Interactions Within Pairs of Biological Control Agents on Water Hyacinth, Eichhornia Crassipes ⇑ Danica Marlin A, , Martin P

Total Page:16

File Type:pdf, Size:1020Kb

Interactions Within Pairs of Biological Control Agents on Water Hyacinth, Eichhornia Crassipes ⇑ Danica Marlin A, , Martin P Biological Control 67 (2013) 483–490 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Interactions within pairs of biological control agents on water hyacinth, Eichhornia crassipes ⇑ Danica Marlin a, , Martin P. Hill a, Marcus J. Byrne b a Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa b School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa highlights graphical abstract Water hyacinth was exposed to pair- wise combinations of three biocontrol agents. + = SYNERGISTIC The mite O. terebrantis alone had the EFFECT least impact on plant growth. The mirid E. catarinensis and weevil N. eichhorniae each had negative + = EQUIVALENT EFFECT impacts on plant growth. The mite performed poorly in the presence of mirids and weevils. EQUIVALENT + = EFFECT The mite possibly enhanced the performance of the other two agents. article info abstract Article history: Water hyacinth, Eichhornia crassipes, is an invasive aquatic plant in South Africa where seven biological Received 3 May 2013 control agents have been released on the weed. Combined herbivory by these multiple agents may cause Accepted 11 October 2013 greater damage than any of the agents acting alone. This study examined the effects of herbivory by the Available online 21 October 2013 water hyacinth mite Orthogalumna terebrantis, the mirid Eccritotarsus catarinensis, and the weevil Neoche- tina eichhorniae, singly or in paired combinations, on the weed’s growth. Plants were subjected to herbiv- Keywords: ory and plant growth parameters e.g. production of leaves, and the percentage of the leaf surface area Herbivory damaged by herbivory, were measured every 14 days. Plants subjected to herbivory by mirids only, or Insect interactions weevils only, produced significantly fewer ramets than the control (herbivory-free) plants. Plants sub- Invasive weed Multiple agents jected to mirids only, or a combination of mites with weevils, produced the least number of leaves. Plant Plant–insect interactions petioles were shortest on plants subjected to a combination of mites with weevils, and increases in plant biomass were lowest in plants fed on by weevils or the combination of weevils with mirids. The combi- nation of mites with mirids caused the greatest damage to the leaf surface area. The results suggest that different plant growth parameters are not impacted equally by herbivory, but are dependent on the agent or combination of agents causing damage. Ó 2013 Elsevier Inc. All rights reserved. 1. Introduction forts having been initiated against the weed more than 20 years ago (Cilliers, 1991). To date, seven biocontrol agents have been re- Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach leased on water hyacinth in South Africa (Coetzee et al., 2011). Pre- (Pontederiaceae), is considered to be the worst aquatic weed in vious studies have investigated the interactions of various South Africa (Hill and Cilliers, 1999), despite biological control ef- biocontrol agents of water hyacinth (Delfosse, 1978a; Caunter and Mohamed, 1990; Moran, 2005; Ajuonu et al., 2009). In general, ⇑ Corresponding author. Present address: Department of Zoology and Entomol- these studies found the use of multiple agents increases stress on ogy, University of Pretoria, Private Bag X20, 0028, South Africa. Fax: +27 12 362 the plant, which reduces its growth more so than when a single 5242. agent is used E-mail addresses: [email protected], [email protected] (D. Marlin). 1049-9644/$ - see front matter Ó 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.biocontrol.2013.10.006 484 D. Marlin et al. / Biological Control 67 (2013) 483–490 Interspecific interactions influence the performance and fitness Adults of all three species feed on water hyacinth leaves and the of phytophagous insects (Kaplan and Denno, 2007) and also play females of the three species oviposit in the leaf blades (Warner, an important role in structuring insect communities (Denno 1970; Perkins, 1973; Hill et al., 1999), where the mite and mirid et al., 2000). A key manner in which phytophagous insects interact eggs can potentially be removed by the feeding of adult weevils, is through indirect effects involving shared host plants (Kaplan and increasing the possibility of agent interaction. The overall aim Denno, 2007). Herbivore damage may induce plant resistance was thus to examine the interactive effects of O. terebrantis, mechanisms such as the release of toxic secondary metabolites, N. eichhorniae and E. catarinensis on water hyacinth growth. which can indirectly reduce herbivore populations as well as a species preference for that plant (Karban and Baldwin, 1997; 2. Materials and methods Rodriguez-Saona and Thaler, 2005). Insect and mite induced responses of plants to herbivory have been studied in various 2.1. Experimental set-up systems, including water hyacinth, and have yielded a range of conclusions (Karban and Carey, 1984; Agrawal, 1998; Bounfour Healthy, agent-free and undamaged water hyacinth plants of and Tanigoshi, 2001; Coetzee et al., 2007a). similar size were selected from stock cultures of the Agricultural The use of multiple agents occupying different niches to control Research Council – Plant Protection Research Institute (PPRI), Pre- an invasive plant species has been supported both in theory and in toria, South Africa, and used in the experiment. The maintenance of practice (Delfosse, 1978a; Hoffmann and Moran, 1998; Jiménez the plant stock cultures is described elsewhere (Marlin et al., and Balandra, 2007), but also has been criticised as opportunistic 2013). The trial was conducted during summer inside a glasshouse and unscientific (Myers, 1985; Denoth et al., 2002; Crowe and Bou- at the PPRI. The average day and night temperatures in the glass- chier, 2006). A meta-analysis of 51 papers revealed that in only house were 30.72 ± 6.74 °C and 20.65 ± 2.66 °C, respectively. one-quarter of cases was plant performance reduced more by mul- All plants had between four to six leaves at the beginning of the tiple enemies than was predicted from each enemy alone (Ste- experiments. All daughter plants (ramets) and dead matter were phens et al., 2013). However, Denoth et al. (2002) found that in removed from the plants before they were weighed and placed the majority of projects for the biological control of weeds, the like- in pairs into plastic tubs (70 Â 40 Â 35 cm depth). The plants were lihood of control increased as more species of agents were re- held upright by wire rings attached by hooks to the sides of the tub. leased, even though in some instances there might be The tubs were filled with 16 L of water. Potassium nitrate (KNO ) competition between herbivore species on the same plant. In addi- 3 and potassium dihydrogen orthophosphate (KH PO ) were added tion, competition between biocontrol agents used against weeds is 2 4 to each tub as nitrogen (2.5 mg LÀ1) and phosphorous bases not common because the biocontrol agents do not represent the (0.4 mg LÀ1), respectively. These concentrations of KNO and KH full suite of natural enemies present in the country of origin, and 3 2- PO were used because they are representative of the high nutrient because the weed often provides a variety of host niches, which 4 concentrations that are common in many South African fresh may potentially reduce competition for space and food (Denoth water systems (Holmes, 1996). Commercial iron chelate (13% Fe) et al., 2002). also was added to each tub at 1.4 g/16 L water. The water and In comparing the damage caused by multiple agents to that of nutrients in each tub were replaced weekly. individual agents, Hatcher (1995) classified four levels of interac- After four weeks of acclimation to the experimental conditions, tions as follows: (a) synergistic, where the interaction causes a sig- both plants in each tub were randomly selected for infestation nificantly greater reduction in a plant variable than would the with one of the following combinations of agents (namely the mite damage of a single agent, (b) additive, where the interaction causes O. terebrantis, the weevil N. eichhorniae, and the mirid E. catarinen- the same reduction in a plant variable as would the combined sis), as either: (1) only mites, (2) only weevils, (3) only mirids, (4) damage of the agents, (c) equivalent, where the interactions causes mites and weevils, (5) mites and mirids, and (6) weevils and mir- an equivalent reduction in a plant variable as would the damage of ids. No agents were added to the control plants. Each treatment either agent alone, and (d) inhibitory, where the interaction causes was replicated seven times. Prior to introducing the agents, the a significantly lower reduction in a plant variable as would damage weevils and mirids were sexed to ensure a 1:1 sex ratio. Male of the weaker of two agents. The additive classification was ad- and female O. terebrantis are morphologically indistinguishable justed by Turner et al. (2010) so that an interaction is additive if (Perkins, 1973) and were therefore not sexed. In natural field pop- the impact of multiple agents is greater than that of the most dam- ulations, mites occur in approximately equal proportions of adult aging agent acting alone but less than or equal to the added im- females and males (Walter, 2009), so a 1:1 sex ratio was assumed. pacts of each agent acting alone. Mites were added at 150 mites/plant, weevils were added at 2 For water hyacinth, the interactions between the sap-sucking adult pairs/plant and mirids were added at 15 adult pairs/plant. mirid Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) These insect stocking densities were sufficient to cause visible and the petiole-mining weevils Neochetina eichhorniae Warner damage to the plant and reduce some of the plant growth param- and Neochetina bruchi Hustache (Coleoptera: Curculionidae) have eters (Marlin, 2011).
Recommended publications
  • Insetos Do Brasil
    COSTA LIMA INSETOS DO BRASIL 2.º TOMO HEMÍPTEROS ESCOLA NACIONAL DE AGRONOMIA SÉRIE DIDÁTICA N.º 3 - 1940 INSETOS DO BRASIL 2.º TOMO HEMÍPTEROS A. DA COSTA LIMA Professor Catedrático de Entomologia Agrícola da Escola Nacional de Agronomia Ex-Chefe de Laboratório do Instituto Oswaldo Cruz INSETOS DO BRASIL 2.º TOMO CAPÍTULO XXII HEMÍPTEROS ESCOLA NACIONAL DE AGRONOMIA SÉRIE DIDÁTICA N.º 3 - 1940 CONTEUDO CAPÍTULO XXII PÁGINA Ordem HEMÍPTERA ................................................................................................................................................ 3 Superfamília SCUTELLEROIDEA ............................................................................................................ 42 Superfamília COREOIDEA ............................................................................................................................... 79 Super família LYGAEOIDEA ................................................................................................................................. 97 Superfamília THAUMASTOTHERIOIDEA ............................................................................................... 124 Superfamília ARADOIDEA ................................................................................................................................... 125 Superfamília TINGITOIDEA .................................................................................................................................... 132 Superfamília REDUVIOIDEA ...........................................................................................................................
    [Show full text]
  • The Mirid Eccritotarsus Catarinensis Is an Effective Agent Against Water Hyacinth in Some Areas of South Africa
    The mirid Eccritotarsus catarinensis is an effective agent against water hyacinth in some areas of South Africa M.P. Hill1 and I.G. Oberholzer2 Summary The sap-sucking mirid Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) was released against water hyacinth in South Africa in late 1996. This insect has a short generation time and popu- lations can rapidly increase. Adults and nymphs feed gregariously on the leaves of water hyacinth, causing severe chlorosis and stunting of the plants. This agent has been released at 22 sites throughout South Africa. The mirid has established at seven of these sites, failed to establish at eight sites, and the remaining seven sites have not been evaluated. Furthermore it has independently dispersed to at least two additional sites. Although the mirid has established at three high-elevation sites (above 1000 m), which are characterized by cold winters with frost, it is most effective against water hyacinth in more subtropical conditions. At a site in a subtropical region of South Africa, near Durban, KwaZulu-Natal Province, the mirid reduced the infestation of water hyacinth on a 10 ha dam from 100% to less than 10% within 18 months. Although populations of the mirid are negatively affected by wind and rain, it is still an effective agent in tropical and subtropical areas, especially when used in conjunction with the other five natural enemy species released on water hyacinth in South Africa. Keywords: biological control, Miridae, water hyacinth. Introduction agents that might be more effective under temperate conditions. The success of biological control initiatives undertaken The most recent agent released against water against water hyacinth in South Africa has been vari- hyacinth in South Africa was the sap-sucking mirid able, despite the establishment of six natural enemy Eccritotarsus catarinensis (Carvalho) (Hill et al.
    [Show full text]
  • Hemiptera: Miridae) Com Plantas No Brasil
    DIVULGAÇÃO CIENTÍFICA DOI 10.31368/1980-6221v81a10012 ASSOCIAÇÕES DE PERCEVEJOS MIRÍDEOS (HEMIPTERA: MIRIDAE) COM PLANTAS NO BRASIL Bárbara Cristina Félix Nogueira1*, Lívia Aguiar Coelho2, David dos Santos Martins2, Bárbara Duarte Barcellos1, Sirlene Rodrigues Sartori1, Paulo Sérgio Fiuza Ferreira1,2. 1Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil. 2Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil. * [email protected] RESUMO Os mirídeos têm papel importante sobre a economia brasileira devido à sua influência sobre diversas culturas agrícolas. Devido a isso, este artigo foi desenvolvido visando apresentar as espécies de Miridae que possuem associações ou potenciais associações com plantas no Brasil. Para isso, foram realizadas consultas de artigos, livros e coleções de museus. Ao todo, foram encontradas 168 espécies de mirídeos associadas a plantas; estes dados foram manipulados para a elaboração de gráficos representando as interações entre as espécies de percevejos e as plantas hospedeiras no Brasil. As famílias botânicas Poaceae, Asteraceae, Fabaceae e Solanaceae apresentaram mais espécies de mirídeos associadas e incluem importantes culturas para a economia do país. Com base nestas associações, é possível contribuir para ampliar o conhecimento sobre a biologia e o comportamento alimentar de mirídeos, além de fornecer informações sobre o impacto que podem gerar nos sistemas de produção agrícola no Brasil. Palavras-chave: Insecta, planta hospedeira, fitófagos. Biológico, v.81, 1-30, 2019 1 Bárbara Cristina Félix Nogueira, Lívia Aguiar Coelho, David dos Santos Martins, Bárbara Duarte Barcellos, Sirlene Rodrigues Sartori, Paulo Sérgio Fiuza Ferreira. ABSTRACT ASSOCIATIONS OF PLANT BUGS (HEMIPTERA: MIRIDAE) WITH PLANTS IN BRAZIL. The plant bugs play an important role in the Brazilian economy due to their influen- ce on several agricultural crops.
    [Show full text]
  • Biological Control of Water Hyacinth with Arthropods: a Review to 2000
    Biological Control of Water Hyacinth with Arthropods: a Review to 2000 M.H. Julien* Abstract Water hyacinth, native to the Amazon River, invaded the tropical world over the last century and has become an extremely serious weed. The search for biological control agents began in the early 1960s and continues today. Six arthropod species have been released around the world. They are: two weevils, Neochetina bruchi and N. eichhorniae; two moths, Niphograpta albiguttalis and Xubida infusellus; a mite Orthogalumna terebrantis; and a bug Eccritotarsus catarinensis. The mite and X. infusellus have not contributed to control and the bug is under evaluation following recent releases in Africa. The two weevils and the moth N. albiguttalis have been released in numerous infestations since the 1970s and have contributed to successful control of the weed in many locations. It is timely to assess their impact on water hyacinth and, to help in planning future strategies, to identify the factors that contribute to or mitigate against successful biological control. Although the search for new agents continues, and as a result biological control will likely be improved, this technique alone is unlikely to be successful in all of the weed’s habitats. It is important that whole-of-catchment management strategies be developed that integrate biological control with other control techniques. The aims of such strategies should be to achieve the best possible control using methods that are affordable and sustainable; hence the need to develop strategies using biological control as the base component. WATER hyacinth apparently became a problem in the sation of the weed for commercial and subsistence USA following its distribution to participants in the purposes has also been widely considered.
    [Show full text]
  • Synopsis and Keys to the Tribes, Genera, and Species of Miridae (Hemiptera: Heteroptera) of Minas Gerais, Brazil Part I: Bryocorinae
    Zootaxa 2920: 1–41 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Synopsis and keys to the tribes, genera, and species of Miridae (Hemiptera: Heteroptera) of Minas Gerais, Brazil Part I: Bryocorinae PAULO SERGIO FIUZA FERREIRA1 & THOMAS J. HENRY2 1Museu de Entomologia, Departamento de Biologia Animal, Universidade Federal de Viçosa, 36570-000, Viçosa, Brazil. E-mail: [email protected] 2Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA. E-mail: [email protected] Table of contents Abstract . 3 Introduction . 3 Material and methods . 4 Minas Gerais geography . 4 Taxonomic synopsis . 5 Subfamily Bryocorinae Baerensprung . 5 Key to Minas Gerais Tribes of Bryocorinae . 5 Tribe Bryocorini Baerensprung . 6 Genus Monalocoris Dahlbom . 6 Key to species of Monalocoris of Minas Gerais . 6 Monalocoris carioca Carvalho and Gomes . 6 Monalocoris pallidiceps (Reuter) . 6 Tribe Dicyphini Reuter . 7 Key to the genera of Dicyphini of Minas Gerais . 7 Genus Campyloneuropsis Poppius . 7 Key to Minas Gerais species of Campyloneuropsis . 7 Campyloneuropsis infumatus (Carvalho) . 7 Campyloneuropsis nigroculatus (Carvalho) . 8 Genus Engytatus Reuter . 8 Key to the Minas Gerais species of Engytatus . 8 Engytatus modestus (Distant) . 8 Engytatus varians (Distant) . 9 Genus Macrolophus Fieber . 9 Key to Minas Gerais species of Macrolophus . 9 Macrolophus aragarsanus Carvalho . 10 Macrolophus basicornis (Stål) . 10 Macrolophus cuibanus Carvalho . 10 Macrolophus praeclarus (Distant) . 11 Genus Tupiocoris China and Carvalho . 11 Key to the Minas Gerais species of Tupiocoris. 11 Tupiocoris cucurbitaceus (Spinola) .
    [Show full text]
  • Lívia Aguiar Coelho Miridofauna
    LÍVIA AGUIAR COELHO MIRIDOFAUNA (HEMIPTERA: HETEROPTERA: MIRIDAE) DO RIO GRANDE DO SUL, BRASIL Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Entomologia, para obtenção do título de Magister Scientiae. VIÇOSA BRASIL - MINAS GERAIS 2008 LÍVIA AGUIAR COELHO MIRIDOFAUNA (HEMIPTERA: HETEROPTERA: MIRIDAE) DO RIO GRANDE DO SUL, BRASIL Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Entomologia, para obtenção do título de Magister Scientiae. APROVADA: 25 de fevereiro de 2008. __________________________________ _________________________________ Pesq. Aline Barcellos Prates dos Santos Prof. Simon Luke Elliot (Co-Orientadora) __________________________________ _________________________________ Prof. José Lino Neto Pesq. Marcos Gonçalves Lhano _______________________________ Prof. Paulo Sérgio Fiuza Ferreira (Orientador) Aos meus pais Ivan e Ivanete, detentores de características que marcam qualquer filho, lutando sempre ao lado da família. ii AGRADECIMENTOS À Deus, por sempre iluminar meus caminhos. Ao meu orientador, Prof. Dr. Paulo Sérgio Fiuza Ferreira, por todo apoio e sábios conselhos. Obrigada pela generosidade, pelos ensinamentos e principalmente por ter confiado em meu trabalho. À minha co-orientadora Dra. Aline Barcellos Prates do Santos, pelas sugestões e auxílio na dissertação e por me receber tão bem em sua casa e em seu laboratório. Ao Prof. Dr. Lúcio Antônio de Oliveira Campos pela co-orientação e por estar sempre disposto a ajudar. Ao Prof. Dr. José Lino Neto e ao Dr. Marcos Lhano por participarem da banca de defesa. Aos estagiários do Museu Regional de Entomologia - UFV, Victor D. Pirovani e Lorena F. Uceli pela ajuda na preparação das fotos e figuras.
    [Show full text]
  • Testing the Thermal Limits of Eccritotarsus Catarinensis: a Case of Thermal Plasticity
    This is a repository copy of Testing the thermal limits of Eccritotarsus catarinensis: a case of thermal plasticity. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/142526/ Version: Accepted Version Article: Porter, JD, Owen, CA, Compton, SG orcid.org/0000-0002-1247-8058 et al. (1 more author) (2019) Testing the thermal limits of Eccritotarsus catarinensis: a case of thermal plasticity. Biocontrol Science and Technology, 29 (6). pp. 565-577. ISSN 0958-3157 https://doi.org/10.1080/09583157.2019.1572712 © 2019 Informa UK Limited, trading as Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in Biocontrol Science and Technology on 27 Jan 2019, available online: https://doi.org/10.1080/09583157.2019.1572712 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Testing the thermal limits of Eccritotarsus catarinensis: A case of thermal plasticity Jordan D.
    [Show full text]
  • Monographs on Invasive Plants in Europe N°2:Eichhornia Crassipes
    BOTANY LETTERS, 2017 VOL. 164, NO. 4, 303–326 https://doi.org/10.1080/23818107.2017.1381041 MONOGRAPHS ON INVASIVE PLANTS IN EUROPE N° 2 Monographs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms Julie A. Coetzeea, Martin P. Hillb, Trinidad Ruiz-Téllezc , Uwe Starfingerd and Sarah Brunele aBotany Department, Rhodes University, Grahamstown, South Africa; bDepartment of Zoology and Entomology, Rhodes University, Grahamstown, South Africa; cGrupo de Investigación en Biología de la Conservación, Universidad de Extremadura, Badajoz, Spain; dJulius Kühn-Institut,Institute for National and International Plant Health, Braunschweig, Germany; eEuropean and Mediterranean Plant Protection Organization, Paris, France ABSTRACT ARTICLE HISTORY Eichhornia crassipes is notorious as the world’s worst aquatic weed, and here we present Received 10 July 2017 all aspects of its biology, ecology and invasion behaviour within the framework of the new Accepted 14 September 2017 series of Botany Letters on Monographs on invasive plants in Europe. Native to the Amazon in KEYWORDS South America, the plant has been spread around the world since the late 1800s through the water hyacinth; invasion; ornamental plant trade due to its attractive lilac flowers, and is established on every continent management; legislation except Antarctica. Its distribution is limited in Europe to the warmer southern regions by cold winter temperatures, but it has extensive ecological and socio-economic impacts where it invades. Its reproductive behaviour, characterised by rapid vegetative spread and high seed production, as well as its wide physiological tolerance, allows it to proliferate rapidly and persist in a wide range of environments. It has recently been regulated by the EU, under Regulation No.
    [Show full text]
  • Insect Interactions in a Biological Control Context Using Water Hyacinth
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) “Is more, less?” Insect – insect interactions in a biological control context using water hyacinth as a model A thesis submitted in fulfillment of the requirements for the degree of MASTER OF SCIENCE of Rhodes University By Philip Sebastian Richard Weyl December 2011 Abstract Interactions between insects have been shown to be important regulators of population abundances and dynamics as well as drivers of spatial segregation and distribution. These are important aspects of the ecology of insects used in biological control and may have implications for the overall success of a particular programme. In the history of biological control there has been a tendency to release a suite of agents against a weed, which in some cases has increased the level of success, while in others little change has been observed. In most of these cases the implications of increasing the level of complexity of the system is not taken into account and there is little research on the effect of releasing another agent into the system. A brief meta-analysis was done on all the biological control programmes initiated in South Africa. Emphasis was placed on multi-species releases and the effects that overlapping niches were having on the number of agents responsible for the success of a programme. Where overlapping niches were present among agents released the number of agents responsible for success was lower than the number established. Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach in South Africa has more arthropod agents released against it than anywhere else in the world, yet control has been variable.
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]
  • General News
    Biocontrol News and Information 32(1), 1N–8N www.cabi.org/BNI General News High Hopes for Water Hyacinth Hoppers in effective in reducing plant growth. All aspects of the South Africa water hyacinth project and the candidate agent were weighed up by the biocontrol community in South The Agricultural Research Council – Plant Protec- Africa, and it was decided in August 2010 to proceed tion Research Institute (ARC-PPRI) in South Africa with a release. is soon to release a new insect biocontrol agent against the invasive aquatic weed, water hyacinth The first releases of the grasshopper are due to take (Eichhornia crassipes). place early in 2011. Post-release research will ini- tially be conducted by ARC-PPRI researchers (Angela Cornops aquaticum is a semi-aquatic grasshopper Bownes, Anthony King and Ayanda Nongogo), in col- that has been under consideration for release in South laboration with the funding and implementation Africa since 1995; a year prior to the last release of a agency, Working for Water (of the Department of new biocontrol agent for water hyacinth, the mirid Water Affairs, South Africa). Although, in recent Eccritotarsus catarinensis. The laboratory colony of C. years, control of water hyacinth has been more suc- aquaticum at PPRI, Pretoria was initiated from grass- cessful with the development of integrated control hoppers collected in Brazil, Trinidad, Venezuela and programmes using biological and chemical methods, Mexico between 1995 and 1997 and host-range testing water hyacinth is still South Africa’s nemesis aquatic was completed in 2001. Although C. aquaticum has weed. It is hoped that the introduction of the grass- long been recognized as a very damaging natural hopper will improve the success of classical biological enemy of water hyacinth, it has not been considered as control and that the apparent synergism between the a biocontrol agent elsewhere in the world and would Neochetina weevils and C.
    [Show full text]
  • Downloads/Weedlist2006.Pdf (/Isc/Abstract/20077202810)
    Citation information Page 1 of 2 (/ISC/) Invasive Species Compendium Detailed coverage of invasive species threatening livelihoods and the environment worldwide Filter by type Search Citation Please cite the Compendium as follows: For the compilation as a whole CABI, current year. Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc (http://www.cabi.org/isc). For an individual datasheet where authors are attributed in the Contributor section CABI, current year. Fallopia japonica [original text by AN Author]. In: Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc (http://www.cabi.org/isc). For an individual datasheet where no author is attributed CABI, current year. Fallopia japonica. In: Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc (http://www.cabi.org/isc). Contact Us (/ISC/contactus) Feedback (https://www.cabi.org/feedback/) Accessibility (https://www.cabi.org/accessibility/ ) Cookies (https://www.cabi.org/cookie-information/ ) Privacy Policy (https://www.cabi.org/privacy-policy/) Terms and conditions (https://www.cabi.org/terms-and-conditions/ ) https://www.cabi.org/ISC/citation 1/27/2019 Citation information Page 2 of 2 © Copyright 2019 CAB International. CABI is a registered EU trademark. https://www.cabi.org/ISC/citation 1/27/2019 4/6/2018 Datasheet report for Alternanthera philoxeroides (alligator weed) Invasive Species Compendium Datasheet report for Alternanthera philoxeroides (alligator weed) Top of page Pictures Picture Title Caption Copyright Leaves and A. philoxeroides is characterized by dark-green waxy leaves, lance-shaped, Bill inflorescence opposite, 12-14 x 1.5-2.5 cm. Inflorescence white, ball-shaped, papery, 1.5 cm in Parsons diameter.
    [Show full text]