Dark Matter Interpretation of the Neutron Decay Anomaly

Total Page:16

File Type:pdf, Size:1020Kb

Dark Matter Interpretation of the Neutron Decay Anomaly Dark Matter Interpretation of the Neutron Decay Anomaly Bartosz Fornal and Benjam´ın Grinstein Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (Dated: May 10, 2018) There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments. We propose to explain this anomaly by a dark decay channel for the neutron, involving one or more dark sector particles in the final state. If any of these particles are stable, they can be the dark matter. We construct representative particle physics models consistent with all experimental constraints. INTRODUCTION In this paper we focus on the latter possibility. We as- sume that the discrepancy between the neutron lifetime mea- The neutron is one of the fundamental building blocks of surements arises from an incomplete theoretical description matter. Along with the proton and electron it makes up most of neutron decay and we investigate how the Standard Model of the visible universe. Without it, complex atomic nuclei sim- (SM) can be extended to account for the anomaly. ply would not have formed. Although the neutron was discov- ered over eighty years ago [1] and has been studied intensively thereafter, its precise lifetime is still an open question [2, 3]. NEUTRON DARK DECAY The dominant neutron decay mode is β decay − Since in beam experiments neutron decay is observed by n ! p + e +ν ¯e ; detecting decay protons, the lifetime they measure is related described by the matrix element to the actual neutron lifetime by 1 µ M = p GF Vud gV [p ¯ γµn − λ p¯ γ5γµn ] [e ¯ γ (1 − γ5)ν ] : 2 beam τn τn = : (1) The theoretical estimate for the neutron lifetime is [4–7] Br(n ! p + anything) 4908:7(1:9) s In the SM the branching fraction (Br), dominated by β decay, τn = 2 2 : jVudj (1 + 3 λ ) is 100% and the two lifetimes are the same. The neutron decay rate obtained from bottle experiments is The Particle Data Group (PDG) world average for the axial- −28 vector to vector coupling ratio is λ = −1:2723 ± 0:0023 [8]. Γn ' 7:5 × 10 GeV: Adopting the PDG average jVudj = 0:97417 ± 0:00021 gives τn between 875:3 s and 891:2 s within 3 σ. The discrepancy ∆τn ' 8:4 s between the values measured in There are two qualitatively different types of direct neutron bottle and beam experiments corresponds to [18] lifetime measurements: bottle and beam experiments. exp bottle beam −30 In the first method, ultracold neutrons are stored in a con- ∆Γn = Γn − Γn ' 7:1 × 10 GeV : tainer for a time comparable to the neutron lifetime. The re- maining neutrons that did not decay are counted and fit to a We propose that this difference be explained by the exis- tence of a dark decay channel for the neutron, which makes decaying exponential, exp(−t/τn). The average from the five bottle experiments included in the PDG [8] world average is Br(n ! p + anything) ≈ 99% : [9–13] τ bottle = 879:6 ± 0:6 s : n There are two qualitatively different scenarios for the new arXiv:1801.01124v3 [hep-ph] 9 May 2018 Recent measurements using trapping techniques [14, 15] yield dark decay channel, depending on whether the final state con- a neutron lifetime within 2:0 σ of this average. sists entirely of dark particles or contains visible ones: In the beam method, both the number of neutrons N in a beam and the protons resulting from β decays are counted, (a) n ! invisible + visible ; and the lifetime is obtained from the decay rate, dN=dt = (b) n ! invisible : −N/τn. This yields a considerably longer neutron lifetime; the average from the two beam experiments included in the Here the label “invisible” includes dark sector particles, as PDG average [16, 17] is well as neutrinos. Such decays are described by an effective beam operator O = Xn, where n is the neutron and X is a spin τn = 888:0 ± 2:0 s : 1=2 operator, possibly composite, e.g. X = χ1χ2...χk, with The discrepancy between the two results is 4:0 σ. This sug- the χ’s being fermions and bosons combining into spin 1=2. gests that either one of the measurement methods suffers from From an experimental point of view, channel (a) offers a de- an uncontrolled systematic error, or there is a theoretical rea- tection possibility, whereas channel (b) relies on higher order son why the two methods give different results. radiative processes. We provide examples of both below. 2 Proton decay constraints One can also have a scalar DM particle φ with mass mφ < The operator O generally gives rise to proton decay via 938:783 MeV and χ being a Dirac right-handed neutrino. ∗ + Trivial model-building variations are implicit. The scenarios p ! n + e + νe ; with a Majorana fermion χ or a real scalar φ are additionally followed by the decay of n∗ through the channel (a) or (b) constrained by neutron-antineutron oscillation and dinucleon and has to be suppressed [19]. Proton decay can be elimi- decay searches [23, 24]. nated from the theory if the sum of masses of particles in the minimal final state f of neutron decay, say Mf , is larger than MODEL-INDEPENDENT ANALYSIS mp − me. On the other hand, for the neutron to decay, Mf must be smaller than the neutron mass, therefore it is required that Based on the discussed experimental constraints, the avail- mp − me < Mf < mn : able channels for the neutron dark decay are: n ! χ γ ; n ! χ φ ; n ! χ e+e− ; Nuclear physics bounds In general, the decay channels (a) and (b) could trigger nu- as well as those involving additional dark particle(s) and/or clear transitions from (Z; A) to (Z; A−1). If such a transition photon(s). is accompanied by a prompt emission of a state f 0 with the 0 sum of masses of particles making up f equal to Mf 0 , it can Neutron ! dark matter + photon be eliminated from the theory by imposing Mf 0 > ∆M = M(Z; A) − M(Z; A − 1) : Of course Mf 0 need not be the This decay is realized in the case of a two-particle interac- 0 same as Mf , since the final state f in nuclear decay may tion involving the fermion DM χ and a three-particle interac- not be available in neutron decay. For example, Mf 0 < Mf tion including χ and a photon, i.e., χ n ; χ n γ. Equations (2) 0 when the state f consists of a single particle, which is not and (3) imply that the DM mass is an allowed final state of the neutron decay. If f 0 = f then f 0 must contain at least two particles. The requirement becomes, 937:900 MeV < mχ < 938:783 MeV therefore, and the final state photon energy ∆M < min Mf 0 ≤ Mf < mn : 0:782 MeV < E < 1:664 MeV : (4) The most stringent of such nuclear decay constraints comes γ from the requirement of 9Be stability, for which ∆M = We are not aware of any experimental constraints on such 937:900 MeV, thus monochromatic photons. The search described in [25–27] measured photons from radiative β decays in a neutron beam, 937:900 MeV < min M 0 ≤ M < 939:565 MeV : (2) f f however, photons were recorded only if they appeared in co- The condition in Eq. (2) circumvents all nuclear decay limits incidence with a proton and an electron, which is not the case listed in PDG [8], including the most severe ones [20–22]. in our proposal. To describe the decay n ! χ γ in a quantitative way, we Dark matter consider theories with an interaction χ n, and an interaction Consider f to be a two-particle final state containing a dark χ n γ mediated by a mixing between the neutron and χ. An sector spin 1=2 particle χ. Assuming the presence of the in- example of such a theory is given by the effective Lagrangian teraction χ n, the condition in Eq. (2) implies that the other eff gne µν L =n ¯ i@= − mn + σ Fµν n particle in f has to be a photon or a dark sector particle φ with 1 2mn mass mφ < 1:665 MeV (we take it to be spinless). The decay +χ ¯ i@= − m χ + " (¯nχ +χn ¯ ) ; (5) − χ χ ! p + e +ν ¯e is forbidden if where gn '−3:826 is the neutron g-factor and " is the mixing mχ < mp + me = 938:783 MeV : (3) parameter with dimension of mass. The term corresponding Provided there are no other decay channels for χ, Eq. (3) en- to n ! χ γ is obtained by transforming Eq. (5) to the mass sures that χ is stable, thus making it a DM candidate. On the eigenstate basis and, for " mn − mχ, yields − other hand, if χ ! p + e +ν ¯e is allowed, although this pre- eff gne " µν χ Ln!χγ = χ¯ σ Fµν n : (6) vents from being the DM, its lifetime is still long enough to 2mn (mn − mχ) explain the neutron decay anomaly. In both scenarios φ can be a DM particle as well. Therefore, the neutron dark decay rate is Without the interaction χ n, only the sum of final state g2 e2 m2 3 m "2 masses is constrained by Eq. (2). Both χ and φ can be DM n χ n ∆Γn!χγ = 1 − 2 2 candidates, provided 8π mn (mn − mχ) 2 exp 1+x 3 1−x " [GeV] jmχ − mφj < mp + me : ≈ ∆Γn 2 1:8×10−3 9:3×10−14 ; (7) 3 where x = mχ=mn.
Recommended publications
  • Grand Unification and Proton Decay
    Grand Unification and Proton Decay Borut Bajc J. Stefan Institute, 1000 Ljubljana, Slovenia 0 Reminder This is written for a series of 4 lectures at ICTP Summer School 2011. The choice of topics and the references are biased. This is not a review on the sub- ject or a correct historical overview. The quotations I mention are incomplete and chosen merely for further reading. There are some good books and reviews on the market. Among others I would mention [1, 2, 3, 4]. 1 Introduction to grand unification Let us first remember some of the shortcomings of the SM: • too many gauge couplings The (MS)SM has 3 gauge interactions described by the corresponding carriers a i Gµ (a = 1 ::: 8) ;Wµ (i = 1 ::: 3) ;Bµ (1) • too many representations It has 5 different matter representations (with a total of 15 Weyl fermions) for each generation Q ; L ; uc ; dc ; ec (2) • too many different Yukawa couplings It has also three types of Ng × Ng (Ng is the number of generations, at the moment believed to be 3) Yukawa matrices 1 c c ∗ c ∗ LY = u YU QH + d YDQH + e YELH + h:c: (3) This notation is highly symbolic. It means actually cT αa b cT αa ∗ cT a ∗ uαkiσ2 (YU )kl Ql abH +dαkiσ2 (YD)kl Ql Ha +ek iσ2 (YE)kl Ll Ha (4) where we denoted by a; b = 1; 2 the SU(2)L indices, by α; β = 1 ::: 3 the SU(3)C indices, by k; l = 1;:::Ng the generation indices, and where iσ2 provides Lorentz invariants between two spinors.
    [Show full text]
  • $\Delta L= 3$ Processes: Proton Decay And
    IFIC/18-03 ∆L = 3 processes: Proton decay and LHC Renato M. Fonseca,1, ∗ Martin Hirsch,1, y and Rahul Srivastava1, z 1AHEP Group, Institut de F´ısica Corpuscular { C.S.I.C./Universitat de Val`encia,Parc Cient´ıficde Paterna. C/ Catedr´atico Jos´eBeltr´an,2 E-46980 Paterna (Valencia) - SPAIN We discuss lepton number violation in three units. From an effective field theory point of view, ∆L = 3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to ∆L = 3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d = 9; 11; 13 operators which violate lepton number in three units. We then construct one simple concrete model with interesting low- and high-energy phenomenology. I. INTRODUCTION could be related to some particular combinations of lep- ton/quark flavours, as argued for example in [8], or to The standard model conserves baryon (B) and lepton total lepton and baryon numbers. The possibility we dis- (L) number perturbatively. However, this is no longer cuss in this paper is that lepton number might actually true for non-renormalizable operators [1] which might be be violated only in units of three: ∆L = 3.
    [Show full text]
  • Proton Decay at the Drip-Line Magic Number Z = 82, Corresponding to the Closure of a Major Nuclear Shell
    NEWS AND VIEWS NUCLEAR PHYSICS-------------------------------- case since it has one proton more than the Proton decay at the drip-line magic number Z = 82, corresponding to the closure of a major nuclear shell. In Philip Woods fact the observed proton decay comes from an excited intruder state configura­ WHAT determines whether a nuclear ton decay half-life measurements can be tion formed by the promotion of a proton species exists? For nuclear scientists the used to explore nuclear shell structures in from below the Z=82 shell closure. This answer to this poser is that the species this twilight zone of nuclear existence. decay transition was used to provide should live long enough to be identified The proton drip-line sounds an inter­ unique information on the quantum mix­ and its properties studied. This still begs esting place to visit. So how do we get ing between normal and intruder state the fundamental scientific question of there? The answer is an old one: fusion. configurations in the daughter nucleus. what the ultimate boundaries to nuclear In this case, the fusion of heavy nuclei Following the serendipitous discovery existence are. Work by Davids et al. 1 at produces highly neutron-deficient com­ of nuclear proton decay4 from an excited Argonne National Laboratory in the pound nuclei, which rapidly de-excite by state in 1970, and the first example of United States has pinpointed the remotest boiling off particles and gamma-rays, leav­ ground-state proton decay5 in 1981, there border post to date, with the discovery of ing behind a plethora of highly unstable followed relative lulls in activity.
    [Show full text]
  • Inclusive Nucleon Decay Searches As a Frontier of Baryon Number Violation
    UCI-TR-2019-24 Inclusive Nucleon Decay Searches as a Frontier of Baryon Number Violation Julian Heeck1, ∗ and Volodymyr Takhistov2, y 1Department of Physics and Astronomy, University of California, Irvine Irvine, California, 92697-4575, USA 2Department of Physics and Astronomy, University of California, Los Angeles Los Angeles, California, 90095-1547, USA Proton decay, and the decay of nucleons in general, constitutes one of the most sensitive probes of high-scale physics beyond the Standard Model. Most of the existing nucleon decay searches have focused primarily on two-body decay channels, motivated by Grand Unified Theories and supersymmetry. However, many higher-dimensional operators violating baryon number by one unit, ∆B = 1, induce multi-body nucleon decay channels, which have been only weakly constrained thus far. While direct searches for all such possible channels are desirable, they are highly impractical. In light of this, we argue that inclusive nucleon decay searches, N ! X+anything (where X is a light Standard Model particle with an unknown energy distribution), are particularly valuable, as are model-independent and invisible nucleon decay searches such as n ! invisible. We comment on complementarity and opportunities for such searches in the current as well as upcoming large- scale experiments Super-Kamiokande, Hyper-Kamiokande, JUNO, and DUNE. Similar arguments apply to ∆B > 1 processes, which kinematically allow for even more involved final states and are essentially unexplored experimentally. CONTENTS I. INTRODUCTION I. Introduction 1 Baryon number B and lepton number L are seem- ingly accidentally conserved in the Standard Model (SM), II. Nucleon decay operators 2 which makes searches for their violation extremely impor- A.
    [Show full text]
  • Chapter 15 Β Decay
    Chapter 15 β Decay Note to students and other readers: This Chapter is intended to supplement Chapter 9 of Krane’s excellent book, ”Introductory Nuclear Physics”. Kindly read the relevant sections in Krane’s book first. This reading is supplementary to that, and the subsection ordering will mirror that of Krane’s, at least until further notice. β-particle’s are either electrons1 or positrons that are emitted through a certain class of nuclear decay associated with the “weak interaction”. The discoverer of electrons was Henri Becquerel, who noticed that photographic plates, covered in black paper, stored near ra- dioactive sources, became fogged. The black paper (meant to keep the plates unexposed) was thick enough to stop α-particles, and Becquerel concluded that fogging was caused by a new form of radiation, one more penetrating than α-particles. The name “β”, followed naturally as the next letter in the Greek alphabet after α, α-particles having already been discovered and named by Rutherford. Since that discovery, we have learned that β-particles are about 100 times more penetrating 1 than α-particles, and are spin- 2 fermions. Associated with the electrons is a conserved quantity, expressed as the quantum number known as the lepton number. The lepton number of the negatron is, by convention +1. The lepton number of the positron, also the anti- particle of the negatron, is -1. Thus, in a negatron-positron annihilation event, the next lepton number is zero. Only leptons can carry lepton number. (More on this soon.) Recall, from Chapter 13 (Chapter 6 in Krane), our discussion of the various decay modes that are associated with β decay: 1Technically, the word “electron” can represent either a negatron (a fancy word for e−) or a positron (e+).
    [Show full text]
  • ELEMENTARY PARTICLES in PHYSICS 1 Elementary Particles in Physics S
    ELEMENTARY PARTICLES IN PHYSICS 1 Elementary Particles in Physics S. Gasiorowicz and P. Langacker Elementary-particle physics deals with the fundamental constituents of mat- ter and their interactions. In the past several decades an enormous amount of experimental information has been accumulated, and many patterns and sys- tematic features have been observed. Highly successful mathematical theories of the electromagnetic, weak, and strong interactions have been devised and tested. These theories, which are collectively known as the standard model, are almost certainly the correct description of Nature, to first approximation, down to a distance scale 1/1000th the size of the atomic nucleus. There are also spec- ulative but encouraging developments in the attempt to unify these interactions into a simple underlying framework, and even to incorporate quantum gravity in a parameter-free “theory of everything.” In this article we shall attempt to highlight the ways in which information has been organized, and to sketch the outlines of the standard model and its possible extensions. Classification of Particles The particles that have been identified in high-energy experiments fall into dis- tinct classes. There are the leptons (see Electron, Leptons, Neutrino, Muonium), 1 all of which have spin 2 . They may be charged or neutral. The charged lep- tons have electromagnetic as well as weak interactions; the neutral ones only interact weakly. There are three well-defined lepton pairs, the electron (e−) and − the electron neutrino (νe), the muon (µ ) and the muon neutrino (νµ), and the (much heavier) charged lepton, the tau (τ), and its tau neutrino (ντ ). These particles all have antiparticles, in accordance with the predictions of relativistic quantum mechanics (see CPT Theorem).
    [Show full text]
  • Abstract ANGULAR CORRELATIONS in FREE NEUTRON DECAY Jiirgen
    365 ANGULAR CORRELATIONS IN FREE NEUTRON DECAY Jiirgen Last Institut Laue-Langevin 156 X 38042 Grenoble Cedex France Abstract The study of particle angular correlations in freeneutron decay provides important information about �-decay coupling constants, the structure of the hadronic weak current and possible extensions to the Standard Model. New experiments are expected to substantially reduce the uncertainty in the parity violating �-asymmetry A. The value of Yuct, which is currently derived from �-transition life times, might soon become available directly from neutron data. J7t=O+ An experiment which looks for time reversal violation in internal pair creation following polarized neutron captureon is briefly discussed. 366 NEIUTRON DECAY AND FUNDAMENTAL PHYSICS The term 'fundamental interaction' suggests that the physical system under study is elementary and prototypical for a whole class of similar processes. In this sense the weak decay of the neutron is clearly fundamental. Although the neutron possesses a complex internal structure, its quark contents is udd, it is the simplest baryonic system which undergoes semileptonic 13- decay. A neutron decays into a proton, an electron and an anti-neutrino. During this process one of the down-quarks is changed into an up-quark, emitting a W-boson which itsself decays into a pair of leptons. Since free quarks have not been observed in an experiment, neutron 13-decay is a very important source of information about the structure of the hadronic weak current and the weak coupling constants gA and gy. Their numerical values serve as input to nuclear astrop hysics problems, Big Bang cosmology, neutrino reactions and many other nuclear physics processes!.
    [Show full text]
  • Letter of Interest Unitarity of CKM Matrix, |Vud|, Radiative Corrections
    Snowmass2021 - Letter of Interest Unitarity of CKM Matrix, jVudj, Radiative Corrections and Semi-leptonic Form Factors Topical Groups: (EF04) EW Physics: EW Precision Physics and constraining new physics (EF05) QCD and strong interactions:Precision QCD (RF02) BSM: Weak decays of strange and light quarks (RF03) Fundamental Physics in Small Experiments (TF05) Lattice gauge theory (CompF2) Theoretical Calculations and Simulation Contact Information: Rajan Gupta (Los Alamos National Laboratory) [[email protected]]: Vincenzo Cirigliano (Los Alamos National Laboratory) [[email protected]] Collaboration: Precision Neutron Decay Matrix Elements (PNDME) and Nucleon Matrix Elements (NME) Authors: Tanmoy Bhattacharya (Los Alamos National Laboratory) [[email protected]] Steven Clayton (Los Alamos National Laboratory) [[email protected]] Vincenzo Cirigliano (Los Alamos National Laboratory) [[email protected]] Rajan Gupta (Los Alamos National Laboratory) [[email protected]] Takeyasu Ito (Los Alamos National Laboratory) [[email protected]] Yong-Chull Jang (Brookhaven National Laboratory) [[email protected]] Emanuele Mereghetti (Los Alamos National Laboratory) [[email protected]] Santanu Mondal (Los Alamos National Laboratory) [[email protected]] Sungwoo Park (Los Alamos National Laboratory) [[email protected]] Andrew Saunders (Los Alamos National Laboratory) [[email protected]] Boram Yoon (Los Alamos National Laboratory) [[email protected]] Albert Young (North Carolina State University) [[email protected]] Abstract: Exploring deviations from unitarity of the CKM matrix provides several probes of BSM physics. Many of these require calculating the matrix elements of the electroweak current between ground state mesons or nucleons, for which large scale simulations of lattice QCD provide the best systematically im- provable method. This LOI focues on improvments in the precision with which the CKM element jVudj can be extracted from neutron decay experiments coupled with lattice QCD calculations of the radiative correc- tions.
    [Show full text]
  • Effective Field Theory and Collider Physics
    Howard Georgi Lisa Randall and Matthew Schwartz Center for the Fundamental Laws of Nature Harvard University quarks leptons u d e n c s m n b t t n gravity strong g force g h electromagnetism W/Z weak force That’s it! Perturbation theory fails for the weak force Quantum Corrections W/Z W/Z W/Z W/Z + = + W/Z W/Z W/Z Tiny correction at atomic energies E ~10-6 TeV … …but as big as leading order a LHC energies E~1 TeV Perturbation theory is restored if there is a Higgs W/Z = + Higgs - ~ 0.01 Large correction cancels The Higgs Boson restores our ability to calculate Must there be a Higgs? No. • But then quantum field theory fails above 1 TeV • We would need a new framework for particle physics •Very exciting possibility! Indirect Exclusion (95%) Combine many observables to constrain Higgs mass 45 80 144 Direct Exclusion Indirect Exclusion (95%) Combine many observables to constrain Higgs mass 114 144 RecentTevatron exclusion (160-170 GeV) Combined bound (95%) Combined bound (95%) Combine many observables to constrain Higgs mass 114 182 Geneva Two experiments can find the Higgs ATLAS CMS Boston New York 25 kilometers in diameter The LHC is being built to find the Higgs If there is no Higgs The LHC will find something better Quantum Field •supersymmetry Theory •technicolor FAILS •extra-dimensions • … no Higgs (m = 1) most exciting possibility! The LHC is a win-win situation Yes. But we hope not. Clues to new physics 1. Dark Matter 2. Unification 3.
    [Show full text]
  • UC San Diego UC San Diego Previously Published Works
    UC San Diego UC San Diego Previously Published Works Title Neutron Lifetime Discrepancy as a Sign of a Dark Sector? Permalink https://escholarship.org/uc/item/5rw0t1wt Authors Fornal, Bartosz Grinstein, Benjamin Publication Date 2018-10-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CIPANP2018-Fornal October 2, 2018 Neutron Lifetime Discrepancy as a Sign of a Dark Sector? Bartosz Fornal∗y and Benjam´ın Grinstein∗ Department of Physics University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA We summarize our recent proposal of explaining the discrepancy between the bottle and beam measurements of the neutron lifetime through the ex- istence of a dark sector, which the neutron can decay to with a branching fraction 1%. We show that viable particle physics models for such neutron dark decays can be constructed and we briefly comment on recent develop- ments in this area. PRESENTED AT arXiv:1810.00862v1 [hep-ph] 1 Oct 2018 13th Conference on the Intersections of Particle and Nuclear Physics Palm Springs, CA, USA, May 29 { June 3, 2018 ∗ Research supported in part by the DOE Grant No. DE-SC0009919. y Speaker; talk title: Dark Matter Interpretation of the Neutron Decay Anomaly; based on: B. Fornal and B. Grinstein, Phys. Rev. Lett. 120, 191801 (2018) [1] 1 Neutron Lifetime In the Standard Model (SM), the dominant neutron decay channel is beta decay, − n ! p + e + νe ; (1) along with radiative corrections involving one or more photons in the final state. The theoretical prediction for the neutron lifetime is [2] SM 4908:7(1:9) s τn = 2 2 ; (2) jVudj (1 + 3gA) where gA is the ratio of the axial-vector to vector coupling.
    [Show full text]
  • The Physics of Ultracold Neutrons and Fierz Interference in Beta Decay
    The Physics of Ultracold Neutrons and Fierz Interference in Beta Decay Thesis by Kevin Peter Hickerson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2013 (Defended October 9, 2012) ii © 2013 Kevin Peter Hickerson All Rights Reserved iii Acknowledgements I am very indebted to my research adviser, Dr. Bradley Filippone, who kindly asked me to join his research group, led me toward a rewarding path into nuclear physics, and gave precious advice to work and experiment with ultracold neutrons. I am appreciative of my previous employer, Bill Gross, who enabled me to pursue my work outside of physics, ranging in far-reaching fields such as tablet computing, rapid pro- totyping, low-cost food production, and my personal favorite, solar energy. I wish to show much appreciation to Dr. Chris Morris, Dr. Mark Makela, Dr. Takeyasu Ito, John Ramsey, Walter Sondheim and Dr. Andy Saunders of Los Alamos National Lab- oratory, whose ingenuity and creativity and mentoring were invaluable for designing the many neutron experiments we performed at LANSCE. I am also grateful to all the graduate students and postdocs who have worked on the ultracold neutron projects with me. Their hard work and late hours make these experiments successful. Finally, I am very grateful to my family, my friends, my wife, Anna, and my children, Melanie, Brian, and Jack for tolerating my many long trips to Los Alamos to work on this research and supporting me during my years in graduate school. iv Abstract In the first component of this thesis, we investigate the physics of ultacold neutrons (UCN).
    [Show full text]
  • Phenomenology Lecture 8
    Phenomenology Lecture 8: BSM Daniel Maître IPPP, Durham Phenomenology – Daniel Maître Why BSM? ● Despite the success of the Standard model, there are some puzzles left: – Why is the top so much heavier than the electron? – Why is Θ so small? – Is there enough CP violation? ● We need masses for the neutrinos ● What is dark matter? ● What is dark energy? ● What about gravity? Phenomenology – Daniel Maître BSM ● New models usually include more particles ● We can find them – Direct production: By directly producing them in the colliders if they are light enough and they interact (enough) with the standard model – Precision observables: By measuring their effect on precision observables through loop correction (where they can be off-shell if the energy is not sufficient to produce them) examples: g-2, EW precision measurements – Rare decays: If there is a new interaction, even a weak one, new processes become allowed that are not allowed in the standard model, or are highly suppressed. Examples: Proton decay, neutrino mixing, rare B and Kaon decays... Phenomenology – Daniel Maître BSM models ● There are a large number of BSM models ● This may be due to the fact that it is easier to “cook up” a model that it is to test it. ● Since there is no (direct) experimental evidence for BSM particles the game is to find models that are most undistinguishable from the SM. ● We can only cover a limited number of models and look at their experimental implications ● It is much better, when possible, to have model independent searches, so that they can be used for several models not just the one that is trendy at the moment of the measurement Phenomenology – Daniel Maître BSM models ● Here are some models – GUT theories – Technicolor – SUSY – Large extra dimensions – Small extra dimensions – Little Higgs Models – ..
    [Show full text]