The Neutron and Its Role in Cosmology and Particle Physics

Total Page:16

File Type:pdf, Size:1020Kb

The Neutron and Its Role in Cosmology and Particle Physics The neutron and its role in cosmology and particle physics Dirk Dubbers* Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany Michael G. Schmidt † Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany arXiv 18 May 2011, extended version of: Reviews of Modern Physics, in print. Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis, the mechanism behind the evident dominance of matter over antimatter in the universe. The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth’s gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton’s gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model. These experiments start closing the remaining “axion window” on new spin- dependent forces in the submillimeter range. Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the “first three minutes” and later on in stellar nucleosynthesis. DOI: xx,xxxx/RevModPhys.xx.xxx PACS number(s): 12.15.-y, 12.60.-i, 14.20.Dh, 98.80.-k *[email protected][email protected] 1 CONTENTS Sections marked with an asterisk* contain complementary material not included in the RMP article. I. Introduction 3 C. Neutron constraints on new forces and on A. Background 3 dark matter candidates 38 B. Scope of this review 4 1. Constraints from UCN gravitational levels 38 II. History Of The Early Universe 7 2. Constraints from neutron scattering 40 III. Baryogenesis, CP Violation, and the Neutron 3. Constraints on spin-dependent new forces 41 Electric Dipole Moment 9 D. More lessons from the neutron mass 42 A. Baryogenesis 9 1. Gravitational vs. inertial mass 42 1. The dominance of matter over antimatter 9 2. Neutron mass, and test of E= mc 2 42 2. Some quantities of the Standard Model 10 3. The fine structure constant 43 3. First Sakharov criterion: Violation of 4. More experiments on free falling neutrons 43 baryon number 11 VI. The Electroweak Standard Model and the 4. Second criterion: CP Violation 12 β-Decay Of Free Neutrons 44 5. Third criterion: Nonequilibrium 13 A. Neutron decay theory 44 6. Baryogenesis in the Standard Model (SM) 13 1. The example of electromagnetism 44 7. Baryogenesis beyond the Standard Model 14 2. Weak interactions of leptons and quarks 45 B. Electric dipole moments (EDMs) 16 3. Weak interactions of nucleons 46 1. EDMs and symmetry violations 16 4. The 20 and more observables accessible 2. Neutron EDM experiments 17 from neutron decay 48 3. *Upcoming neutron EDM experiments 20 5. Rare allowed neutron decays 50 4. Limits on atomic and particle EDMs 23 B. Experiments in neutron decay 51 C. EDMs in particle physics and cosmology 24 1. The neutron lifetime 51 1. EDMs in the Standard Model 24 2. Correlation coefficients 55 2. EDMs in supersymmetry 26 3. *Upcoming neutron decay experiments 59 3. Other approaches 29 4. Comparison with muon decay data 60 4. Conclusions on EDM constraints 30 C. Weak interaction results and the Standard D. The other electromagnetic properties of the Model 60 neutron 30 1. Results from neutrons and other particles 60 1. Electric charge 30 2. Results from nuclear β -decays 61 2. Magnetic monopole moment 30 3. Unitarity of the CKM matrix 62 3. Magnetic dipole moment 31 4. *Induced terms 63 4. Mean square charge radius 31 D. Symmetry tests beyond the SM 64 5. Electromagnetic polarizability 31 1. Is the electroweak interaction purely IV. Baryon Number Violation, Mirror Universes, V− A ? 64 and Neutron Oscillations 32 2. Was the universe left-handed from the A. Neutron-antineutron oscillations 32 beginning? 67 B. Neutron-mirrorneutron oscillations 32 3. Time reversal invariance 68 V. Extra Dimensions, New Forces, and the Free VII. The Role of the Neutron in Element Formation 69 Fall of the Neutron 33 A. Primordial nucleosynthesis 69 A. Large extra dimensions 33 1. The neutron density in the first three 1. The hierarchy problem 33 minutes 69 2. Bringing down the Planck mass 34 2. Nuclear reactions in the expanding universe 71 3. Competing models 35 3. Neutron lifetime, particle families, and B. Gravitational quantum levels 35 baryon density of the universe 71 1. Neutron states in the gravitational potential 35 4. Light-element abundances 72 2. Ultracold neutron (UCN) transmission B. Stellar nucleosynthesis 73 experiments 36 1. Stellar nucleosynthesis and the s-process 73 3. Observation of UCN gravitational wave 2. Explosive nucleosynthesis and the r- functions and resonance transitions 37 process 74 VIII. Conclusions 75 2 I. INTRODUCTION By pure coincidence, the size of the neutron’s mass is such that, at thermal velocities, their de-Broglie In the morning, a weight watcher sees the mass of wavelengths are in the Ångstrom range and thus match typically 40 kilograms of protons, 32 kilograms of typical atomic distances as well. Hence, neutrons can neutrons, and 22 grams of electrons. Neutrons are as give both structural information (by elastic diffraction) ubiquitous on earth as are protons and electrons. In the and dynamical information (by inelastic spectroscopy). laboratory, we can produce free electrons simply by Neutrons are the only penetrating particles with this heating a wire and free protons by igniting a hydrogen feature, which enables them to tell us both “where the gas discharge, but things are not so easy for neutrons. atoms are”, and, at the same time, “what the atoms Neutrons are tightly bound in nuclei and free neutrons do”. Dynamical information is provided separately for are unstable with a lifetime of about 15 minutes, so any length scale as chosen by the experimenter via there are very few free neutrons in our environment. momentum transfer (selected, for example, by the To set neutrons free we need a nuclear reaction, a MeV scattering angle). In the specialist’s language: rather than an eV process, and to obtain neutron fluxes Neutrons provide us with the full atomic space-time competitive for modern scientific experimentation we correlation functions of the material under study, both need big nuclear installations. for self-correlations of the atoms (from incoherent As its name says, the outstanding property of the neutron scattering) and for their pair-correlations (from neutron is its electric neutrality. In fact, the neutron is coherent neutron scattering). the only long-lived massive particle with zero charge By another unique coincidence (also linked to the (if we neglect the small neutrino mass). This makes neutron mass via the nuclear magneton), the size of the neutrons difficult to handle, as one cannot easily neutron’s magnetic moment is such that amplitudes of accelerate, guide, or focus them with electric fields. magnetic electron scattering and nuclear scattering are Furthermore, one can detect slow neutrons only in a of similar magnitude. This makes neutrons useful also destructive way, via nuclear reactions that produce for structural and dynamical studies of the magnetic secondary ionizing reaction products. Once detected, properties of matter. On the instrumentation side, the neutrons are gone, in contrast to charged particles, magnetic interaction enables powerful techniques for which leave an ionization track that we can detect in a spin-polarization, magnetic guidance, or confinement destructive-free manner. Another disadvantage of of neutrons. Furthermore, slow neutrons generally neutrons is that fluxes available are much lower than distinguish easily between elements of similar atomic photon, electron, or proton fluxes. number, and often between isotopes of the same So why take the pain and work with neutrons when element, the latter feature making powerful contrast they are so difficult to produce and to handle? The variation techniques applicable. All these are answer is, although the neutron’s neutrality is a properties that neutrons have and x-rays do not. burden, it is also its greatest asset (we find a similar Neutron-particle physicists should be well acquainted situation for the neutrino: its neutrality to all charges with these particularities of neutron-material science if except the weak charge is both its greatest asset and, they want to exploit fully the potential of the field. for the experimenter, a heavy burden). When the usually dominant long-range Coulomb interaction is not present, other more subtle effects come to the A. Background forefront. Being hadrons (i.e., particles composed of quarks), neutrons respond to all known interactions: Neutron-particle physics is part of the growing field the gravitational, the weak, the electromagnetic, and of low-energy particle physics.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Fundamentals of Particle Physics
    Fundamentals of Par0cle Physics Particle Physics Masterclass Emmanuel Olaiya 1 The Universe u The universe is 15 billion years old u Around 150 billion galaxies (150,000,000,000) u Each galaxy has around 300 billion stars (300,000,000,000) u 150 billion x 300 billion stars (that is a lot of stars!) u That is a huge amount of material u That is an unimaginable amount of particles u How do we even begin to understand all of matter? 2 How many elementary particles does it take to describe the matter around us? 3 We can describe the material around us using just 3 particles . 3 Matter Particles +2/3 U Point like elementary particles that protons and neutrons are made from. Quarks Hence we can construct all nuclei using these two particles -1/3 d -1 Electrons orbit the nuclei and are help to e form molecules. These are also point like elementary particles Leptons We can build the world around us with these 3 particles. But how do they interact. To understand their interactions we have to introduce forces! Force carriers g1 g2 g3 g4 g5 g6 g7 g8 The gluon, of which there are 8 is the force carrier for nuclear forces Consider 2 forces: nuclear forces, and electromagnetism The photon, ie light is the force carrier when experiencing forces such and electricity and magnetism γ SOME FAMILAR THE ATOM PARTICLES ≈10-10m electron (-) 0.511 MeV A Fundamental (“pointlike”) Particle THE NUCLEUS proton (+) 938.3 MeV neutron (0) 939.6 MeV E=mc2. Einstein’s equation tells us mass and energy are equivalent Wave/Particle Duality (Quantum Mechanics) Einstein E
    [Show full text]
  • Introduction to Particle Physics
    SFB 676 – Projekt B2 Introduction to Particle Physics Christian Sander (Universität Hamburg) DESY Summer Student Lectures – Hamburg – 20th July '11 Outline ● Introduction ● History: From Democrit to Thomson ● The Standard Model ● Gauge Invariance ● The Higgs Mechanism ● Symmetries … Break ● Shortcomings of the Standard Model ● Physics Beyond the Standard Model ● Recent Results from the LHC ● Outlook Disclaimer: Very personal selection of topics and for sure many important things are left out! 20th July '11 Introduction to Particle Physics 2 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 233 … für Chester war das nur ein Weg das Geld für das eigentlich theoretische Zeugs aufzubringen, was ihn interessierte … die Erforschung Dunkler Materie, …ähm… Quantenpartikel, Neutrinos, Gluonen, Mesonen und Quarks. Subatomare Teilchen Die Geheimnisse des Universums! Theoretisch gesehen sind sie sogar die Bausteine der Wirklichkeit ! Aber niemand weiß, ob sie wirklich existieren !? 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 234 The First Particle Physicist? By convention ['nomos'] sweet is sweet, bitter is bitter, hot is hot, cold is cold, color is color; but in truth there are only atoms and the void. Democrit, * ~460 BC, †~360 BC in Abdera Hypothesis: ● Atoms have same constituents ● Atoms different in shape (assumption: geometrical shapes) ● Iron atoms are solid and strong with hooks that lock them into a solid ● Water atoms are smooth and slippery ● Salt atoms, because of their taste, are sharp and pointed ● Air atoms are light and whirling, pervading all other materials 20th July '11 Introduction to Particle Physics 5 Corpuscular Theory of Light Light consist out of particles (Newton et al.) ↕ Light is a wave (Huygens et al.) ● Mainly because of Newtons prestige, the corpuscle theory was widely accepted (more than 100 years) Sir Isaac Newton ● Failing to describe interference, diffraction, and *1643, †1727 polarization (e.g.
    [Show full text]
  • Read About the Particle Nature of Matter
    READING MATERIAL Read About the Particle Nature of Matter PARTICLES OF MATTER DEFINITION Matter is anything that has weight and takes up space. A particle is the smallest possible unit of matter. Understanding that matter is made of tiny particles too small to be seen can help us understand the behavior and properties of matter. To better understand how the 3 states of matter work…. LET’S BREAK IT DOWN! All matter is made of particles that are too small to be seen. Everything you can see and touch is made of matter. It is all the “stuff” in the universe. Things that are not made of matter include energy, and ideas like peace and love. Matter is made up of small particles that are too small to be seen, even with a powerful microscope. They are so small that you would have to put about 100,000 particles in a line to equal the width of a human hair! Page 1 The arrangement of particles determines the state of matter. Particles are arranged and move differently in each state of matter. Solids contain particles that are tightly packed, with very little space between particles. If an object can hold its own shape and is difficult to compress, it is a solid. Liquids contain particles that are more loosely packed than solids, but still closely packed compared to gases. Particles in liquids are able to slide past each other, or flow, to take the shape of their container. Particles are even more spread apart in gases. Gases will fill any container, but if they are not in a container, they will escape into the air.
    [Show full text]
  • A Young Physicist's Guide to the Higgs Boson
    A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with..
    [Show full text]
  • Cryoedm: Building a Simulation Framework for Ultra-Cold Neutrons
    CryoEDM: building a simulation framework for ultra-cold neutrons Matthew Rásó-Barnett University of Sussex • - CryoEDM • - What are UCN? • - Simulating UCN in CryoEDM Matthew Rásó-Barnett - University of Sussex - 6th April 2010 1 Wednesday, 6 April 2011 Why are we interested in EDMs anyway? • The existence of a permanent EDM in fundamental particles would be a violation of Time reversal symmetry and therefore CP symmetry. • CP violation is thought to be one of the key ingredients necessary for the predominance of matter over anti-matter in the universe. ➡ Sakharov’s necessary conditions for Baryogenesis • However, sources of CP-violation in the standard model are generally thought to be insufficient to generate presently observed baryon asymmetry. Matthew Rásó-Barnett - University of Sussex - 6th April 2010 2 Wednesday, 6 April 2011 Neutron EDM Measurements • Many different theoretical models predict new sources of CP-violation (such as the many from super- symmetry) and therefore give predictions for the size of the nEDM. • Thus, searches for a nEDM place experimental limits on many theories of beyond-standard-model physics Sussex-RAL 2006 Best Limit: Matthew Rásó-Barnett - University of Sussex - 6th April 2010 3 Wednesday, 6 April 2011 Measurement Principle • Measure changes in neutron’s Larmor precession frequency due to a potential EDM’s interaction with an applied Electric field. • Changing B field and E field from parallel to anti-parallel results in, !"#$%&'()"*+(,-.(,/0"%1+"'$ 2 S!"#*+',-#,+(.& polarizer analyzer incoming !" neutrons
    [Show full text]
  • Detection of a Strange Particle
    10 extraordinary papers Within days, Watson and Crick had built a identify the full set of codons was completed in forensics, and research into more-futuristic new model of DNA from metal parts. Wilkins by 1966, with Har Gobind Khorana contributing applications, such as DNA-based computing, immediately accepted that it was correct. It the sequences of bases in several codons from is well advanced. was agreed between the two groups that they his experiments with synthetic polynucleotides Paradoxically, Watson and Crick’s iconic would publish three papers simultaneously in (see go.nature.com/2hebk3k). structure has also made it possible to recog- Nature, with the King’s researchers comment- With Fred Sanger and colleagues’ publica- nize the shortcomings of the central dogma, ing on the fit of Watson and Crick’s structure tion16 of an efficient method for sequencing with the discovery of small RNAs that can reg- to the experimental data, and Franklin and DNA in 1977, the way was open for the com- ulate gene expression, and of environmental Gosling publishing Photograph 51 for the plete reading of the genetic information in factors that induce heritable epigenetic first time7,8. any species. The task was completed for the change. No doubt, the concept of the double The Cambridge pair acknowledged in their human genome by 2003, another milestone helix will continue to underpin discoveries in paper that they knew of “the general nature in the history of DNA. biology for decades to come. of the unpublished experimental results and Watson devoted most of the rest of his ideas” of the King’s workers, but it wasn’t until career to education and scientific administra- Georgina Ferry is a science writer based in The Double Helix, Watson’s explosive account tion as head of the Cold Spring Harbor Labo- Oxford, UK.
    [Show full text]
  • A Measurement of Neutral B Meson Mixing Using Dilepton Events with the BABAR Detector
    A measurement of neutral B meson mixing using dilepton events with the BABAR detector Naveen Jeevaka Wickramasinghe Gunawardane Imperial College, London A thesis submitted for the degree of Doctor of Philosophy of the University of London and the Diploma of Imperial College December, 2000 A measurement of neutral B meson mixing using dilepton events with the BABAR detector Naveen Gunawardane Blackett Laboratory Imperial College of Science, Technology and Medicine Prince Consort Road London SW7 2BW December, 2000 ABSTRACT This thesis reports on a measurement of the neutral B meson mixing parameter, ∆md, at the BABAR experiment and the work carried out on the electromagnetic calorimeter (EMC) data acquisition (DAQ) system and simulation software. The BABAR experiment, built at the Stanford Linear Accelerator Centre, uses the PEP-II asymmetric storage ring to make precise measurements in the B meson system. Due to the high beam crossing rates at PEP-II, the DAQ system employed by BABAR plays a very crucial role in the physics potential of the experiment. The inclusion of machine backgrounds noise is an important consideration within the simulation environment. The BABAR event mixing software written for this purpose have the functionality to mix both simulated and real detector backgrounds. Due to the high energy resolution expected from the EMC, a matched digital filter is used. The performance of the filter algorithms could be improved upon by means of a polynomial fit. Application of the fit resulted in a 4-40% improvement in the energy resolution and a 90% improvement in the timing resolution. A dilepton approach was used in the measurement of ∆md where the flavour of the B was tagged using the charge of the lepton.
    [Show full text]
  • Arxiv:1210.3065V1
    Neutrino. History of a unique particle S. M. Bilenky Joint Institute for Nuclear Research, Dubna, R-141980, Russia TRIUMF 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada Abstract Neutrinos are the only fundamental fermions which have no elec- tric charges. Because of that neutrinos have no direct electromagnetic interaction and at relatively small energies they can take part only 0 in weak processes with virtual W ± and Z bosons (like β-decay of nuclei, inverse β processν ¯ + p e+n, etc.). Neutrino masses are e → many orders of magnitude smaller than masses of charged leptons and quarks. These two circumstances make neutrinos unique, special par- ticles. The history of the neutrino is very interesting, exciting and instructive. We try here to follow the main stages of the neutrino his- tory starting from the Pauli proposal and finishing with the discovery and study of neutrino oscillations. 1 The idea of neutrino. Pauli Introduction The history of the neutrino started with the famous Pauli letter. The exper- imental data ”forced” Pauli to assume the existence of a new particle which later was called neutrino. The hypothesis of the neutrino allowed Fermi to build the first theory of the β-decay which he considered as a process of a quantum transition of a neutron into a proton with the creation of an electron-(anti)neutrino pair. During many years this was the only experi- arXiv:1210.3065v1 [hep-ph] 10 Oct 2012 mentally studied process in which the neutrino takes part. The main efforts were devoted at that time to the search for a Hamiltonian of the interaction which governs the decay.
    [Show full text]
  • Pos(EPS-HEP 2009)376 , 1 Cm As Measured with E 26 − 10 × 9
    Measuring the electric dipole moment of the neutron: The cryoEDM experiment 1 C A Baker, S N Balashov, V Francis, K Green, M G D van der Grinten, P S Iaydjiev , PoS(EPS-HEP 2009)376 S N Ivanov2, A Khazov3, M A H Tucker and D L Wark Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK. A Davidson, J R Grozier, M Hardiman, P G Harris, J R Karamath, K Katsika, J M Pendlebury, S J M Peeters, D B Shiers, P N Smith, C M Townsley and I Wardell University of Sussex, Falmer, Brighton BN1 9QH, UK. C Clarke∗4, S Henry, H Kraus and M McCann5 University of Oxford, Keble Road, Oxford OX1 3RH, UK. P Geltenbort Institut Laue-Langevin, BP156, F-38042 Grenoble, France. H Yoshiki University of Kure, Japan. 1on leave of absence from INRNE, Sofia, Bulgaria 2on leave of absence from PNPI, St Petersburg, Russia 3joint with the University of Sussex, Falmer, Brighton BN1 9QH, UK 4E-mail: [email protected] 5joint with Rutherford Appleton Laboratory, Chilton, Didcot, OXON OX11 0QX, UK The cryoEDM experiment at the Institut Laue-Langevin in Grenoble will measure the electric dipole moment (EDM) of the neutron with unparalleled precision. A neutron EDM arises due to CP violation. The cryoEDM experiment is sensitive to levels of CP violation predicted by many “beyond the standard model” theories and the result will therefore constrain or support these −26 theories. The current limit to the neutron EDM stands at jdnj < 2:9×10 e cm as measured with a room temperature experiment.
    [Show full text]
  • Experimental Constraint on Quark Electric Dipole Moments
    Experimental constraint on quark electric dipole moments Tianbo Liu,1, 2, ∗ Zhiwen Zhao,1 and Haiyan Gao1, 2 1Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA 2Duke Kunshan University, Kunshan, Jiangsu 215316, China The electric dipole moments (EDMs) of nucleons are sensitive probes of additional CP violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to CP violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1:27×10−24 e·cm for the up quark and 1:17×10−24 e·cm for the down quark at the scale of 4 GeV2. We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about three orders of magnitude leading to a much more sensitive probe of new physics models. I. INTRODUCTION one can derive it from nucleon EDM measurements. A bridge that relates the quark EDM and the nucleon EDM Symmetries play a central role in physics. Discrete is the tensor charge, which is a fundamental QCD quan- symmetries, charge conjugate (C), parity (P), and time- tity defined by the matrix element of the tensor cur- reversal (T ), were believed to be conserved until the dis- rent.
    [Show full text]
  • Coversheet for Thesis in Sussex Research Online
    A University of Sussex MPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details A New Monte-Carlo Based Simulation for the CryoEDM Experiment Matthew R´as´o-Barnett Submitted for the degree of Master of Philosophy School of Mathematical and Physical Sciences University of Sussex September 2013 Supervisors: Dr S J M Peeters and Prof P G Harris Declaration I hereby declare that this thesis describes my own original work, ex- cept where explicitly stated. No part of this work has previously been submitted, either in the same or different form, to this or any other University in connection with a higher degree or qualification. Matthew R´as´o-Barnett Signed: Date: March 26, 2015 2 University of Sussex Matthew R´as´o-Barnett,Master of Philosophy A new Monte-Carlo based simulation for the CryoEDM Experiment Abstract This thesis presents a new Monte-Carlo based simulation of the physics of ultra-cold neutrons (UCN) in complex geometries and its applica- tion to the CryoEDM experiment. It includes a detailed description of the design and performance of this simulation along with its use in a project to study the magnetic depolarisation time of UCN within the apparatus due to magnetic impurities in the measurement cell, which is a crucial parameter in the sensitivity of a neutron electric- dipole-moment (nEDM) experiment.
    [Show full text]