<<

[CII] 158 µm emission from L1630 in B

Cornelia Pabst

Leiden Observatory

November 29, 2017

in collaboration with: J. R. Goicoechea, D. Teyssier, O. Bern´e,B. B. Ochsendorf, M. G. Wolfire, R. D. Higgins, D. Riquelme, C. Risacher, J. Pety, F. LePetit, E. Roueff, E. Bron, A. G. G. M. Tielens

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 Introduction

PhD student under supervision of Xander Tielens Leiden Observatory, Netherlands

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 1 / 30 [CII] 158 µm emission

[CII] fine-structure line one of the brightest far-infrared cooling lines of the ISM, 1% of total FIR continuum ∼ [CII] line can be observed in distant galaxies correlation of SFR and [CII] intensity: [1] for 46 nearby galaxies, [2] on Galactic scale origin of [CII] emission: dense PDRs, cold HI gas, ionized gas, CO-dark gas on Galactic scale cf. GOT C+ [2] need to spatially resolve the ISM Orion as template region velocity-resolved mapping allows to form a 3D picture

[1] Herrera-Camus et al. (2015) ApJ 800:1, [2] Pineda et al. (2014) A&A 570:A121

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 2 / 30 The optical window

Image Credit: NASA/ESA/Hubble Heritage Team; M. Robberto/ Orion Treasury Project Team

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 3 / 30 The infrared window

Left: visible light. Right: infrared light (IRAS). Image Credit: Akira Fujii/NASA/IRAS Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 4 / 30 L1630 in the Orion B molecular cloud - visible

Alnilam

Flame (NGC 2024)

Alnitak

NGC 2023

σ Ori

IC 434

Image Credit: ESO, Digitized Sky Survey 2

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 5 / 30 L1630 in the Orion B molecular cloud - infrared

Flame Nebula (NGC 2024)

NGC 2023

σ Ori Horsehead Nebula

IC 434 Image Credit: NASA/JPL-Caltech (WISE) blue: 3.4 µm, cyan: 4.6 µm, green: 12 µm, red: 22 µm.

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 6 / 30 L1630 in the Orion B molecular cloud

L1630, comprising the iconic Horsehead Nebula, is illuminated/evaporated by the star system σ Ori at 3 pc distance (G0 = 100). edge-on geometry with respect to the illuminating source distance from us is 390 pc [3] an area of 120 170 was observed in [CII] using upGREAT onboard× SOFIA in December 2015 4.2 hours of Director’s Discretionary Time beam size 15.900, spectral resolution 0.19 km s−1

[CII] line-integrated intensity of L1630 [3] Schaefer et al. (2016) ApJ 152:213

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 7 / 30 Knowledge vs. understanding

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 8 / 30 Comparison with other gas tracers

00 FIR 00 8 µm 00 CO (1-0) 00 00 00 0 0 9 0 2.0 15 15 15 50 50 50 8

3.0 ] 30 30 30

40 40 40 1

60 60 ] 60 ] − 1 40 30 1 40 30 40 30 sr

7 − −

80 80 80 1.5 2 sr sr

90 20 90 20 90 20 − 2 2 00 00 00

50 50 − 50 − 6 cm 30 30 30 0 0 0 1 cm cm

1.0 − 1

70 1 70 70 22 22 5 22 − − 60 60 60 1.0 erg s 7 erg s

erg s 4 − 3 2 Dec (J2000) Dec (J2000) Dec (J2000) − − [10 50 20 50 20 3 50 20

40 40 [10 40 00 00 00 [10 0)

0.3 − m 00 00 00 0 0 0 10 10 µ 10 0.5 FIR 30 30 8 30 40 40 2 40 I I 30 30 30

20 20 CO (1 ◦ ◦ ◦ I 2 30 2 30 2 30 20

− − 1 − 30 0.1 30 0 30 0.0 4104000 4102000 5h4100000 4004000 4104000 4102000 5h4100000 4004000 4104000 4102000 5h4100000 4004000 RA (J2000) RA (J2000) RA (J2000)

Far-infrared emission 8 µm emission traces CO emission traces (20-1000 µm) traces the UV field by fluo- the molecular gas the UV radiation field rescence of PAHs at deeper within the re-radiated by dust. the surface of a cloud. cloud [4].

[4] CO (1-0) data from Pety et al. (2017) A&A 599, A98

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 9 / 30 [CII] channel maps from 8 to 16 km/s, in steps of 0.5 km/s

Tmb [K] 30 8.0 km/s 8.5 km/s 9.0 km/s 9.5 km/s 10.0 km/s

20

10

0 10.5 km/s 11.0 km/s 11.5 km/s 12.0 km/s 12.5 km/s 13.0 km/s 00 00 0 20 00 00 0 Dec (J2000) 30 ◦ 2

− 13.5 km/s 14.0 km/s 14.5 km/s 15.0 km/s 15.5 km/s 16.0 km/s 4103000 5h4100000 RA (J2000)

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 10 / 30 [CII] line-integrated intensity and structures 00 00 By means of the channel 0 100 15 maps and comparison with 90 other data, we identify sev- eral regions: 80 PDR1

CO clumps ] 1

70 − 00

Horsehead PDR 30 0

60 km s · PDR1 22 HII

50 [K PDR2 Horsehead v

PDR 40 d PDR3 Dec (J2000) PDR2.5 mb 00 30 T 00 R PDR2.5 0 PDR3 30

◦ 20 CO clumps 2 PDR2 − CO-dark cloud CO-dark cloud 10 HII region 0 4104000 4102000 5h4100000 4004000 RA (J2000)

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 11 / 30 Spectra towards molecular cloud

20 Horsehead PDR2 south 20

10 10

0 0

PDR1 PDR3 20 15

[K] 10 10 mb 5 T 0 0 20 PDR2 CO-dark cloud 10

10 5

0 0

0 5 10 15 20 0 5 10 15 20 25 v [km/s] line widths < 5 km/s

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 12 / 30 Spectra towards HII region

1.5 HII region north HII region south 1.0 1.0 [K] 0.5

mb 0.5 T 0.0 0.0 0 5 10 15 20 0 5 10 15 20 25 v [km/s]

[CII] line is fainter and broader: 9 km/s (left) and 5 km/s (right) ∼ ∼ Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 13 / 30 Line cut through the molecular cloud 00 00

0 9

PAH 8 µm 15 8 Hα ] 7 1 100 − sr

[CII] 2

6 − 00 30 cm 0 CO 5 1 22 −

PACS 160 µm 4 erg s 3 Dec (J2000) − 3 [10

80 00 m µ 00 0 8

2 I 30 ◦ 2

− 1

0 4104000 4102000 5h4100000 4004000 . RA (J2000)

u 60 .

a IRAC 8 µm image

40

20

0 1.0 0.8 0.6 0.4 0.2 0.0 offset [pc] PDR3↑ PDR2.5↑ PDR2↑ Horsehead↑ PDR We recognize the prototypical layered structure of a PDR.

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 14 / 30 Correlation plot I[CII] vs. I8 µm ] 1 − sr 2 3 10 4 − − · cm 1 −

[erg s CO-dark cloud CO clumps [CII]

I Horsehead neck 4 1 10− · Horsehead PDR PDR1 PDR2 PDR3

3 3 2 1 10− 3 10− 1 10− · · 1 2 1 · I8 µm [erg s− cm− sr− ]

[CII] emission is well-correlated with PAH emission.

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 15 / 30 Correlation plot I[CII] vs. IFIR ] 1 − sr 2 3 10 4 − − · cm 1 −

[erg s CO-dark cloud CO clumps [CII]

I Horsehead neck 4 1 10− · Horsehead PDR PDR1 PDR2 PDR3

3 2 2 1 3 10− 1 10− 3 10− 1 10− · · 1 · 2 1 · IFIR [erg s− cm− sr− ]

Correlation of [CII] with FIR emission is not as good as with PAH emission.

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 16 / 30 Correlation plot I[CII]/IFIR vs. IFIR

CO-dark cloud 2 3 10− CO clumps · Horsehead neck Horsehead PDR PDR1 PDR2 PDR3 FIR

/I 2 1 10− [CII]

I ·

3 10 3 − 3 2 2 1 · 3 10− 1 10− 3 10− 1 10− · · 1 · 2 1 · IFIR [erg s− cm− sr− ]

[CII] cooling efficiency I[CII]/IFIR varies by a factor of 10 within the mapped area.

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 17 / 30 Modelling the correlation plots

We built edge-on models based on [5] with FUV intensity G0 = 100 appropriate for σ Ori, AV,los and n determined from the data.

We determined the line-of-sight depth of the cloud AV,los from the dust optical depth τ160, i.e FIR continuum photometry.

We find AV,los 5.0 mag in PDR1, AV,los 2.5 mag in PDR2, and ' ' AV,los 0.5 mag in the Horsehead PDR ' We determined the gas density n from the scale length of the line + cuts, assuming AV = 2 for the transition C /C/CO. We find n 3 103 cm−3 in PDR 1 and 2, n 4 104 cm−3 in the Horsehead' PDR· ' ·

[5] Tielens&Hollenbach (1985), Wolfire et al. (2010), Hollenbach et al. (2012)

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 18 / 30 3 3 Model result for n = 3 10 cm− on physical scale ·

3 2 n = 3.0 10 cm− 140 · 100 T K 60 20

1 10− AV,los = 2.5 AV,los = 5.0 2 10−

3 10− IFIR 4 1 10− I[CII] −

sr 5 I /I 2 FIR 10− [CII] − ICO (1 0)

cm 6 −

1 10− − 7 10− erg s 8 10−

9 10−

10 10− 10 11 − 2.0 1.5 1.0 0.5 0.0 x [pc]

In a nutshell: Luke-warm surface layers, T 120 K, emitting in [CII] and FIR ' + Colder gas mainly emits in CO, transition C /C/CO at AV 2 ' Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 19 / 30 Correlation plot I[CII] vs. IFIR with models ] 1 − sr 2 3 10 4 − − · cm 1 −

[erg s CO-dark cloud CO clumps [CII]

I Horsehead neck 4 1 10− · Horsehead PDR PDR1 PDR2 PDR3

3 2 2 1 3 10− 1 10− 3 10− 1 10− · · 1 · 2 1 · IFIR [erg s− cm− sr− ]

3 −3 Dotted line: n = 3.0 10 cm , AV,los = 2.5 mag. · 3 −3 Dashed line: n = 3.0 10 cm , AV,los = 5.0 mag ·

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 20 / 30 Correlation plot I[CII]/IFIR vs. IFIR with models

CO-dark cloud 2 3 10− CO clumps · Horsehead neck Horsehead PDR PDR1 PDR2 PDR3 FIR

/I 2 1 10− [CII]

I ·

3 10 3 − 3 2 2 1 · 3 10− 1 10− 3 10− 1 10− · · 1 · 2 1 · IFIR [erg s− cm− sr− ]

3 −3 Dotted line: n = 3.0 10 cm , AV,los = 2.5 mag. · 3 −3 Increases peak ratio Dashed line: n = 3.0 10 cm , AV,los = 5.0 mag · ⇒ by a factor of 2!

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 21 / 30 We determine physical properties of the molecular cloud:

We detect one [13CII] line (left: averaged over 180 spectra, right: 3140 spectra):

1.0 Horsehead PDR PDR1+2 1.0 0.8 0.8 0.6 0.6 [K] 0.4 0.4 mb

T 0.2 0.2 0.0 0.0

0 25 50 75 0 25 50 75 1 v [km s− ] Due to averaging over some range of conditions, the [CII] optical depth and excitation temperature are not well-determined.

Guevara et al. (priv. comm., in prep.) report τ[CII] 2 in the Horsehead PDR from deep observations. For PDR1 and 2 we' infer the C+ column density from the dust optical depth, and the excitation temperature from single spectra.

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 22 / 30 We determine physical properties of the molecular cloud:

from line cuts we determine the gas density: n ' 3 · 103 cm−3 in PDR1 and 2 n ' 4 · 104 cm−3 in Horsehead PDR

from [CII] emission and NC+ (from τ160) we find temperatures: T ' 90 K in PDR1 and 2

in Horsehead PDR for τ[CII] ' 2, T ' 60 K;

from rotational H2 lines: T ' 265 K [6] models predict T ' 140 K

[6] Habart et al. (2011) A&A 527:A122

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 23 / 30 We determine physical properties of the molecular cloud:

2 from τ160 we estimate the gas mass within the mapped area (210 arcsec ):

L1630 gas mass: 280 M

CO-emitting gas: 250 M

[CII]-emitting PDR surfaces: 20 M (about 8%)

total luminosity:

L[CII] ' 14 L

LFIR ' 1200 L ratio: ∼ 10−2 compare [CII] cooling efficiency in PDR surfaces: (1.1 ± 0.3) · 10−2

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 24 / 30 Photoelectric heating efficiency With the physical properties we derived we can compare with the theoretical heating efficiency by PAHs and very small grains: 1 10− In red is the theoret- ical curve as of [7]. Lower 5 data points

IC59 are also from [7]. Horsehead IC63 L1630 2 10− ζ Per Photoelectric heating efficiency determined ζ Oph Orion Bar from [CII] and [OI] γ Ara (Horsehead PDR, [8])

photoelectric heating efficiency cooling efficiency. NGC 2023 3 10− 101 102 103 104 105 γ [K1/2 cm3] Horsehead PDR: → γ ' 3 · 102 K1/2 cm−3, η ' (1.7 ± 0.4) · 10−2 PDR1: → γ ' 2 · 103 K1/2 cm−3, η ' (1.2 ± 0.3) · 10−2 [7] Bakes&Tielens (1994) ApJ 427:822, [8] Goicoechea et al. (2009) ApJ 699:L165

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 25 / 30 Summary

We used

comparison with various gas and dust tracers (e.g. FIR, 8 µm, CO emission) to determine the origin of [CII] emission channel maps to identify structures correlation plots to study the behavior of [CII] emission with other gas and dust tracers (FIR, 8 µm) PDR models to fit the correlation plots line cuts to determine the gas density single spectra to determine the gas kinetic temperature

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 26 / 30 Conclusions

by velocity-resolved [CII] observations we can discern connected structures within the L1630 molecular cloud 95% of [CII] emission in the studied area come from the molecular cloud, mainly PDR surfaces 5% stem from HII region [CII] traces gas with little to no CO emission (cf. CO-dark gas) [CII] cooling efficiency is 10−2 ∼ our edge-on models are able to reproduce the correlations in [CII] and FIR emission models of photoelectric heating by PAHs and very small grains overestimate the heating efficiency we measure

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 27 / 30 A preview of Orion A

Pabst et al. (2017) A&A 606:A29; Goicoechea et al. (2015) ApJ 812:75

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 28 / 30 This is not the end...

[CII] line-integrated intensity of the (M42) L1630

black box: ∼ 9h with HIFI/Herschel, ∼ 35min with GREAT/SOFIA

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 29 / 30 SOFIA in morning light, 2016-11-17

Thanks to all who have made this study possible. Special thanks to Erick Young. And the GREAT team.

C. H. M. Pabst, J. R. Goicoechea, D. Teyssier, O. Bern´e,B. B. Ochsendorf, M. G. Wolfire, R. D. Higgins, D. Riquelme, C. Risacher, J. Pety, F. LePetit, E. Roueff, E. Bron, A. G. G. M. Tielens

Cornelia Pabst, Leiden Observatory SOFIA tele-talk, November 29, 2017 30 / 30