(Bead Before the Paleontological Society December 28,1916) CONTENTS Pa Gf Summary

Total Page:16

File Type:pdf, Size:1020Kb

(Bead Before the Paleontological Society December 28,1916) CONTENTS Pa Gf Summary Downloaded from gsabulletin.gsapubs.org on February 10, 2016 BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA V o l . 29, pp. 245-280 J u n e 30, 1918 PROCEEDINGS OF THE PALEONTOLOGICAL SOCIETY AGE OF THE AMERICAN MORRISON AND EAST AFRICAN TENDAGURTJ FORMATIONS1 BY CHARLES SCHÜCHERT (Bead before the Paleontological Society December 28,1916) CONTENTS Pa gf Summary............................................................................................ ............................. 246 The Morrison and Sundance formations................................................................ 248 Names applied to the Morrison........................................................................ 248 Characteristics and distribution....................................................................... 248 .Relation to adJacent formations...................................................................... 250 Description of typical Sundance and Morrison sections......................................251 General reference.................................................................................................. 251 Oil Creek, below Garden Park, Colorado........................................................ 252 Como Bluff, Wyoming.......................................................................................... 252 Freezeout Hills, Wyoming."............................................................................. 253 Northwestern side' of Freezeout Hills, Wyoming..........................................254 Eastern side of Freezeout Hills, Wyoming.................................................... 254 Correlation of Sundance and Morrison formations..............................................256 Opinions and conclusion as to age of the Sundance....................................256 Age of the Morrison............................................................................................ 259 General statement......................................................................................... 259 Evidence of the plants............................................................................... 260 Evidence of the invertebrates.................................................................. 260 Evidence of the dinosaurs......................................................................... 261 Correlations.................................................................................................... 261 Conclusions..................................................................................................... 263 The Tendaguru series.................................................................................................. 264 Discovery................................................................................................................. 264 General results...................................................................................................... 264 General stratigraphy.......................................................................................... 265 Section in detail........................................................................“ .......................268 Conclusions as to habits and habitats of African dinosaurs..................... 271 Correlation of the Tendaguru series............................................................275 Correlations by the Germans................................................................. 275 Correlations on basis of dinosaurs......................................................... 276 Correlations on basis of marine invertebrates..................................... 277 Conclusions by Buckman........................................................................... 278 Conclusions by Schuchert........................................................................279 1 Manuscript received by the Secretary of the Society September 28, 1917. (245) Downloaded from gsabulletin.gsapubs.org on February 10, 2016 246 C. SCHUCHERT----MORRISON AND TENDAGURU FORMATIONS S um m ary This study was begun with the idea that the conclusion would he the certain transferal of the Morrison to the Lower Cretaceous or Comanchian. The writer, from a preliminary study made two years ago of some of the results of the findings in Bast Africa, was led to this belief, but as the final study progressed it became plain that if the Morrison could be shown to lie of Comanchian time at all it would have to he referred to the earliest part of this period. To make certain of the facts, the writer took up correspondence with several of his friends, resulting in the conclusion that for the present the Morrison is best left in the Jurassic, where it has been placed by most American paleontologists. The marine Sundance beneath the Morrison has several forms of am­ monites, one of which is Cardioceras cordiforme, a species of great strati­ graphie significance. If it is a genuine Cardioceras, its age is early Upper Jurassic (Corallian = Argovian), and if a Quenstedtoceras, then latest Middle Jurassic (Oxfordian = Divesian). On the other hand, it appears to be definitely excluded from Amceboceras, and hence from the Kim- nieridgian series. Accordingly, the Sundance is either of latest Middle Jurassic or earliest Upper Jurassic. There is, therefore, in the Great Plains country a long time interval before* marine strata are again met with in the Purgatoire formation, one of the members of the Washita series of the Comanchian. In this interval was deposited the Morrison formation of fresh-water origin. U ntil a few years ago it was widely held that the Morrison lies with unbroken sequence on the Sundance, and since the latter is of either late Middle or earliest Upper Jurassic time, it followed, since they were in continuous deposition, that the former must also belong to this period. Now most stratigraphers are agreed that the two formations are not hound together by transition beds, and, further, that the Morrison is a trans- gressive series of fresh-water strata over the marine Sundance. In many places the two formations do not follow one another and the Morrison has a strikingly different geographic distribution from the Sundance. The latter extends, ever widening in area, to the north and northwest into the Pacific, while the Morrison distribution is greatest in the oppo­ site direction, widening to the south. Pardee has recently shown that there is no Morrison in the Garrison and Phillipsburg quadrangles of Montana, and that the Kootenai here rests directly on the Sundance. Therefore in correlating the Morrison we have no means of determining the length of time represented by the break or disconformity between it and the Sundance, and until recently the organic content of the former Downloaded from gsabulletin.gsapubs.org on February 10, 2016 SUMMARY 247 was not checked into the marine sequence. Even now all that we can safely state is that it appears more probable that the Morrison is of Upper Jurassic age than of early Lower Cretaceous time. What caused the withdrawal of the Sundance or Logan sea is not yet known, but it may have resulted from the elevation of the Sierra Nevada Mountains, a diastropliic movement of great magnitude. In any event, after Sundance time the Pacific Ocean never again spread east of the western Cordilleras. Not only this, but the marginal overlaps of this ocean were smaller in area after Jurassic time than they had been before this period. For a time the writer sought to connect the deposition of the Morrison with the Sierra Nevada crustal movement and thought that it followed the culmination of this diastrophism. Lee, however, empha­ sizes the close paleophysiographic similarities of the environments of the Sundance, Morrison, and Purgatoire formations, indicating that the Sierra Nevada movement did not affect the area of these deposits lying far to the eastward. From the synopsis presented beyond of the very interesting work of German paleontologists, it is seen that in the Tendaguru of East Africa there are two marine zones replete with guide fossils, and that beneath each one there is a dinosaur horizon having sauropods very similar to those in the Morrison. The whole series is regarded as one of continuous deposition and is replete with interest, not only because of the varied fossils of the sea and land, but further in that we get here a better under­ standing than heretofore as to the habitats of the sauropod dinosaurs. The upper marine Trigonia schwarzi zone is clearly of Lower Cretaceous or Neocomian time, while the middle T. smeei zone is of late Jurassic or more definitely of early Upper Kimmeridgian time. Accordingly the German stratigraphers refer the upper dinosaur horizon to the Lower Cretaceous and correlate it with the Wealden of Neocomian age, while the middle dinosaur horizon is regarded as of the older Kimmeridgian. The dinosaurs, and more especially the sauropods, are held, as a result of the preliminary studies, to be very much alike in both horizons, though later on it may be seen that they are somewhat different in each level. In any event, they are very much like those of the Morrison and thus help to fix the time of the American formation. As the ammonites of the Trigonia smeei zone are of the older Kim­ meridgian and as in the standard sections of western Europe there is still considerable Jurassic time left, it would appear more natural to regard the upper dinosaur zone as filling this time, because of the con­ tinuous deposition of the Tendaguru series. This is not the
Recommended publications
  • Diversité Des Dinosaures Théropodes Dans Le Jurassique Des Falaises Des Vaches Noires (Calvados, Normandie)
    Parcours SYSTÉMATIQUE, ÉVOLUTION, PALÉONTOLOGIE Master Master Sciences de l’Univers, environnement, écologie Evolution, Patrimoine naturel et Sociétés Année 2018-2019 Mémoire de M2 SEP MONVOISIN Evariste Diversité des dinosaures théropodes dans le Jurassique des Falaises des Vaches Noires (Calvados, Normandie). Représentation artistique de Streptospondylus altdorfensis Meyer, 1832 devant les Falaises des Vaches Noires (Calvados, Normandie). Sous la direction de : Laurent Picot, Eric Buffetaut et Ronan Allain UMR 7207 - Centre de recherche sur la Paléospace l’Odyssée – Musée Paléobiodiversité et les scientifique de Villers-sur-Mer, Paléoenvironnements (CR2P), MNHN, Calvados, Normandie CNRS, Sorbonne Science Université Je tiens à remercier les personnes qui ont permis la réalisation de ce stage. Tout d’abord je remercie mes maîtres de stage : Laurent Picot (Paléospace), Eric Buffetaut (CNRS/UMR 8538) et Ronan Allain (MNHN/CR2P) pour leur encadrement, le temps qu’ils m’ont consacré et leurs conseils avisés. Je veux aussi remercier tous les propriétaires de fossiles qui ont accepté de prêter leurs précieux spécimens afin de réaliser cette étude : Gisèle et Bernard Anicolas, Héléna Bülow et Jocelyne Fouquet-Bülow, Elisabeth et Gérard Pennetier, Jean-Philippe Pezy, Nathalie Poussy pour ses dons au Muséum National d’Histoire Naturelle, l’Association Paléontologique de Villers-sur-Mer pour les collections Enos et Drijard, la Mairie d’Houlgate pour la collection Nicolet et bien sûr les collections du Paléospace. Je remercie le Muséum National d’Histoire Naturelle pour m’avoir accueilli pendant le premier mois de stage et pour m’avoir permis d’étudier les spécimens provenant des Vaches Noires qui y sont conservés. Je tiens à remercier l’équipe de dégagement du Museum notamment Colas Bouillet pour sa préparation du fémur étudié pendant le premier mois de stage et Lilian Cazes pour les photos des spécimens du MNHN.
    [Show full text]
  • A Revision of the Classification of the Plesiosauria with a Synopsis of the Stratigraphical and Geographical Distribution Of
    LUNDS UNIVERSITETS ARSSKRIFT. N. F. Avd. 2. Bd 59. Nr l. KUNGL. FYSIOGRAFISKA SÅLLSKAPETS HANDLINGAR, N. F. Bd 74. Nr 1. A REVISION OF THE CLASSIFICATION OF THE PLESIOSAURIA WITH A SYNOPSIS OF THE STRATIGRAPHICAL AND GEOGRAPHICAL DISTRIBUTION OF THE GROUP BY PER OVE PERSSON LUND C. W. K. GLEER UP Read before the Royal Physiographic Society, February 13, 1963. LUND HÅKAN OHLSSONS BOKTRYCKERI l 9 6 3 l. Introduction The sub-order Plesiosauria is one of the best known of the Mesozoic Reptile groups, but, as emphasized by KuHN (1961, p. 75) and other authors, its classification is still not satisfactory, and needs a thorough revision. The present paper is an attempt at such a revision, and includes also a tabular synopsis of the stratigraphical and geo­ graphical distribution of the group. Some of the species are discussed in the text (pp. 17-22). The synopsis is completed with seven maps (figs. 2-8, pp. 10-16), a selective synonym list (pp. 41-42), and a list of rejected species (pp. 42-43). Some forms which have been erroneously referred to the Plesiosauria are also briefly mentioned ("Non-Plesiosaurians", p. 43). - The numerals in braekets after the generic and specific names in the text refer to the tabular synopsis, in which the different forms are numbered in successional order. The author has exaroined all material available from Sweden, Australia and Spitzbergen (PERSSON 1954, 1959, 1960, 1962, 1962a); the major part of the material from the British Isles, France, Belgium and Luxembourg; some of the German spec­ imens; certain specimens from New Zealand, now in the British Museum (see LYDEK­ KER 1889, pp.
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • A Graveyard of Titans
    A graveyard of titans Gerhard Maier. 2003. African Dinosaurs Unearthed: The Tenda− prominent scientists—or those who would later rise to prominence— guru Expeditions. Indiana University Press, Bloomington and Indi− participated in the Tendaguru projects, among them Eberhard Fraas, anapolis, USA. 380 pages (hardcover). EUR 43, USD 49.95. Werner Janensch, Edwin Hennig, Hans Reck, Louis Leakey, and Rex Parrington. Of more general interest, though, is the uniquely long, deep Most paleontologists can appreciate the fact that public fascination with entwinement of Tendaguru dinosaurs with 20th century geopolitics. dinosaurs brings needed visibility to their discipline. Far fewer, how− Field investigations tookplace during the colonial period, and their his − ever, have cause to follow—let alone read—the rapidly proliferating tory provides insight into European–native interactions at that time. number of “specialty” books aimed at one of a dwindling number of un− Within the paleontological realm, the Tendaguru projects were occupied niches in the existing literature on dinosaurs. Though it does uniquely and dramatically affected by the two world wars. During the contain much for the dinosaur enthusiast, this is not such a specialty first, German operations were abruptly terminated (Hans Reck, in the book—which is why I recommend it as a “must read” for anyone inter− field at the onset of hostilities, was captured and imprisoned for two ested in the history of paleontology and of science in general. years), a large number of fossils lost, and colonial rule was handed over In African Dinosaurs Unearthed, Maier chronicles the discovery, ex− to England—thereby enabling the British Museum to exploit Tenda− cavation, exhibition, and study of dinosaurs from and around Tendaguru guru’s fossil beds in following years.
    [Show full text]
  • Palaeoecology and Depositional Environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 19-44 10.11.2002 Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania) Martin Aberhan ', Robert Bussert2, Wolf-Dieter Heinrich', Eckhart Schrank2, Stephan Schultkal, Benjamin Sames3, Jiirgen =wet4 & Saidi Kapilima5 With 6 figures, 2 tables, and 2 plates Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German- Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinverte- brates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere.
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]
  • Mollusca, Bivalvia): Protocardiinae, Laevicardiinae, Lahilliinae, Tulongocardiinae Subfam
    Zoologica Scripta, Vol. 24, No. 4, pp. 321-346, 1995 Pergamon Elsevier Science Ltd The Norwegian Academy of Science and Letters Printed in Great Britain 0300-3256(95)00011-9 Phytogeny of the Cardiidae (Mollusca, Bivalvia): Protocardiinae, Laevicardiinae, Lahilliinae, Tulongocardiinae subfam. n. and Pleuriocardiinae subfam. n. JAY A. SCHNEIDER Accepted 7 June 1995 Schneider, J.A. 1995. Phytogeny of the Cardiidae (Mollusca, Bivalvia): Protocardiinae, Laevicar- diinae, Lahilliinae, Tulongocardiinae subfam.n. and Pleuriocardiinae subfam.n.—Zool. Scr. 24: 321-346. In a preliminary cladistic analysis of the bivalve family Cardiidae (Schneider 1992), members of the subfamilies Protocardiinae, Lahilliinae, and Laevicardiinae, plus the genus Nemocardium, were found to be the least derived taxa of cardiids. A cladistic analysis is undertaken of the genera and subgenera of these cardiid taxa, plus several Mesozoic taxa which have never been assigned to any subfamily. The Late Triassic Tulongocardium, which is placed in Tulongocardiinae subfam. n., is the sister taxon to all other cardiids. Protocardiinae is restricted to the genus Protocardia. Most other Mesozoic taxa which have been placed in the Protocardiinae are found to be members of the Lahilliinae. Nemocardium is placed in the Laevicardiinae. Incacardium, Pleuriocardia, and Dochmocardia form a monophyletic group, Pleuriocardiinae subfam. n. Pleuriocardiinae, Laevi- cardiinae, and the remaining members of the Cardiidae (herein informally termed "cucardiids") form a monophyletic group. Jay A. Schneider, Smithsonian Tropical Research Institute, Box2072, Balboa, Republic of Panama. Present address: Department of Geology, Youngstown State University, Youngstown, OH 44555- 3672, C/.S./l. re7..2;6-742-77JJ;Fa%.276-742-/7J4 Introduction Bivalves of the family Cardiidae (cockles and giant clams) Outgroup Palaeocardita originated in the Late Triassic and have a present-day Septocardia diversity of nearly 200 species (Rosewater 1965; Fischer- Protocardia | PROTOCARDIINAE Integricardium I Piette 1977).
    [Show full text]
  • Index of Subjects
    Cambridge University Press 978-1-108-47594-5 — Dinosaurs 4th Edition Index More Information INDEX OF SUBJECTS – – – A Zuul, 275 276 Barrett, Paul, 98, 335 336, 406, 446 447 Ankylosauridae Barrick, R, 383–384 acetabulum, 71, 487 characteristics of, 271–273 basal dinosauromorph, 101 acromial process, 271, 273, 487 cladogram of, 281 basal Iguanodontia, 337 actual diversity, 398 defined, 488 basal Ornithopoda, 336 adenosine diphosphate, see ADP evolution of, 279 Bates, K. T., 236, 360 adenosine triphosphate, see ATP ankylosaurids, 275–276 beak, 489 ADP (adenosine diphosphate), 390, 487 anpsids, 76 belief systems, 474, 489 advanced characters, 55, 487 antediluvian period, 422, 488 Bell, P. R., 162 aerobic metabolism, 391, 487 anterior position, 488 bennettitaleans, 403, 489 – age determination (dinosaur), 354 357 antorbital fenestra, 80, 488 benthic organisms, 464, 489 Age of Dinosaurs, 204, 404–405 Arbour, Victoria, 277 Benton, M. J., 2, 104, 144, 395, 402–403, akinetic movement, see kinetic movement Archibald, J. D., 467, 469 444–445, 477–478 Alexander, R. M., 361 Archosauria, 80, 88–90, 203, 488 Berman, D. S, 236–237 allometry, 351, 487 Archosauromorpha, 79–81, 488 Beurien, Karl, 435 altricial offspring, 230, 487 archosauromorphs, 401 bidirectional respiration, 350 Alvarez, Luis, 455 archosaurs, 203, 401 Big Al, 142 – Alvarez, Walter, 442, 454 455, 481 artifacts, 395 biogeography, 313, 489 Alvarezsauridae, 487 Asaro, Frank, 455 biomass, 415, 489 – alvarezsaurs, 168 169 ascending process of the astragalus, 488 biosphere, 2 alveolus/alveoli,
    [Show full text]
  • Lyons SCIENCE 2021 the Influence of Juvenile Dinosaurs SUPPL.Pdf
    science.sciencemag.org/content/371/6532/941/suppl/DC1 Supplementary Materials for The influence of juvenile dinosaurs on community structure and diversity Katlin Schroeder*, S. Kathleen Lyons, Felisa A. Smith *Corresponding author. Email: [email protected] Published 26 February 2021, Science 371, 941 (2021) DOI: 10.1126/science.abd9220 This PDF file includes: Materials and Methods Supplementary Text Figs. S1 and S2 Tables S1 to S7 References Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/371/6532/941/suppl/DC1) MDAR Reproducibility Checklist (PDF) Materials and Methods Data Dinosaur assemblages were identified by downloading all vertebrate occurrences known to species or genus level between 200Ma and 65MA from the Paleobiology Database (PaleoDB 30 https://paleobiodb.org/#/ download 6 August, 2018). Using associated depositional environment and taxonomic information, the vertebrate database was limited to only terrestrial organisms, excluding amphibians, pseudosuchians, champsosaurs and ichnotaxa. Taxa present in formations were confirmed against the most recent available literature, as of November, 2020. Synonymous taxa or otherwise duplicated taxa were removed. Taxa that could not be identified to genus level 35 were included as “Taxon X”. GPS locality data for all formations between 200MA and 65MA was downloaded from PaleoDB to create a minimally convex polygon for each possible formation. Any attempt to recreate local assemblages must include all potentially interacting species, while excluding those that would have been separated by either space or time. We argue it is 40 acceptable to substitute formation for home range in the case of non-avian dinosaurs, as range increases with body size.
    [Show full text]
  • The Tendaguru Formation (Late Jurassic to Early Cretaceous, Southern Tanzania): Definition, Palaeoenvironments, and Sequence Stratigraphy
    Fossil Record 12 (2) 2009, 141–174 / DOI 10.1002/mmng.200900004 The Tendaguru Formation (Late Jurassic to Early Cretaceous, southern Tanzania): definition, palaeoenvironments, and sequence stratigraphy Robert Bussert1, Wolf-Dieter Heinrich2 and Martin Aberhan*,2 1 Institut fr Angewandte Geowissenschaften, Technische Universitt Berlin, Skr. BH 2, Ernst-Reuter-Platz 1, 10587 Berlin, Germany. E-mail: [email protected] 2 Museum fr Naturkunde – Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany. E-mail: [email protected]; [email protected] Abstract Received 8 December 2008 The well-known Late Jurassic to Early Cretaceous Tendaguru Beds of southern Tanza- Accepted 15 February 2009 nia have yielded fossil plant remains, invertebrates and vertebrates, notably dinosaurs, Published 3 August 2009 of exceptional scientific importance. Based on data of the German-Tanzanian Tenda- guru Expedition 2000 and previous studies, and in accordance with the international stratigraphic guide, we raise the Tendaguru Beds to formational rank and recognise six members (from bottom to top): Lower Dinosaur Member, Nerinella Member, Middle Dinosaur Member, Indotrigonia africana Member, Upper Dinosaur Member, and Ruti- trigonia bornhardti-schwarzi Member. We characterise and discuss each member in de- tail in terms of derivation of name, definition of a type section, distribution, thickness, lithofacies, boundaries, palaeontology, and age. The age of the whole formation appar- ently ranges at least from the middle Oxfordian to the Valanginian through Hauterivian or possibly Aptian. The Tendaguru Formation constitutes a cyclic sedimentary succes- sion, consisting of three marginal marine, sandstone-dominated depositional units and three predominantly coastal to tidal plain, fine-grained depositional units with dinosaur remains.
    [Show full text]
  • Redalyc.Upper Jurassic Ammonites and Bivalves from the Cucurpe
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Villaseñor, Ana Bertha; González Léon, Carlos M.; Lawton, Timothy F.; Aberhan, Martin Upper Jurassic ammonites and bivalves from the Cucurpe Formation, Sonora (Mexico) Revista Mexicana de Ciencias Geológicas, vol. 22, núm. 1, 2005, pp. 65-87 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57222107 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Ciencias Geológicas,Upper v. 22, Jurassic núm. 1, ammonites 2005, p. 65-87 and bivalves from Sonora 65 Upper Jurassic ammonites and bivalves from the Cucurpe Formation, Sonora (Mexico) Ana Bertha Villaseñor1,*, Carlos M. González-León2, Timothy F. Lawton3, and Martin Aberhan4 1 Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F., Mexico. 2 Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, 83000 Hermosillo, Sonora, Mexico. 3 Department of Geological Sciences, New Mexico State University, Las Cruces, NM 88003, USA. 4 Museum für Naturkunde, Zentralinstitut der Humboldt-Universität zu Berlin, Institut für Paläontologie, Invalidenstr. 43, D-10115 Berlin, Germany. * [email protected] ABSTRACT Four new molluscan assemblages from north-central Sonora indicate that the Cucurpe Formation ranges in age from late Oxfordian to early Tithonian. These assemblages extend the known paleogeographic range of Late Jurassic Tethyan fossil groups several hundred km to the northwest and improve correlation of Upper Jurassic strata in northern Mexico.
    [Show full text]
  • The Taphonomy of Dinosaurs from the Upper Jurassic of Tendaguru (Tanzania) Based on Field Sketches of the German Tendaguru Expedition (1909-1913)1
    Mitt . Mus. Nat.kd. Berl., Geowiss. Reihe 2 (1999) 25-61 19 .10.1999 The Taphonomy of Dinosaurs from the Upper Jurassic of Tendaguru (Tanzania) Based on Field Sketches of the German Tendaguru Expedition (1909-1913)1 Wolf-Dieter Heinriche With 23 figures and 2 tables Abstract Tendaguru is one of the most important dinosaur localities in Africa . The Tendaguru Beds have produced a diverse Late Jurassic (Kimmeridgian to Tithonian) dinosaur assemblage, including sauropods (Brachiosaurus, Barosaurus, Dicraeosaurus, Janenschia), theropods (e.g., Elaphrosaurus, Ceratosaurus, Allosaurus), and ornithischians (Kentrosaurus, Dryosaurus) . Con- trary to the well studied skeletal anatomy of the Tendaguru dinosaurs, the available taphonomic information is rather limited, and a generally accepted taphonomic model has not yet been established . Assessment of unpublished excavation sketches by the German Tendaguru expedition (1909-1913) document bone assemblages of sauropod and ornithischian dinosaurs from the Middle Saurian Bed, Upper Saurian Bed, and the Transitional Sands above the Trigonia smeei Bed, and shed some light on the taphonomy of the Tendaguru dinosaurs. Stages of disarticulation range from incomplete skeletons to solitary bones, and strongly argue for carcass decay and post-mortem transport prior to burial . The sauropod bone accumulations are domi- nated by adult individuals, and juveniles are rare or missing . The occurrence of bones in different superimposed dinosaur- bearing horizons indicates that skeletal remains were accumulated over a long time span during the Late Jurassic, and the majority of the bone accumulations are probably attritional. These accumulations are likely to have resulted from long-term bone imput due to normal mortality events caused by starvation, seasonal drought, disease, old age and weakness.
    [Show full text]