Phenomenology Lecture 8

Total Page:16

File Type:pdf, Size:1020Kb

Phenomenology Lecture 8 Phenomenology Lecture 8: BSM Daniel Maître IPPP, Durham Phenomenology – Daniel Maître Why BSM? ● Despite the success of the Standard model, there are some puzzles left: – Why is the top so much heavier than the electron? – Why is Θ so small? – Is there enough CP violation? ● We need masses for the neutrinos ● What is dark matter? ● What is dark energy? ● What about gravity? Phenomenology – Daniel Maître BSM ● New models usually include more particles ● We can find them – Direct production: By directly producing them in the colliders if they are light enough and they interact (enough) with the standard model – Precision observables: By measuring their effect on precision observables through loop correction (where they can be off-shell if the energy is not sufficient to produce them) examples: g-2, EW precision measurements – Rare decays: If there is a new interaction, even a weak one, new processes become allowed that are not allowed in the standard model, or are highly suppressed. Examples: Proton decay, neutrino mixing, rare B and Kaon decays... Phenomenology – Daniel Maître BSM models ● There are a large number of BSM models ● This may be due to the fact that it is easier to “cook up” a model that it is to test it. ● Since there is no (direct) experimental evidence for BSM particles the game is to find models that are most undistinguishable from the SM. ● We can only cover a limited number of models and look at their experimental implications ● It is much better, when possible, to have model independent searches, so that they can be used for several models not just the one that is trendy at the moment of the measurement Phenomenology – Daniel Maître BSM models ● Here are some models – GUT theories – Technicolor – SUSY – Large extra dimensions – Small extra dimensions – Little Higgs Models – ... Phenomenology – Daniel Maître Grand unified Theories ● The basic idea is that the Standard model gauge group is a subgroup of a larger gauge symmetry group ● The simplest is SU(5), another example is SO(10) Phenomenology – Daniel Maître SU(5) ● SU(3) has 32-1=8 generators, they correspond to the 8 gluons ● The quarks are in the fundamental representation of SU(3) ● SU(5) has 52-1=24 generators, which means that we have 24 gauge bosons – 8 gluons and 4 electroweak bosons – So we get 12 new gauge boson Phenomenology – Daniel Maître SU(5) ● Generators of SU(5) Phenomenology – Daniel Maître SU(5) ● The right handed down type quarks and left handed leptons form a 5 representation of SU(5) ● The rest forms a 10 representation Phenomenology – Daniel Maître Grand unified Theories ● In this model there are two stages of symmetry breaking. ● At the GUT scale the SU(5) symmetry is broken and the X and Y bosons get masses ● At the electroweak scale the SU(2)xU(1) symmetry is broken as before ● There are three problems with this theory: – The couplings don't meet at the GUT scale – Still need to explain why the GUT scale is higher than the electroweak scale – Proton decay Phenomenology – Daniel Maître Low energy constraints ● There are many important constraints from low energy experiments on BSM physics ● The most important are – Flavour changing neutral currents – Proton decay ● There are also other constraints from astrophysics and cosmology Phenomenology – Daniel Maître Proton Decay ● Since in Grand Unified theories we have the X boson coupling quarks and leptons, they predict the decay of the proton ● The expected decay rate would be Phenomenology – Daniel Maître Proton decay ● There are limits on the proton lifetime from water Čerenkov experiment. ● The decay of the proton will produce an electron which is travelling faster than the speed of light in water, which will cause Čerenkov radiation ● This can be detected as in a neutrino reactor ● There are no evidence for such a decay and this gives a lower limit on the lifetime of the proton of 1.6x1032 ● This translates into a lower limit on the mass of the X boson of 1016-17 GeV, which is larger than preferred by coupling unification ● The proton decay gives limits on other models too. Phenomenology – Daniel Maître Hierarchy problem ● The vast majority of new physics models are motivated by considering the hierarchy problem ● Fundamentally this is the question – Why is the electroweak scale so much less than the GUT or Plank scale? (The plank scale is the scale at which gravity becomes strong) ● It is most common to discuss the technical hierarchy problem which is related to the Higgs mass ● As we have seen, masses get correction from higher orders Phenomenology – Daniel Maître Hierarchy problem ● This gives a correction to the Higgs mass: ● We need to introduce an ultraviolet cut-off to regularize the integral ● This is because the Higgs is a scalar, otherwise the cut-off dependence is less severe Phenomenology – Daniel Maître Hierarchy Problem ● So either the Higgs mass is at the Plank scale or there is a cancellation of over 30 orders of magnitude to have a light Higgs ● This worries a lot of BSM theorists, however there are values of the Higgs boson mass for which the Standard model could be correct up to the Plank scale Phenomenology – Daniel Maître SM validity ● The Higgs boson mass is ● There are two constrains on the mass: – We want the coupling to stay perturbative, – We want the vacuum to be stable, too small values of λ are not allowed ● There are values for which both are possible up to the Plank mass Phenomenology – Daniel Maître Hierarchy problem ● Many models address the hierarchy “problem” – Technicolor – Supersymmetry – Extra dimensions – Little Higgs models Phenomenology – Daniel Maître Technicolor ● This is one of the oldest solutions to the hierarchy problem. ● The main idea is that as the problems in the theory come from having a fundamental scalar, a solution is not to have one. ● The model postulates a new set of gauge interactions: Technicolor, which acts on new technifermions. ● We think of this interaction as a copy of QCD, although different gauge groups have been considered. ● The technifermions form bound states, the lightest being technipions. Phenomenology – Daniel Maître Technicolor ● By the Higgs mechanism these technipions give the longitudinal components of the W± and Z bosons, and hence generate the boson masses. ● Still need to find a way to give the fermions masses, called Extended Technicolor. ● It has proved hard to construct realistic models which are not already ruled out. ● For many years Technicolor fell out of fashion, however following the introduction of Little Higgs models there has been a resurgence of interest and the new walking Technicolor models look more promising. Phenomenology – Daniel Maître Supersymmetry ● If there were a scalar loop in the Higgs propagator ● We would get a new contribution to the Higgs mass Phenomenology – Daniel Maître Supersymmetry ● If there are two scalars for every fermion, with the same mass and then the quadratic dependence cancels. ● Theorists like to have symmetries to explain cancellations like this: ⇒ Supersymmetry. ● For every fermionic degree of freedom there is a bosonic degree of freedom: – all the SM fermions have two spin-0 partners; – all the SM gauge bosons have a spin-1/2 partner. ● Need two Higgs doublets to give mass to both the up and down type quarks. Phenomenology – Daniel Maître Supersymmetric particles ● All standard model bosons have 2 spin-half partners, called gauginos SM particle Spin SUSY particle Spin Electron 1/2 Selectron 0 Neutrino 1/2 Sneutrino 0 up 1/2 Sup 0 down 1/2 Sdown 0 Gluon 1 gluino 1/2 Photon 1 Photino 1/2 Z 1 Zino 1/2 Neutralino Higgs 0 Higgsino 1/2 W+ 1 Wino 1/2 Charginos H+ 0 Higgsino 1/2 Phenomenology – Daniel Maître Supersymmetry ● There are major two reasons, in addition to the solution of the hierarchy problem, to favour SUSY as an extension of the SM. ● Coleman-Mandula theorem – If we consider extensions to the Poincaré group any new generators which transform as bosons (defined through commutation relations) lead to a trivial S- matrix, i.e. scattering only through discrete angles. – Later Haag, Lopuszanski and Sohnius showed that SUSY is the only possible extension of the Poincaré group which doesn’t give a trivial S matrix. Phenomenology – Daniel Maître Supersymmetry ● Susy coupling unification – In SUSY the additional SUSY particles change the running of the coupling and allow the couplings to truly unify at the GUT scale – This is not quite the case any more with the increasingly accurate experimental measurements of the strong coupling Phenomenology – Daniel Maître Supersymmetry: R-parity ● The usual way a theory is constructed is to add new particles and/or symmetries (which lead to new interactions) ● We then consider all new terms in the Lagrangian that are allowed by the symmetries ● Doing this with supersymmetry leads to terms which violate baryon and lepton number and can cause proton decay Phenomenology – Daniel Maître R-Parity ● The limits on the proton lifetime lead to a lower limit on the couplings of the supersymmetric particles involved in the proton decay process Phenomenology – Daniel Maître R-Parity ● Model builders don't like small numbers either: we need to have a symmetry that explains why the couplings (or at least one of them) are zero ● Normally one uses R-parity: ● It is a discrete transformation ● It is 1 for standard model particles and -1 for SUSY particles ● Other symmetries can be imposed Phenomenology – Daniel Maître R-Parity ● It we impose it as a symmetry, all interaction terms allowed in the Lagrangian have to have parity 1 ● So only vertices with an even number of SUSY particles are allowed ● It has two important consequences: – SUSY particle are only pair produced – A SUSY particle can not decay in SM particles only, that means that the lightest supersymmetric particle (LSP) is stable.
Recommended publications
  • Symmetry and Gravity
    universe Article Making a Quantum Universe: Symmetry and Gravity Houri Ziaeepour 1,2 1 Institut UTINAM, CNRS UMR 6213, Observatoire de Besançon, Université de Franche Compté, 41 bis ave. de l’Observatoire, BP 1615, 25010 Besançon, France; [email protected] or [email protected] 2 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking GU5 6NT, UK Received: 05 September 2020; Accepted: 17 October 2020; Published: 23 October 2020 Abstract: So far, none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here, we outline the preliminary results for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on three well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has SUpN Ñ 8q – area preserving Diff.pS2q symmetry, which is parameterized by two angular variables. We show that, in the absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference—observer—and another as clock, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe.
    [Show full text]
  • TASI Lectures on Extra Dimensions and Branes
    hep-ph/0404096 TASI Lectures on Extra Dimensions and Branes∗ Csaba Cs´aki Institute of High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 [email protected] Abstract This is a pedagogical introduction into theories with branes and extra dimensions. We first discuss the construction of such models from an effective field theory point of view, and then discuss large extra dimensions and some of their phenomenological consequences. Various possible phenomena (split fermions, mediation of supersym- metry breaking and orbifold breaking of symmetries) are discussed next. The second arXiv:hep-ph/0404096v1 9 Apr 2004 half of this review is entirely devoted to warped extra dimensions, including the con- struction of the Randall-Sundrum solution, intersecting branes, radius stabilization, KK phenomenology and bulk gauge bosons. ∗Lectures at the Theoretical Advanced Study Institute 2002, University of Colorado, Boulder, CO June 3-28, 2002. Contents 1 Introduction 2 2 Large Extra Dimensions 2 2.1 Matching the higher dimensional theory to the 4D effectivetheory..... 3 2.2 What is a brane and how to write an effective theory for it? . ....... 7 2.3 Coupling of SM fields to the various graviton components . ......... 11 2.4 Phenomenology with large extra dimensions . ...... 16 3 Various Models with Flat Extra Dimensions 21 3.1 Split fermions, proton decay and flavor hierarchy . ......... 21 3.2 Mediation of supersymmetry breaking via extra dimensions (gaugino mediation) 26 3.3 Symmetry breaking via orbifolds . .... 33 3.3.1 Breaking of the grand unified gauge group via orbifolds in SUSY GUT’s 35 3.3.2 Supersymmetry breaking via orbifolds .
    [Show full text]
  • Photon Mixing in Universes with Large Extra–Dimensions
    CORE Photon mixing in universes with large extra{dimensionsMetadata, citation and similar papers at core.ac.uk Provided by CERN Document Server C´edric Deffayet1 and Jean–Philippe Uzan1,2 (1) Laboratoire de Physique Th´eorique∗, Universit´e Paris XI, B^at. 210 F{91405 Orsay Cedex (France). (2) D´epartement de Physique Th´eorique, Universit´edeGen`eve, 24 quai E. Ansermet, CH{1211 Gen`eve 4 (Switzerland). (February 17, 2000) In presence of a magnetic field, photons can mix with any particle having a two{photon vertex. In theories with large compact extra{dimensions, there exists a hierachy of massive Kaluza{Klein gravitons that couple to any photon entering a magnetic field. We study this mixing and show that, in comparison with the four dimensional situation where the photon couples only to the massless graviton, the oscillation effect may be enhanced due to the existence of a large number of Kaluza{ Klein modes. We give the conditions for such an enhancement and then investigate the cosmological and astrophysical consequences of this phenomenon; we also discuss some laboratory experiments. Axions also couple to photons in the same way; we discuss the effect of the existence of bulk axions in universes with large extra{dimensions. The results can also be applied to neutrino physics with extra{dimensions. Preprint numbers: UGVA{DPT 99/10-1053, LPT{ORSAY 99/104 I. INTRODUCTION It is well known [1,2] that photons can be converted into gravitons by a magnetic field in a standard four dimensional spacetime. The propagation eigenstates are then mixtures of photon and graviton interaction eigenstates.
    [Show full text]
  • Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
    Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities .
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cultural International XA0101583 Organization Centre
    the 1(72001/34 abdus salam united nations educational, scientific and cultural international XA0101583 organization centre international atomic energy agency for theoretical physics NEW DIMENSIONS NEW HOPES Utpal Sarkar Available at: http://www.ictp.trieste.it/-pub-off IC/2001/34 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NEW DIMENSIONS NEW HOPES Utpal Sarkar1 Physics Department, Visva Bharati University, Santiniketan 731235, India and The Abdus Salam Insternational Centre for Theoretical Physics, Trieste, Italy. Abstract We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged, where only gravity propagates in the extra dimension and all other interactions are confined in only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 1016 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 1019 GeV. With this new idea it is possible to bring down all unification scales within the reach of the next generation accelerators, i.e., around 104 GeV. MIRAMARE - TRIESTE May 2001 1 Regular Associate of the Abdus Salam ICTP. E-mail: [email protected] 1 Introduction In particle physics we try to find out what are the fundamental particles and how they interact. This is motivated from the belief that there must be some fundamental law that governs ev- erything.
    [Show full text]
  • Masse Des Neutrinos Et Physique Au-Delà Du Modèle Standard
    œa UNIVERSITE PARIS-SUD XI THESE Spécialité: PHYSIQUE THÉORIQUE Présentée pour obtenir le grade de Docteur de l'Université Paris XI par Pierre Hosteins Sujet: Masse des Neutrinos et Physique au-delà du Modèle Standard Soutenue le 10 Septembre 2007 devant la commission d'examen: MM. Asmaa Abada, Sacha Davidson, Emilian Dudas, rapporteur, Ulrich Ellwanger, président, Belen Gavela, Thomas Hambye, rapporteur, Stéphane Lavignac, directeur de thèse. 2 Remerciements : Un travail de thèse est un travail de longue haleine, au cours duquel se produisent inévitablement beaucoup de rencontres, de collaborations, d'échanges... Voila pourquoi, sans doute, il me semble que la liste des personnes a qui je suis redevable est devenue aussi longue ! Tâchons cependant de remercier chacun comme il le mérite. En relisant ce manuscrit je ne peux m'empêcher de penser a Stéphane Lavignac, que je me dois de remercier pour avoir accepté d'encadrer mon travail de thèse et qui m'a toujours apporté le soutien et les explications nécessaires, avec une patience admirable. Sa grande rigueur d'analyse et sa minutie m'offrent un exemple que je m'évertuerai à suivre avec la plus grande application. Ces travaux n'auraient pas pu voir le jour non plus sans mes autres collaborateurs que sont Carlos Savoy, Julien Welzel, Micaela Oertel, Aldo Deandrea, Asmâa Abada et François-Xavier Josse-Michaux, qui ont toujours été disponibles et avec qui j'ai eu un plaisir certain a travailler. C'est avec gratitude que je remercie Asmâa pour tous les conseils et recommandations qu'elle n'a cessé de me fournir tout au long de mes études au sein de l'Université Paris XL Au cours de ces trois années de travail dans le domaine de la Physique Au-delà de Modèle Standard, j'ai bénéficié du contact de toute la communauté des théoriciens de la région.
    [Show full text]
  • Grand Unification and Proton Decay
    Grand Unification and Proton Decay Borut Bajc J. Stefan Institute, 1000 Ljubljana, Slovenia 0 Reminder This is written for a series of 4 lectures at ICTP Summer School 2011. The choice of topics and the references are biased. This is not a review on the sub- ject or a correct historical overview. The quotations I mention are incomplete and chosen merely for further reading. There are some good books and reviews on the market. Among others I would mention [1, 2, 3, 4]. 1 Introduction to grand unification Let us first remember some of the shortcomings of the SM: • too many gauge couplings The (MS)SM has 3 gauge interactions described by the corresponding carriers a i Gµ (a = 1 ::: 8) ;Wµ (i = 1 ::: 3) ;Bµ (1) • too many representations It has 5 different matter representations (with a total of 15 Weyl fermions) for each generation Q ; L ; uc ; dc ; ec (2) • too many different Yukawa couplings It has also three types of Ng × Ng (Ng is the number of generations, at the moment believed to be 3) Yukawa matrices 1 c c ∗ c ∗ LY = u YU QH + d YDQH + e YELH + h:c: (3) This notation is highly symbolic. It means actually cT αa b cT αa ∗ cT a ∗ uαkiσ2 (YU )kl Ql abH +dαkiσ2 (YD)kl Ql Ha +ek iσ2 (YE)kl Ll Ha (4) where we denoted by a; b = 1; 2 the SU(2)L indices, by α; β = 1 ::: 3 the SU(3)C indices, by k; l = 1;:::Ng the generation indices, and where iσ2 provides Lorentz invariants between two spinors.
    [Show full text]
  • $\Delta L= 3$ Processes: Proton Decay And
    IFIC/18-03 ∆L = 3 processes: Proton decay and LHC Renato M. Fonseca,1, ∗ Martin Hirsch,1, y and Rahul Srivastava1, z 1AHEP Group, Institut de F´ısica Corpuscular { C.S.I.C./Universitat de Val`encia,Parc Cient´ıficde Paterna. C/ Catedr´atico Jos´eBeltr´an,2 E-46980 Paterna (Valencia) - SPAIN We discuss lepton number violation in three units. From an effective field theory point of view, ∆L = 3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to ∆L = 3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d = 9; 11; 13 operators which violate lepton number in three units. We then construct one simple concrete model with interesting low- and high-energy phenomenology. I. INTRODUCTION could be related to some particular combinations of lep- ton/quark flavours, as argued for example in [8], or to The standard model conserves baryon (B) and lepton total lepton and baryon numbers. The possibility we dis- (L) number perturbatively. However, this is no longer cuss in this paper is that lepton number might actually true for non-renormalizable operators [1] which might be be violated only in units of three: ∆L = 3.
    [Show full text]
  • SLAC-PUB3031 January 1983 (T) SPONTANEOUS CP VIOLATION IN
    SLAC-PUB3031 January 1983 (T) - . SPONTANEOUS CP VIOLATION IN EXTENDED TECHNICOLOR MODELS WITH HORIZONTAL V(2)t @ U(~)R FLAVOR SYMMETRIES (II)* WILLIAM GOLDSTEIN Stanford Linear Accelerator Center Stanford University, Stanford, California S&l05 ABSTRACT -- The results presented in Part I of this paper are extended to-include previously neglected electro-weak degrees of freedom, and are illustrated in a toy model. A problem associated with colored technifermions is identified and discussed. Some hope is offered for the disappointing quark mass matrix obtained in Part I. Submitted to Nuclear Physics B * Work supported by the Department of Energy, contract DEAC03-76SF00515. 1. INTRODUCTION In a previous paper [l], hereafter referred to as I, we investigated sponta- neous CP violation in a class of extended technicolor (ETC) models [2,3,4,5]. We constructed the effective Hamiltonian generated by broken EZ’C interactions and minimized its contribution to the vacuum energy, as called for by Dashen’s - . Theorem [S]. As originally pointed out by Dashen, and more recently by Eichten, Lane and Preskill in the context of the EK’ program, this aligning of the chiral vacuum and Hamiltonian can lead to CP violation from an initially CP symmet- ric theory [7,8]. The ETC models analyzed in I were distinguished by the global flavor invari- ance of the color-technicolor forces: GF = n u(2)L @ u@)R (1) For-- these models, we found that, in general, the occurrence of spontaneous CP violation is tied to CP nonconservation in the strong interactions and, thus, - to an unacceptably large neutron electric dipole moment.
    [Show full text]
  • Composite Higgs Sketch
    Composite Higgs Sketch Brando Bellazzinia; b, Csaba Cs´akic, Jay Hubiszd, Javi Serrac, John Terninge a Dipartimento di Fisica, Universit`adi Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy b SISSA, Via Bonomea 265, I-34136 Trieste, Italy c Department of Physics, LEPP, Cornell University, Ithaca, NY 14853 d Department of Physics, Syracuse University, Syracuse, NY 13244 e Department of Physics, University of California, Davis, CA 95616 [email protected], [email protected], [email protected], [email protected], [email protected] Abstract The couplings of a composite Higgs to the standard model fields can deviate substantially from the standard model values. In this case perturbative unitarity might break down before the scale of compositeness, Λ, is reached, which would suggest that additional composites should lie well below Λ. In this paper we account for the presence of an additional spin 1 custodial triplet ρ±;0. We examine the implications of requiring perturbative unitarity up to the scale Λ and find that one has to be close to saturating certain unitarity sum rules involving the Higgs and ρ couplings. Given these restrictions on the parameter space we investigate the main phenomenological consequences of the ρ's. We find that they can substantially enhance the h ! γγ rate at the LHC even with a reduced Higgs coupling to gauge bosons. The main existing LHC bounds arise from di-boson searches, especially in the experimentally clean channel ρ± ! W ±Z ! 3l + ν. We find that a large range of interesting parameter arXiv:1205.4032v4 [hep-ph] 30 Aug 2013 space with 700 GeV .
    [Show full text]
  • Little Higgs Model Limits from LHC Arxiv:1307.5010V2 [Hep-Ph] 5 Sep
    DESY 13-114 Little Higgs Model Limits from LHC Input for Snowmass 2013 Jurgen¨ Reuter1a, Marco Tonini2a, Maikel de Vries3a aDESY Theory Group, D{22603 Hamburg, Germany ABSTRACT The status of several prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T-parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit of 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb−1 of Higgs data reported by ATLAS and CMS. For the Littlest Higgs with T-parity an outlook on corresponding direct searches at the 8 TeV LHC is included. We compare their competitiveness with the EW and Higgs data in terms of their exclusion potential. This contribution to the Snowmass procedure contains preliminary results of [1] and serves as a guideline for which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at arXiv:1307.5010v2 [hep-ph] 5 Sep 2013 the energy frontier. For this purpose we propose two different benchmark scenarios for the Littlest Higgs with T-parity, one with heavy mirror quarks, one with light ones. [email protected] [email protected] [email protected] 1 Introduction: the Little Higgs Paradigm The first run of LHC at 2 TeV, 7 TeV, and 8 TeV centre of mass energies has brought as main results the discovery of a particle compatible with the properties of the Standard Model (SM) Higgs boson as well as with electroweak precision tests (EWPT), and no significant excesses that could be traced to new particles or forces.
    [Show full text]
  • Proton Decay at the Drip-Line Magic Number Z = 82, Corresponding to the Closure of a Major Nuclear Shell
    NEWS AND VIEWS NUCLEAR PHYSICS-------------------------------- case since it has one proton more than the Proton decay at the drip-line magic number Z = 82, corresponding to the closure of a major nuclear shell. In Philip Woods fact the observed proton decay comes from an excited intruder state configura­ WHAT determines whether a nuclear ton decay half-life measurements can be tion formed by the promotion of a proton species exists? For nuclear scientists the used to explore nuclear shell structures in from below the Z=82 shell closure. This answer to this poser is that the species this twilight zone of nuclear existence. decay transition was used to provide should live long enough to be identified The proton drip-line sounds an inter­ unique information on the quantum mix­ and its properties studied. This still begs esting place to visit. So how do we get ing between normal and intruder state the fundamental scientific question of there? The answer is an old one: fusion. configurations in the daughter nucleus. what the ultimate boundaries to nuclear In this case, the fusion of heavy nuclei Following the serendipitous discovery existence are. Work by Davids et al. 1 at produces highly neutron-deficient com­ of nuclear proton decay4 from an excited Argonne National Laboratory in the pound nuclei, which rapidly de-excite by state in 1970, and the first example of United States has pinpointed the remotest boiling off particles and gamma-rays, leav­ ground-state proton decay5 in 1981, there border post to date, with the discovery of ing behind a plethora of highly unstable followed relative lulls in activity.
    [Show full text]