Intro to Stars Starbirth 1 How Do We Know That Starbirth Is Going on Now? •We See Stars More Massive Than Sun

Total Page:16

File Type:pdf, Size:1020Kb

Intro to Stars Starbirth 1 How Do We Know That Starbirth Is Going on Now? •We See Stars More Massive Than Sun The Interstellar Medium (ISM) and Starbirth Intro to Stars Starbirth 1 How do we know that starbirth is going on now? •We see stars more massive than Sun. • Massive stars live only a few million years • Starbirth must have occurred ‘recently’ and is most likely occurring now Intro to Stars Starbirth 2 ISM = Interstellar Medium matter that’s between the stars (gas and dust) Interstellar gas: • mostly hydrogen (H) • clumps into clouds • hot, dilute gas between the clouds • neutral atoms, ions, electrons, molecules • very tenuous Intro to Stars Starbirth 3 Nebulae : plural of nebula (meaning cloud) Emission Nebulae : bright nebulae, caused by hot gases Spectrum would be ________ spectrum. • Energy from O and B stars that are inside the nebulae or near them • UV photons from the stars are absorbed by the gases in the nebulae, then given off as emission lines • Example: Orion Nebula - lines of H, O, He Intro to Stars Starbirth 4 The Rosette Nebula RED = Hydrogen GREEN = Oxygen BLUE = Sulphur APOD Intro to Stars Starbirth 5 North American Nebula APOD Intro to Stars Starbirth 6 Trifid Nebula APOD Intro to Stars Starbirth 7 M16 The Eagle Nebula more emission nebulae Intro to Stars Starbirth 8 O Star Hot - 30,000 K ionizes the H gas out to a few light years HII Region - Ionized Hydrogen HI - Neutral Zeilik 6/e Hydrogen Intro to Stars Starbirth 9 HI Region - clouds of neutral hydrogen • imagine these particles as spinning tops p+ • can spin in same direction or opposite e- Less energy to spin opposite Collisions cause them to be aligned Zeilik 6/e Intro to Stars Starbirth 10 SPACE • neutral H clouds • space between clouds filled with H gas, thin, neutral • even thinner, hotter gas (10,000 K) - ionized gases - coronal interstellar gas seen in X-ray wavelengths Intro to Stars Starbirth 11 Interstellar Molecules atoms combine at cold temperatures can vibrate or rotate, emitting or absorbing a photon vibrational => IR photon rotational => radio photon spinning => radio photon (mm wavelength) Most abundant is H2 - molecular hydrogen in UV and IR, about 2000 K Intro to Stars Starbirth 12 APOD Radio Map of Our Galaxy in CO Intro to Stars Starbirth 13 Molecular Clouds dark, dense, cold often near HII regions one sits behind the Orion Nebula Zeilik 6/e Intro to Stars Starbirth 14 Giant Molecular Clouds bulk of the ISM held together by gravity mostly H2 density ~ few hundred million kg / m3 few tens of light years 104 - 107 solar masses 10 K in center (that’s COLD!) Intro to Stars Starbirth 15 Giant H II region (ionized hydrogen) surrounds young, massive stars - found near molecular cloud complexes => play a role in star formation Zeilik 6/e Intro to Stars Starbirth 16 Table 15.2 Indicator Temperature Density Molecular clouds CO 10-50K 108 - 1015 H I Regions 21-cm rad. 50-100K 106 - 5x107 Intercloud Gas 21-cm rad. 7,000-10,000K 105 Intercloud Coronal Gas O VI 1,000,000 102 - 103 H II Regions H alpha 10,000 107 - 1010 Intro to Stars Starbirth 17 DUST (who would have thought!) One particle per football field sized cube 1% of the mass of all interstellar matter Yet it can totally block out what’s behind it. Dark Nebulae Intro to Stars Starbirth 18 The Horsehead Nebula APOD Intro to Stars Starbirth 19 APOD Intro to Stars Starbirth 20 APOD Intro to Stars Starbirth 21 Horsehead Nebula in IR APOD Intro to Stars Starbirth 22 Our Milky Way Galaxy dark nebulae Intro to Stars Starbirth 23 Dust • extinction - dimming of starlight • reddening - scattering of blue wavelength of light Reflection Nebulae • clouds of dust that reflect light from nearby stars • spectrum from a reflection nebula is the absorption spectrum of those stars • bluish in color due to scattering from dust grains Intro to Stars Starbirth 24 The Witchhead Nebula APOD Intro to Stars Starbirth 25 Merope, the Pleiades APOD Intro to Stars Starbirth 26 The Pleiades APOD Intro to Stars Starbirth 27 The Orion Nebula APOD more reflection nebulae Intro to Stars Starbirth 28 InfraRed Astronomy - Dust • dust blocks starlight for optical astronomers • IR radiation penetrates the dust • IR allows us to see the dust (glows) Dust: small, solid particles (grains) act like blackbody radiators temperature 100 K - peak in IR Intro to Stars Starbirth 29 In IR we see emission from cold dust (70K) at or near the center of the molecular cloud => dust is heated by something 70,000 Solar Lum. Zeilik 6/e Intro to Stars Starbirth 30 Dust H, O, C, N, Si H2O, CO2, NH4, silicates (O and Si) Core-Mantle Model Zeilik 6/e Intro to Stars Starbirth 31 Dust and Molecular Clouds Find a molecular cloud, you find dust. Dust is what allows the atoms to form into molecules. Gas in space is too dilute to allow atoms to be close enough to bond. Stuck on the dust grain, they can bond. Molecules form, then leave. More complex molecules form by UV processing. Intro to Stars Starbirth 32 Where is all this dust coming from? Denser grains are made in the atmosphere of supergiant stars and cool giant stars. Material streams outwards, temperature drops, solids condense. Star dust …. Intro to Stars Starbirth 33 Starbirth : The Models Born from interstellar clouds by gravitational collapse. • cloud has enough mass • low temperature • contracts from its own gravity Gravitational potential energy => kinetic energy (protostar) What happens as a result ? Intro to Stars Starbirth 34 Temperature gets hot enough for fusion reactions and voila! A Star is Born !! Intro to Stars Starbirth 35 After birth, a star evolves: luminosity temperature change over time size One characteristic drives how the star will evolve, how the star will live, how the star will die. MASS, MASS, MASS Intro to Stars Starbirth 36 Common stages of star formation: • cloud of gas, some light years across • collapse is fast, controlled by gravity • central region collapses faster than outer • small condensation forms in the center, the protostar one million years to get to this point radiates in the IR look for small, bright IR sources near known dense clouds of gas and dust • material accretes from the envelope onto the core Intro to Stars Starbirth 37 Dust-free regions clears out around the star. IR photons are emitted by the dusty shell. Star becomes visible when all the dust is Zeilik 6/e cleared away. (50 million years from collapse to pre-MS) Intro to Stars Starbirth 38 Ah! But what if it’s rotating while it’s collapsing? Rotating and spinning - the cloud will flatten into a disk with a central condenstation (protostar). This dusty disk fits the model for the formation of planetary systems. Intro to Stars Starbirth 39 Observations: Better chance of observing birth of massive stars - why? These are surrounded by dust so we need to use radio telescopes to observe them. What we look for: • molecular clouds - mm wavelengths • dust warmed to 30 K - IR (100 microns) • interior dust reaches 300 K - IR (microns) • MS - ionizes the H gas, forming H II region - radio (cm) • HII region expands to blow off the dust - star seen in optical Intro to Stars Starbirth 40 Zeilik 6/e Hot stars forming in a molecular cloud create an expanding H II region and shock wave that drives the collapse of more of the molecular cloud to make another cluster of stars. Intro to Stars Starbirth 41 APOD Evaporating Gaseous Globules - Eagle Nebula Intro to Stars Starbirth 42 Giant H II region (ionized hydrogen) surrounds young, massive stars - found near molecular cloud complexes => play a role in star formation Zeilik 6/e Intro to Stars Starbirth 43 NGC 3603 It’s all happenin’ here! APOD Intro to Stars Starbirth 44 Planetary Systems forming in the Orion Nebula (Proplyds) APOD Our Solar System Intro to Stars Starbirth 45 Milky Way in IR APOD Intro to Stars Starbirth 46 30 Doradus Nebula Intro to Stars Starbirth 47 APOD 30 Doradus Nebula APOD Intro to Stars Starbirth 48 Orion Nebula APOD Intro to Stars Starbirth 49 Flame Nebula APOD Intro to Stars Starbirth 50 NGC 891 APOD Intro to Stars Starbirth 51 .
Recommended publications
  • Midterm Results the Milky Way in the Infrared
    3/2/10 Lecture 13 : Midterm Results The Interstellar Medium and Cosmic Recycling A2020 Prof. Tom Megeath The Milk The Milky Way in the Infrared Way from Above (artist conception) The Milky Way appears to have a bar and four spiral arms. Star formation and hot blue stars concentrated in arms. View from the Earth: Edge On Infrared light penetrates the clouds and shows the entire galaxy 1 3/2/10 NGC 7331: the Milky Way’s Twins The Interstellar Medium The space between the stars is not empty, but filled with a very low density of matter in the form of: •Atomic hydrogen •Ionized hydrogen •Molecular Hydrogen •Cosmic Rays •Dust grains •Many other molecules (water, carbon monoxide, formaldehyde, methanol, etc) •Organic molecules like polycyclic aromatic hydrocarbons How do we know the gas is there? Review: Kirchoff Laws Remainder of the Lecture Foreground gas cooler, absorption 1. How we observe and study the interstellar medium 2. The multiwavelength Milky Way Absorbing gas hotter, 3. Cosmic Recycling emission lines (and (or cooler blackbody) blackbody) If foreground gas and emitting blackbody the same temperature: perfect blackbody (no lines) Picture from Nick Strobel’s astronomy notes: www.astronomynotes.com 2 3/2/10 Observing the ISM through Absorption Lines • We can determine the composition of interstellar gas from its absorption lines in the spectra of stars • 70% H, 28% He, 2% heavier elements in our region of Milky Way Picture from Nick Strobel’s astronomy notes: www.astronomynotes.com Emission Lines Emission Line Nebula M27 Emitted by atoms and ions in planetary and HII regions.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • TESTING MODELS of LOW-EXCITATION PHOTODISSOCIATION REGIONS with FAR-INFRARED OBSERVATIONS of REFLECTION NEBULAE Rolaine C
    The Astrophysical Journal, 578:885–896, 2002 October 20 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. TESTING MODELS OF LOW-EXCITATION PHOTODISSOCIATION REGIONS WITH FAR-INFRARED OBSERVATIONS OF REFLECTION NEBULAE Rolaine C. Young Owl Department of Physics and Astronomy, University of California at Los Angeles, Mail Code 156205, Los Angeles, CA 90095-1562 Margaret M. Meixner1 and David Fong Department of Astronomy, University of Illinois, Urbana, IL 61801; [email protected], [email protected] Michael R. Haas NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000; [email protected] Alexander L. Rudolph1 Department of Physics, Harvey Mudd College, 301 East 12th Street, Claremont, CA 91711; [email protected] and A. G. G. M. Tielens Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, Netherlands; [email protected] Received 2001 August 2; accepted 2002 June 24 ABSTRACT This paper presents Kuiper Airborne Observatory observations of the photodissociation regions (PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O i]63 and 145 lm, [C ii] 158 lm, and [Si ii]35lm and the adjacent far-infrared continuum to these lines. Our analysis of these far-infrared observations provides estimates of the physical conditions in each reflection nebula. In our sample of reflection nebulae, the stellar effective temperatures are 10,000–30,000 K, the gas densities are 4 Â 102 2 Â 104 cmÀ3, the gas temperatures are 200–690 K, and the incident far-ultraviolet intensities are 300–8100 times the ambient interstellar radiation field strength (1:2 Â 10À4 ergs cmÀ2 sÀ1 srÀ1).
    [Show full text]
  • Astronomy Targets: September 2018 Unless Stated Otherwise, All Times Are for Mid-Month, for Birmingham UK and Are GMT+1
    Astronomy targets: September 2018 Unless stated otherwise, all times are for mid-month, for Birmingham UK and are GMT+1. Rise & set times are for 20 degrees above horizon. Dark & light times are nautical twilight times (Sun 12 degrees below horizon) and astronomical darkness (Sun 18 degrees below horizon). © Andrew Butler, 2018. Sun and Moon data sourced from US Naval Observatory. Sun times Monday date Sunset Naut Astro Astro Naut Sunrise Moon Moon % Dark Dark Light Light 03/09/18 1951 2110 2158 0416 0504 0623 2353 → 40% 10/09/18 1935 2052 2137 0433 0518 0635 2% 17/09/18 1918 2033 2117 0448 0531 0647 ← 2346 60% 24/09/18 1902 2016 2057 0502 0544 0658 1916 → 100% Calendar 9 Sep New Moon 24 Sep Full Moon Planets Cygnus Sunset-0300, best 2210 Mars (low at Sunset) Emmission nebulae: Jupiter (low at Sunset) NGC6888 Crescent Nebula Saturn (low at Sunset) NGC6960 Veil Nebula Uranus (2230-Sunrise) IC5070 Pelican Nebula Neptune (2130-0330) IC7000 (C20) North American Nebula Planetary nebulae: Ursa Major Sunset-0150 IC5146 (C19) Cocoon Nebula Planetary nebula: M97 Owl Nebula NGC6826 Blinking Nebula Galaxies: NGC7008 Fetus Nebula M81 Bode’s Galaxy & M82 Cigar Galaxy Open clusters: M101 Pinwheel Galaxy M29 M108 M39 M109 NGC6871 Multiple star: Mizar & Alcor ζ-UMa (zeta-UMa) 3 white NGC6883 NGC6910 Rocking Horse Cluster Canes Venatici Sunset-2130 Galaxy: NGC6946 (C12) Fireworks Galaxy Globular cluster: M3 Multiple stars: Galaxies: Albireo β-Cyg (beta-Cyg) gold & blue M51 Whirlpool Galaxy 61-Cyg orange & red M63 Sunflower Galaxy M94 Delphinus Sunset-0240,
    [Show full text]
  • Classification of Planetary Nebulae Through Deep Transfer Learning
    galaxies Article Classification of Planetary Nebulae through Deep Transfer Learning Dayang N. F. Awang Iskandar 1,2,*,† , Albert A. Zijlstra 2,† , Iain McDonald 2,3 , Rosni Abdullah 4 , Gary A. Fuller 2, Ahmad H. Fauzi 1 and Johari Abdullah 1 1 Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Sarawak 94300, Malaysia; [email protected] (A.H.F.); [email protected] (J.A.) 2 Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; [email protected] (A.A.Z.); [email protected] (I.M.); [email protected] (G.A.F.) 3 School of Physical Sciences, The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, UK 4 School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 11 August 2020; Accepted: 7 December 2020; Published: 11 December 2020 Abstract: This study investigate the effectiveness of using Deep Learning (DL) for the classification of planetary nebulae (PNe). It focusses on distinguishing PNe from other types of objects, as well as their morphological classification. We adopted the deep transfer learning approach using three ImageNet pre-trained algorithms. This study was conducted using images from the Hong Kong/Australian Astronomical Observatory/Strasbourg Observatory H-alpha Planetary Nebula research platform database (HASH DB) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). We found that the algorithm has high success in distinguishing True PNe from other types of objects even without any parameter tuning.
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • A Horse of a Different Color
    A Horse of a National Aeronautics and Different Color Space Administration A Horse of a Different Color To celebrate the 23rd anniversary of the Hubble Space Telescope, NASA released a new view of the Horsehead Nebula that provides an intriguing astronomical variation on the phrase, “a horse of a different color.” The Horsehead Nebula, also known as Barnard 33, was first recorded in 1888 by Williamina Fleming at the Harvard College Observatory. Visible-light images show a black silhouette, a “dark nebula,” that resembles a horse’s head. Dark nebulae are generally most noticeable because they block the light from background stars. Two views of Horsehead Nebula To see deeper into dark nebulae, astronomers use infrared These two images reveal different views of the Horsehead Nebula. The visible-light image on the left was taken by a ground-based light. Hubble’s infrared image of the Horsehead transforms telescope. The near-infrared image on the right was taken by the the dark nebula into a softly glowing landscape. The image Hubble Space Telescope. reveals more structure and detail in the clouds. In the image at left, the gas around the Horsehead Nebula shines Many parts of the Horsehead Nebula are still opaque at infrared a bright pink, in contrast to the darkness of the Horsehead itself. This pink glow occurs along the edge of the dark cloud and is wavelengths, showing that the gas is dense and cold. Within created by the bright star, Sigma Orionis, above the Horsehead, such cold and dense clouds are regions where stars are born.
    [Show full text]
  • Guidestar December, 2020
    Subscribe Past Issues Translate RSS View this email in your browser GUIDESTAR December 2020 Fostering the Science and Art of Astronomy Through Programs that Serve our Membership and the Community NGC 2204 - Flame Nebula, IC434 Nebula and B 33 - Horsehead Nebula Image by HAS Member Simon Tan Subscribe Past Issues Translate RSS President's Letter by Joe Khalaf Looking for Silver Linings Like most of you reading this, I, too am looking forward to putting 2020 in my rearview mirror and hoping that 2021 brings about a much better outlook than we’ve had for the last 9 months or so. We continue to see a profound impact from COVID- 19 on millions of people – physically, economically, and mentally – and the devastating losses of life continuing to mount as we see another resurgence in various parts of our country. Here at the Houston Astronomical Society, we have known several members who have come down with COVID-19 but fortunately, I am not aware of anyone who has lost their life in our club. Read More December Novice Presentation Via Zoom Novice to Novice Tonight we will hear stories of the triumphs and pitfalls of getting started in astronomy. Craig Lamison will lead off with his advice. Novices, please bring your questions and cautionary tales. Experienced astronomers, please bring your expertise! Lets help each other and HAVE SOME FUN December 3, 2020, 7:00PM Read More Register for Presentation Subscribe Past Issues Translate RSS HAS Main Speaker Presentation Via Zoom "Holiday Cheer & HAS Astrophotographers Tell All Our Astrophotographers:
    [Show full text]
  • Horsehead Nebula, in Infrared Light, from Hubble
    Horsehead Nebula, in Infrared Light, from Hubble Hubble, the orbiting space telescope, turned 23 years old in April of 2013. To celebrate the anniversary of its launch, NASA released this amazingly detailed image of the Horsehead Nebula which Hubble took in infrared light. NASA provides a more detailed description of this stunning image: While drifting through the cosmos, a magnificent interstellar dust cloud became sculpted by stellar winds and radiation to assume a recognizable shape. Fittingly named the Horsehead Nebula, it is embedded in the vast and complex Orion Nebula (M42). A potentially rewarding but difficult object to view personally with a small telescope, the above gorgeously detailed image was recently taken in infrared light by the orbiting Hubble Space Telescope in honor of the 23rd anniversary of Hubble's launch. The dark molecular cloud, roughly 1,500 light years distant, is cataloged as Barnard 33 and is seen above primarily because it is backlit by the nearby massive star Sigma Orionis. The Horsehead Nebula will slowly shift its apparent shape over the next few million years and will eventually be destroyed by the high energy starlight. Click on the image to enjoy a much-larger-and-clearer view. Credits: Image of the Horsehead Nebula, taken by Hubble in infrared light, by NASA, ESA, and The Hubble Heritage Team (STSci / AURA). Online, courtesy NASA. See Alignments to State and Common Core standards for this story online at: http://www.awesomestories.com/asset/AcademicAlignment/Horsehead-Nebula-in-Infrared-Light-from-Hubble-0 See Learning Tasks for this story online at: http://www.awesomestories.com/asset/AcademicActivities/Horsehead-Nebula-in-Infrared-Light-from-Hubble-0.
    [Show full text]
  • Reflection Nebula Visualization
    Reflection Nebula Visualization Marcus A. Magnor∗ Kristian Hildebrand Andrei Lintu Andrew J. Hanson† MPI Informatik MPI Informatik MPI Informatik Indiana University ABSTRACT Stars form in dense clouds of interstellar gas and dust. The residual dust surrounding a young star scatters and diffuses its light, making the star's “cocoon” of dust observable from Earth. The resulting structures, called reflection nebulae, are commonly very colorful in appearance due to wavelength-dependent effects in the scatter- ing and extinction of light. The intricate interplay of scattering and extinction cause the color hues, brightness distributions, and the ap- parent shapes of such nebulae to vary greatly with viewpoint. We describe here an interactive visualization tool for realistically ren- dering the appearance of arbitrary 3D dust distributions surround- ing one or more illuminating stars. Our rendering algorithm is based on the physical models used in astrophysics research. The tool can be used to create virtual fly-throughs of reflection nebulae for interactive desktop visualizations, or to produce scientifically accurate animations for educational purposes, e.g., in planetarium shows. The algorithm is also applicable to investigate on-the-fly the visual effects of physical parameter variations, exploiting visualiza- tion technology to help gain a deeper and more intuitive understand- ing of the complex interaction of light and dust in real astrophysical settings. CR Categories: I.3.3 [Computer Graphics]: Picture/Image Figure 1: Reflection nebulae: Recently formed, hot stars illuminate Generation—Viewing algorithms; I.3.7 [Computer Graphics]: the surrounding interstellar dust that scatters and absorbs the star Three-Dimensional Graphics and Realism—Color, shading, shad- light to give rise to a large range of color hues and brightness varia- owing, and texture; J.2 [Computer Applications]: Physical Sciences tions.
    [Show full text]
  • Planck Highlights the Complexity of Star Formation 26 April 2010
    Planck highlights the complexity of star formation 26 April 2010 The first image covers much of the constellation of Orion. The nebula is the bright spot to the lower centre. The bright spot to the right of centre is around the Horsehead Nebula, so called because at high magnifications a pillar of dust resembles a horse's head. The giant red arc of Barnard's Loop is thought to be the blast wave from a star that blew up inside the region about two million years ago. The bubble it created is now about 300 light-years across. In contrast to Orion, the Perseus region is a less vigorous star-forming area but, as Planck shows in the other image, there is still plenty going on. The images both show three physical processes This is an active star-formation region in the Orion taking place in the dust and gas of the interstellar Nebula, as seen By Planck. This image covers a region medium. Planck can show us each process of 13x13 degrees. It is a three-color combination separately. At the lowest frequencies, Planck maps constructed from three of Planck's nine frequency emission caused by high-speed electrons channels: 30, 353 and 857 GHz. Credit: ESA/LFI & HFI interacting with the Galaxy's magnetic fields. An Consortia additional diffuse component comes from spinning dust particles emitting at these frequencies. New images from ESA's Planck space observatory reveal the forces driving star formation and give astronomers a way to understand the complex physics that shape the dust and gas in our Galaxy.
    [Show full text]