scaling laws for submarine landslide flows through the study of modelling submarine landslide flows in a mini-drum centrifuge. A series of tests are conducted at different gravity fields in order to understand the scaling laws involved in the simulation of submarine landslide flows. The model slope is instrumented with miniature sensors for measurements of pore pressures at different locations beneath the landslide flow. A series of digital cameras are used to capture the landslide flow in flight. Numerical studies are also carried out in order to compare the results obtained with the data from the centrifuge tests. The Depth Averaged Material Point Method (DAMPM) is used in the numerical simulations to deal with large deformation (such as the long runout of submarine landslide flows).
    [Show full text]
  • Chapter 2 Spatial Patterns for Landslide Ecology Lawrence R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2013 Chapter 2 Spatial patterns for Landslide Ecology Lawrence R. Walker University of Nevada, [email protected] Aaron B. Shiels USDA/APHIS/WS National Wildlife Research Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Walker, Lawrence R. and Shiels, Aaron B., "Chapter 2 Spatial patterns for Landslide Ecology" (2013). USDA National Wildlife Research Center - Staff Publications. 1641. https://digitalcommons.unl.edu/icwdm_usdanwrc/1641 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in LANDSLIDE ECOLOGY (New York: Cambridge University Press, 2013), by Lawrence R. Walker (University of Nevada, Las Vegas) and Aaron B. Shiels (USDA National Wildlife Research Center, Hila, Hawai’i). This document is a U.S. government work, not subject to copyright in the United States. 2 Spatial patterns Key points 1. Remote sensing tools have greatly improved the mapping of both terrestrial and submarine landslides, particularly at global scales. At regional and local scales, environmental correlates are being found that help interpret spatial patterns and related ecological processes on landslides. 2. Landslides are frequent on only 4% of the terrestrial landscape and coverage varies over time because new landslides do not occur at a constant rate.
    [Show full text]
  • Wave-Induced Seafloor Instability in the Yellow River Delta
    Journal of Marine Science and Engineering Article Wave-Induced Seafloor Instability in the Yellow River Delta: Flume Experiments Xiuhai Wang 1,2,3, Chaoqi Zhu 1,2,3,4,* and Hongjun Liu 1,2,3,* 1 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; [email protected] 2 Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266000, China 3 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China 4 Shandong Provincial Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation, Qingdao 266000, China * Correspondence: [email protected] (C.Z.); [email protected] (H.L.) Received: 11 August 2019; Accepted: 1 October 2019; Published: 6 October 2019 Abstract: Geological disasters of seabed instability are widely distributed in the Yellow River Delta, posing a serious threat to the safety of offshore oil platforms and submarine pipelines. Waves act as one of the main factors causing the frequent occurrence of instabilities in the region. In order to explore the soil failure mode and the law for pore pressure response of the subaqueous Yellow River Delta under wave actions, in-lab flume tank experiments were conducted in this paper. In the experiments, wave loads were applied with a duration of 1 hour each day for 7 consecutive days; pore water pressure data of the soil under wave action were acquired, and penetration strength data of the sediments were determined after wave action. The results showed that the fine-grained seabed presented an arc-shaped oscillation failure form under wave action.
    [Show full text]
  • Detectability of Seismic Waves from the Submarine Landslide That Caused the 1998 Papua New Guinea Tsunami
    Detectability of seismic waves from the submarine landslide that caused the 1998 Papua New Guinea tsunami Akio Katsumata1, Yasuhiro Yoshida2, Kenji Nakata1, Kenichi Fujita1, Masayuki Tanaka1, Koji Tamaribuchi1, Takahito Nishimiya1, and Akio Kobayashi1 1Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki Prefecture, Japan 2Meteorological College, Japan Meteorological Agency, 7-4-81 Asahi-cho, Kashiwa, Chiba Prefecture, Japan Correspondence: Akio Katsumata ([email protected]) Abstract. On 17 July 1998, a tsunami caused serious damage on the northern coast of Papua New Guinea about 20 min after the mainshock of an Mw 7.0 earthquake. The tsunami has been attributed to a submarine landslide that occurred about 13 min after the mainshock because its arrival at the coast was too late and its height too great to be the direct result of the fault slip of the earthquake. Bathymetric data recorded after the tsunami revealed an amphitheater-like structure that was consistent with a 5 recent submarine landslide. Most current tsunami warning systems are based on analysis of the early arrivals of seismic waves generated by an earthquake. In this study we investigated whether evidence of the landslide could be identified in the coda waves recorded after the mainshock. Based on previous studies of the tsunami source, we constructed synthetic seismograms to represent the submarine landslide and compared them to the observed coda waves of the preceding earthquake, with particular attention to the period around 13 min after the mainshock ::in ::::::::frequency::::::ranges::::close::to:::the::::::::landslide:::::::duration. We found phases 10 possibly corresponding to the landslide event.
    [Show full text]
  • Goals, Strategies, Priorities and Tasks
    GOALS, STRATEGIES, PRIORITIES AND TASKS OF A NATIONAL LANDSLIDE HAZARD-REDUCTION PROGRAM By U.S. Geological Survey U.S. Geological Survey Open-file Report 81-987 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey editorial standards and nomenclature CONTENTS Page Preface ............................................................. 1 Introduction •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 3 Proposed National Program for Ground Failure Research ••••••••••••••••• 4 Role of the U.S. Geological Survey •••••••••••••••••••••••••••••••• 4 Goals of a National Program ••••••••••••••••••••••••••••••••••••••• 4 Strategies for U.S. Geological Survey Participation •••••••••••••• 4 De fini tions ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5 Goals for Landslide Hazard Mapping and Risk Evaluation •••••••••••••••• 6 Strategies for Mapping Hazards on Natural Slopes •••••••••••••••••• 1 Reconnaissance Approach--Simple Inventories •••••••••••••••••• 1 Intermediate Types of Landslide Inventories •••••••••••••••••• 9 Detailed Inventories ••••••••••••••••••••••••••••••••••••••••• 10 Terrain Analyses ••••••••••••••••••••••••••••••••••••••••••••• 12 Slope Stability Maps ••••••••••••••••••••••••••••••••••••••••• 14 Landslide Hazard Maps •••••••••••••••••••••••••••••••••••••••• 14 Risk Maps •••••••••••••••••••••••••••••••••••••••••••••••••••• 20 La nd -U se Maps •••••••••••••••••••••••••••••••••••••••••••••••• 20 Map Scales .................................................. 20 Present
    [Show full text]
  • Topographic Characteristics of the Submarine Taiwan Orogen L
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, F02009, doi:10.1029/2005JF000314, 2006 Topographic characteristics of the submarine Taiwan orogen L. A. Ramsey,1 N. Hovius,2 D. Lague,3 and C.-S. Liu4 Received 21 March 2005; revised 15 December 2005; accepted 6 January 2006; published 18 May 2006. [1] A complete digital elevation and bathymetry model of Taiwan provides the opportunity to characterize the topography of an emerging mountain belt. The orogen appears to form a continuous wedge of constant slope extending from the subaerial peaks to the submarine basin. We compare submarine channel systems from the east coast of Taiwan with their subaerial counterparts and document a number of fundamental similarities between the two environments. The submarine channel systems form a dendritic network with distinct hillslopes and channels. There is minimal sediment input from the subaerial landscape and sea level changes are insignificant, suggesting that the submarine topography is sculpted by offshore processes alone. We implement a range of geomorphic criteria, widely applied to subaerial digital elevation models, and explore the erosional processes responsible for sculpting the submarine and subaerial environments. The headwaters of the submarine channels have steep, straight slopes and a low slope-area scaling exponent, reminiscent of subaerial headwaters that are dominated by bedrock landslides. The main trunk streams offshore have concave-up longitudinal profiles, extensive knickpoints, and a slope-area scaling exponent similar in form to the onshore fluvial domain. We compare the driving mechanisms of the likely offshore erosional processes, primarily debris flows and turbidity currents, with subaerial fluvial incision. The results have important implications for reading the geomorphic signals of the submarine and subaerial landscapes, for understanding the links between the onshore and offshore environments, and, more widely, for focusing the future research of the submarine slope.
    [Show full text]
  • Case Study of Tsunami Evaluation Triggered by Submarine Landslide
    Journal of Natural Disaster Science, Volume 39,Number 1,2018,pp1-18 Case Study of Tsunami Evaluation Triggered by Submarine Landslide Yoshikane MURAKAMI*, Takemi SHIKATA**, Koji TONOMO** *Centers for Civil Engineering and Architectures, Kansai Electric Power Co., Inc. **Port and Coastal Engineering Group, Newjec Inc. (Received: Feb.2, 2018 Accepted: May.10, 2018) Abstract It is necessary to establish a consistent evaluation scheme for estimating the height of tsunamis triggered by submarine landslides, since a standard framework for evaluation has not been established even though several models for calculation have been proposed and applied in practice. In this study, we propose a method of evaluating the height of a tsunami triggered by a submarine landslide using three schemes – the KLS model, Watts model and modified-KLS model for calculation, by setting the detailed profile of the submarine landslide based on the marine geological map and reanalysis of the marine acoustic wave exploration records. As a result of the comparison of the tsunami height evaluation produced by each model, it was suggested that, comparing the experimental result and those of other methods, a safe-side evaluation result might be obtained by the KLS model, applying the maximum sliding velocity calculated by the Watts model as a parameter. Keywords: submarine landslide, landslide-triggered tsunami, tsunami height evaluation, new regulatory requirements for nuclear power plants, standard tsunami 1. INTRODUCTION In cases of tsunami triggered by submarine landslide, it is reported that although the frequency of occurrence is exceptionally low compared with the more common seismic tsunami triggered by marine fault activity, these may nonetheless on rare occasions inflict extensive damage, such as in the 1771 Meiwa-Yaeyama earthquake tsunami.
    [Show full text]
  • Numerical Modelling of Submarine Landslide Impact on Offshore Free
    NUMERICAL MODELLING OF SUBMARINE LANDSLIDE IMPACT ON OFFSHORE FREE-SPANNING PIPELINES by © DIPONKAR SAHA A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Engineering (Civil Engineering) Faculty of Engineering and Applied Science Memorial University of Newfoundland May, 2019 St. John’s Newfoundland Canada i ABSTRACT Offshore pipelines are one of the most efficient and reliable modes of transportation of oil and gas. In shallow water conditions, the common practice is to bury the pipeline through trenching and backfilling. However, in deep water environments, pipeline burial through trenching is not very practical or cost-effective; therefore, the pipelines are often laid on the seafloor. Depending upon topography and seafloor environments, sections of as-laid (or surface-laid) pipelines might transform into the free-spanning pipeline. The suspended section of the pipeline might experience the impact of submarine landslides those frequently occur in continental slopes. The impact of debris flow, which originates from submarine landslides and travels in the downslope direction at high speed, might cause severe damage and even break out of these pipelines. Quantifying the impact forces on free-spanning pipeline sections is one of the key requirements in the design. In the present study, debris flow impact is numerically modelled using two software packages: (i) Abaqus finite element (FE) and (ii) ANSYS CFX based on a Computation Fluid Dynamics (CFD) approach. Implementing appropriate models for soil and water together with new approaches for modeling pipe–soil–water interface behaviour, the process of impact, including soft clay flow around the pipe, is successfully simulated using the above-mentioned approaches.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italics refer to Figures. Page numbers in bold refer to Tables. Acoustic Doppler Current Profilers (ADCP) 606, Barra Fan Ice Stream (BFIS) 569, 580 611, 613 basal lineations 515 Adriatic Basin, offshore submarine landslides 175 Basilisk model 30–31 Aegean Sea see Nisyros Volcano, Santorini Beaufort Gyre 323 eruption Beaufort Sea, subaqueous mass movement studies Aeolian Islands, landslides 64 104, 105 AFEN Slide 174, 177–178, 178, 179, 180, 181, 182, Bermuda 42 183, 184–187 BIG’95 508 Africa, SE (offshore), continental margin 267 BingClaw model 42–44 Africa, West (offshore) see Congo Canyon Borneo (Kalimantan) see Makassar Strait Agulhas currents 268 British Columbia see Douglas Channel; Fraser Agulhas Slump 268 River Delta Agulhas–Falkland Fracture Zone 268 British–Irish Ice Sheet (BIIS) 569 Alaska see Lituya Bay also Taan Fjord Bulli slide 27–28 Alborán Basin 497, 499 Busu River delta (PNG) 219–228, 220, 221, 227, submarine landslide morphometric study 501, 228, 229 504, 508 Bute Inlet (Canadian Pacific Coast), turbidity cur- Alboran Sea, submarine landslides 175 rent study 609, 610, 613 Alentejo Basin hydrogeological modelling 290 Byron Slide (Australia) 4, 28–38, 28, 29, 30, 31, 33, methods 291–292 34, 36 results 294–296 results discussed 296–298 Cádiz, Gulf of 497 summary 298 submarine landslide morphometric study 501, Alpha Ridge (Arctic Ocean) 7, 323 504, 508, 509 mass wasting study 324–337, 326, 327, 329 Caldas Tear 312 alpine environments see glacial California, river systems 455, 456, 457 alpine lake study
    [Show full text]