IS MANDEVILLA (APOCYNACEAE, MESECHITEAE) MONOPHYLETIC? EVIDENCE from FIVE PLASTID DNA LOCI and MORPHOLOGY Author(S): André O

Total Page:16

File Type:pdf, Size:1020Kb

IS MANDEVILLA (APOCYNACEAE, MESECHITEAE) MONOPHYLETIC? EVIDENCE from FIVE PLASTID DNA LOCI and MORPHOLOGY Author(S): André O IS MANDEVILLA (APOCYNACEAE, MESECHITEAE) MONOPHYLETIC? EVIDENCE FROM FIVE PLASTID DNA LOCI AND MORPHOLOGY Author(s): André O. Simões , Mary E. Endress , Timotheüs van der Niet , Luiza S. Kinoshita , and Elena Conti Source: Annals of the Missouri Botanical Garden, 93(4):565-591. 2006. Published By: Missouri Botanical Garden DOI: http://dx.doi.org/10.3417/0026-6493(2006)93[565:IMAMME]2.0.CO;2 URL: http://www.bioone.org/doi/ full/10.3417/0026-6493%282006%2993%5B565%3AIMAMME%5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. IS MANDEVILLA (APOCYNACEAE, Andre´ O. Simo˜es,2 Mary E. Endress,3 MESECHITEAE) Timotheu¨s van der Niet,3 Luiza S. Kinoshita,4 and Elena Conti3 MONOPHYLETIC? EVIDENCE FROM FIVE PLASTID DNA LOCI AND MORPHOLOGY1 ABSTRACT In order to test the monophyly of Mandevilla Lindl., the largest genus in tribe Mesechiteae (Apocynaceae, Apocynoideae), and its affinities to other genera in the tribe, maximum parsimony analysis was conducted on a data set comprising DNA sequences from five plastid loci (rpl16, rps16, and trnK introns; trnSGCU-trnGUUC intergenic spacer; and matK gene), as well as morphological data for 65 taxa of Mesechiteae (48, Mandevilla) and nine taxa from other tribes of the subfamily. Mandevilla,as circumscribed by Pichon, was found to be monophyletic, whereas Woodson’s circumscription proved to be polyphyletic. Thus defined, Mandevilla forms a strongly supported clade that can be divided into six clades of species groups. Most of the infrageneric taxa of Mandevilla proposed by Woodson and Pichon are polyphyletic. Many of the diagnostic characters previously used to define taxonomic groups are shown to have arisen multiple times, rendering them unsuitable for classificatory purposes. The similar growth form and tubular flowers of Macrosiphonia Mu¨ll. Arg. and Telosiphonia (Woodson) Henr., two geographically disjunct segregates, represent the most extreme case of parallel evolution within Mandevilla, with their striking similarities most likely correlated to colonization of open, dry habitats and pollination by hawkmoths. Key words: Apocynaceae, Mandevilla, matK, Mesechiteae, morphology, phylogenetic systematics, rpl16, rps16, trnK, trnSGCU-trnGUUC. Mandevilla Lindl., a member of tribe Mesechiteae, flowers up to 9 cm long. The genus is traditionally is the largest Neotropical genus in Apocynaceae and characterized by the following set of traits: racemose comprises about 150 species (Simo˜es et al., 2004; inflorescence; leaf blade with one to many colleters on Sales et al., 2006). It is distributed throughout the the adaxial surface, sometimes extending along the Neotropics, from Mexico to Argentina, in a wide midrib; and style head with five strongly protruding, variety of habitats such as deserts, savannas, tepuis, well-developed longitudinal ribs (Woodson, 1933; open grasslands, and forests. Morphological variation Pichon, 1948; Henrickson, 1996; Morales, 1998; is remarkable in the genus in both vegetative and Simo˜es & Kinoshita, 2002; Simo˜es et al., 2004). reproductive parts. Most species are vines, but erect A combination of high morphological diversity and shrubs are also common, while unbranched subshrubs broad geographic distribution makes Mandevilla one and epiphytes occur less frequently. Flower size and of the most challenging and complex genera of structure are also very diverse, ranging from in- Neotropical Apocynaceae, a fact that is reflected in conspicuous white, tubular flowers less than 1 cm its taxonomic history. The currently accepted circum- long to brightly colored, showy infundibuliform scription of Mandevilla was defined by Woodson in 1 The authors thank the following persons for providing plant material: Leonardo Alvarado Cardenas, Alberto Burquez, Mark Fishbein, Andre´ia Silva Flores, Paul Forster, Leonardo Galetto, Gu¨nter Gerlach, Sueli Maria Gomes, Phil Jenkins, Stephanie Lieberherr, Sigrid Liede, Ulrich Meve, Alicia Marticorena, Stefan Matezki, Francisco Morales, Emerson Pansarin, Siwert Nilsson, Marie Francoise Pre´vost, Ana Lilia Reina, Rodrigo Schu¨tz Rodrigues, Ju¨rg Scho¨nenberger, Tom Van Devender, Steve Yanoviak and Scott Zona; without their generosity, this study would not have been possible. We are especially grateful to Tom Wendt and Lindsay Woodruff of the Plant Resources Center at the University of Texas at Austin, for allowing us to remove leaf tissue from one of the only three known collections of Tintinnabularia mortonii. This study was partly supported by grants to A. Simo˜es from CAPES (Coordenac¸a˜o e Aperfeic¸oamento de Pessoal de Nı´vel Superior), FAPESP (Fundac¸a˜o de Amparo a` Pesquisa do Estado de Sa˜o Paulo) (00/04994-0), and the ‘‘Stipendien fu¨r Doktoriende aus Entwicklungsla¨ndern’’ from the Ressort Internationale Beziehungen and the Unifraustellen of the University of Zu¨rich, Switzerland. 2 Programa de Po´s-graduac¸a˜o em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, Cep 13083-970, Campinas, Sa˜o Paulo, Brazil. Current address: Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zu¨rich, Switzerland. [email protected], [email protected] 3 Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zu¨rich, Switzerland. mendress@systbot. unizh.ch; [email protected]; [email protected] 4 Departamento de Botaˆnica, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, Cep 13083-970, Campinas, Sa˜o Paulo, Brazil. [email protected] ANN.MISSOURI BOT.GARD. 93: 565–591. PUBLISHED ON 15 DECEMBER 2006. 566 Annals of the Missouri Botanical Garden 1933. In a broad taxonomic study of the Neotropical five and eight species, respectively, and are distrib- species of subfamily Apocynoideae, he made signif- uted in Mexico and Mesoamerica. Both of these icant changes in the circumscription of Mandevilla, sections were characterized by flowers with salverform including in its synonymy such genera as Exothoste- to tubular-salverform corollas, anthers with auriculate mon (G. Don) Woodson, Dipladenia A. DC., Laseguea bases, and five nectaries surrounding the ovary, but A. DC., Amblyanthera Mu¨ll. Arg., Heterothrix Mu¨ll. differed from one another in the size of the nectaries, Arg., and part of Echites P. Browne. Macrosiphonia which were said to be equal to or taller than the ovary Mu¨ll. Arg., a small group of shrubby species with long, in section Tubiflorae and shorter than the ovary in white, tubular flowers and a disjunct distribution in section Torosae. the arid zones of the southwestern U.S.A. and Mexico A revised classification of Mandevilla was pub- and the savannas of southern South America, was lished by Pichon in 1948. He expanded Woodson’s maintained by Woodson as a separate genus. He (1933) circumscription by including Macrosiphonia, admitted, however, that the distinctions between which he justified by arguing that the characters used Macrosiphonia and Mandevilla, based on plant habit, by Woodson to differentiate between the two genera flowering time, and style head structure, were were inconsistent and arbitrary. He did not consider extremely tenuous. He also cautiously recognized Woodson’s subgenera Macrosiphonia and Telosiphonia two subgenera in Macrosiphonia (Woodson, 1933: to be each other’s closest relatives, however, and 778), Telosiphonia Woodson and Eumacrosiphonia placed them in two distinct sections, based on the Woodson (5 Macrosiphonia), comprising the species absence of a pedicel, longer staminal filaments, and that occur in the Northern and Southern Hemispheres, larger pollen grains of the former. Within Mandevilla, respectively. Pichon recognized Woodson’s subgenus Mandevilla In addition to broadening the limits of Mandevilla, and subgenus Exothostemon as valid groups but did Woodson (1933) also proposed a morphologically not recognize his five sections within subgenus based infrageneric classification of the genus, with the Mandevilla. According to Pichon, the characters subgenera Exothostemon and Eumandevilla Woodson supporting these two subgenera were reliable, whereas (5 Mandevilla). The two subgenera were differentiat- those supporting the sections were highly inconsis- ed based on the following suite of morphological tent, with no real diagnostic states to define them. characters: species of subgenus Exothostemon have Pichon (1948) proposed a new infrageneric classifi- leaf colleters distributed along the entire length of the cation within Mandevilla, recognizing four sections midrib, calycine colleters with an opposite arrange- (Orthocaulon Pichon, Exothostemon Pichon, Megasi- ment,
Recommended publications
  • Apocynaceae: Apocynoideae), a New Genus from Oaxaca, Mexico
    NUMBER 5 WILLIAMS: THOREAUEA, NEW GENUS OF APOCYNACEAE 47 THOREAUEA (APOCYNACEAE: APOCYNOIDEAE), A NEW GENUS FROM OAXACA, MEXICO Justin K. Williams Department of Biological Sciences, Sam Houston State University, Huntsville, Texas 77341-2116 Abstract: Recent studies of Mexican Apocynaceae have uncovered a new species. The taxon is here viewed as generically distinct and accordingly the name Thoreauea paneroi J. K. Williams, gen. et sp. nov. is proposed. The species is from montane pine-oak cloud forests of the Santiago Juxtlahuaca area of northwestern Oaxaca, Mexico. Its relationship to Thenardia H.B.K. and other genera is discussed. Keywords: Echites, Forsteronia, Laubertia, Parsonsia, Prestonia, Thoreauea, Thenar­ dia, Apocynaceae. Recently, a specimen of Apocynaceae rotatis) et corona corollae praesenti (vice carenti) et from Oaxaca, Mexico was provided to me antheris inclusis (vice exsertis) differt. by one of the collectors, Jose L. Panero, for identification. After close examination, I VINE, twining, latex milky. STEMS te­ determined that the specimen does not key rete, 3-3.5 mm in diameter, light green, gla­ out to any of the genera recognized in a key brous, lenticellate with age; interpetiolar to the Mexican genera of Apocynaceae (J. ridge moderately prominent. LEAVES op­ K. Williams, 1996). This specimen keys out posite to subopposite, petiolate, membra­ most favorably to Thenardia H.B.K., how­ nous; petioles 20-23 mm, with a solitary ever, it possesses novel characters not found bract and 2-4 colleters at base; colleters in Thenardia (e.g., dissected corona at the 0.8-1.0 mm long, linear lanceolate, dark corolla mouth). A cladistic analysis (Fig.
    [Show full text]
  • Composition of Epicuticular Wax Layer of Two Species of Mandevilla (Apocynoideae, Apocynaceae) from Rio De Janeiro, Brazil
    Biochemical Systematics and Ecology 39 (2011) 198–202 Contents lists available at ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco Composition of epicuticular wax layer of two species of Mandevilla (Apocynoideae, Apocynaceae) from Rio de Janeiro, Brazil Sandra Zorat Cordeiro a,*, Naomi Kato Simas b, Rosani do Carmo de Oliveira Arruda c, Alice Sato d a Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/n – CCS, Bloco K, sala K2-032, Cidade Universitária, Rio de Janeiro – RJ 21941-902, Brazil b Laboratório de Fitoquímica, Curso de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Campus Macaé, Av. Aluizio da Silva Gomes, 50 – Granja dos Cavaleiros - Macaé - RJ 27930-560, Brazil c Laboratório de Anatomia Vegetal, Departamento de Biologia, Universidade Federal do Mato, Grosso do Sul (UFMS), Campus de Campo Grande, s/n – Cidade Universidade, CCBS, Campo Grande - MS 79070-900, Brazil d Laboratório de Cultura de Tecidos Vegetais, Departamento de Botânica, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pasteur 458 – CCBS, sala 414, Rio de Janeiro - RJ 22290-040, Brazil article info abstract Article history: The chemical composition of epicuticular waxes of Mandevilla guanabarica and Mandevilla Received 26 November 2010 moricandiana was comparatively analyzed by extraction in n-hexane and chloroform. The À Accepted 26 February 2011 mean wax content per unit of leaf area in the n-hexane extract was about 13–30 mgcm 2 Available online 22 March 2011 for M. guanabarica, containing 20–28% n-alkanes and 55–63% triterpenes; for M. mori- À candiana, the mean content was 19 mgcm 2, containing 73% n-alkanes and 14% triterpenes.
    [Show full text]
  • Mandevilla Splendens1
    Fact Sheet FPS-399 October, 1999 Mandevilla splendens1 Edward F. Gilman2 Introduction Quickly twining around any support, or pinched to create a handsome hanging specimen, Pink Allamanda is an attractive evergreen vine endowed with beautiful, deep pink, funnelform blooms up to four inches wide and two inches long, set off against dark green, large evergreen leaves (Fig. 1). It looks particularly attractive twining along a fence or over an arbor or mail box. Foliage and flowers cluster toward the top of the fence or arbor several years after planting. Regular heading back several of the twining stems each year will help generate new foliage and flowers near the ground. Rapid growth and profuse flowering have helped Pink Allamanda become popular as an annual in cooler regions where freezing temperatures kill the plant to the ground. General Information Scientific name: Mandevilla splendens Pronunciation: man-dev-VILL-luh SPLEN-denz Common name(s): Pink Allamanda Family: Apocynaceae Figure 1. Pink Allamanda. Plant type: vine USDA hardiness zones: 10 through 11 (Fig. 2) Planting month for zone 10 and 11: year round Description Origin: not native to North America Height: depends upon supporting structure Uses: hanging basket; cascading down a wall Spread: depends upon supporting structure Availablity: generally available in many areas within its Plant habit: spreading hardiness range Plant density: dense Growth rate: moderate Texture: coarse 1.This document is Fact Sheet FPS-399, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October, 1999 Please visit the EDIS Web site at http://edis.ifas.ufl.edu.
    [Show full text]
  • Floristic and Ecological Characterization of Habitat Types on an Inselberg in Minas Gerais, Southeastern Brazil
    Acta Botanica Brasilica - 31(2): 199-211. April-June 2017. doi: 10.1590/0102-33062016abb0409 Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil Luiza F. A. de Paula1*, Nara F. O. Mota2, Pedro L. Viana2 and João R. Stehmann3 Received: November 21, 2016 Accepted: March 2, 2017 . ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. Th ey are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that diff er from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. Th is study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. Th e richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in diff erent proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that fl oristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil. Keywords: endemism, granitic and gneissic rock outcrops, life forms, terrestrial islands, vascular plants occurring on rock outcrops within the Atlantic Forest Introduction domain, 416 are endemic to these formations (Stehmann et al.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • A Set of 20 New SSR Markers Developed and Evaluated in Mandevilla Lindl
    molecules Article A Set of 20 New SSR Markers Developed and Evaluated in Mandevilla Lindl. Alev Oder 1, Robert Lannes 1 and Maria Angeles Viruel 2,* 1 S.A.S. DHMINNOVATION 18, Avenue du Quercy—BP5, 82200 Malause, France; [email protected] (A.O.); [email protected] (R.L.) 2 Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), 29750 Algarrobo-Costa (Málaga), Spain * Correspondence: [email protected]; Tel.: +34-952-548-990 (ext. 120) Academic Editor: Derek J. McPhee Received: 12 August 2016; Accepted: 22 September 2016; Published: 30 September 2016 Abstract: Mandevilla is an ornamental crop with a bright future worldwide because of its high commercial acceptance and added value. However, as with most ornamental species, there are few molecular tools to support cultivar breeding and innovation. In this work, we report the development and analysis of 20 new Simple Sequence Repeat (SSR) markers in Mandevilla. Microsatellites were isolated from two enriched small-insert genomic libraries of Mandevilla × amabilis. The diversity parameters estimated after their amplification in a group of 11 commercial genotypes illustrate the effect of two opposite drifts: the high relatedness of cultivars belonging to the same commercial group and the high divergence of other cultivars, especially M. × amabilis. Based on their different band patterns, six genotypes were uniquely distinguished, and two groups of sport mutations remained undistinguishable. The amplification of the SSRs in three wild species suggested the existence of unexploited diversity available to be introgressed into the commercial pool. This is the first report of available microsatellites in Mandevilla.
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Island Bats: Evolution, Ecology, and Conservation
    CHA P T E R 1 3 The Ecology and Conservation of Malagasy Bats Paul A. Racey, Steven M. Goodman, and Richard K. B. Jenkins Introduction Despite the important contribution that bats make to tropical biodiversity and ecosystem function, as well as the threatened status of many species, conserva­ tion initiatives for Madagascar’s endemic mammals have rarely included bats. Until recently, most mammalogical research in Madagascar concerned lemurs, rodents, and tenrecs. This focus resulted in a dearth of information on bat bi­ ology. However, since the mid­1990s considerable advancement has been made following the establishment of capacity­building programs for Malagasy bat biologists, and bats are now included in biodiversity surveys and a growing number of field studies are in progress. In this chapter we summarize the advances made in recent years in un­ derstanding the diversity of Malagasy bats and briefly describe their biogeo­ graphic affinities and levels of endemism. We draw attention to the importance of understanding the ecology of these animals and why this is a prerequisite to their conservation. In discussing monitoring and hunting, we highlight some of the reasons that make bat conservation notably different from other vertebrate conservation challenges on the island. The Diversity of Malagasy Bats The recent surge of interest in Malagasy bats has resulted in the discovery and description of nine new taxa on the island. The rate of new discoveries quickly makes statements on endemism and species richness out of date. For example, of the 37 bat taxa listed for Madagascar in table 13.1, only 29 were treated in the 2005 Global Mammal Assessment in Antananarivo.
    [Show full text]
  • Breakdown of Species Boundaries in Mandevilla: Floral Morphological
    DR. SANTIAGO BENITEZ-VIEYRA (Orcid ID : 0000-0003-4116-7969) Article type : Research Paper Editor : Z-X Ren Breakdown of species boundaries in Mandevilla: floral morphological intermediacy, novel fragrances and asymmetric pollen flow. Aimé Rubini Pisano1,2, Marcela Moré2, Mauricio A. Cisternas2, 3, Robert A. Raguso4, Santiago Benitez-Vieyra2*. Article 1. Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México. 2. Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina. 3. Jardín Botánico Nacional, Viña del Mar, Chile. 4. Department of Neurobiology and Behavior, Cornell University, Ithaca, USA. Running title: Mandevilla hybrids: morphology, fragrances and pollen flow This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as Accepted doi: 10.1111/plb.12924 This article is protected by copyright. All rights reserved. Key words: Apocynaceae, floral fragrances, geometric morphometry, phenotypic intermediacy, Mandevilla, pollination. * Corresponding author: [email protected] Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba), CC 495, CP 5000, Ciudad de Córdoba, Córdoba, ARGENTINA. Summary Phenotypic intermediacy is an indicator of putative hybrid origin, and has provided the main Article clues to discovering hybrid plants in nature. Mandevilla pentlandiana and M. laxa (Apocynaceae) are sister species with clear differences in floral phenotype and associated pollinator guilds: diurnal Hymenoptera and nocturnal hawkmoths, respectively. The presence of individuals with intermediate phenotypes in a wild population raises questions about the roles of visual and olfactory signals (i.e.
    [Show full text]