The Standard Model and Strings
Total Page:16
File Type:pdf, Size:1020Kb
Future/present Experiments The Standard Model and Strings - Can They Be Connected? High energy colliders: the primary tool • 1 The standard model NMSSM – TEVThe AstandaTROrdN;mFoermildel ab, 1.96 TeV pp¯ , exploration nMSSM • • UMSSM 2 |N | in UMSSM – Large Hadron Collider (LHC); CERN, 14 TeV pp, high lum16 inosity, TesTtiesngtingthethestandastandard rmod modeldel 0.8 • • discovery (Discovery machine for ) supersymmetry, Rp violation, string 1 0 remnants (e.g., Z!, exotics, Higgs); o! r compositeness, dynamical symmetry ProblemProblems s • • breaking, Higgless theories, Little Higgs,0.6 large extra dimensions, ) · · · Bey– InternationalBeyondondthethestandastandaLirdnerdamor moColdedelliderl (ILC), in planning; • • + (Singlino in 0.4 2 500 GeV-1 TeV e e−, cold technol| ogy, high precision studies 15 Where(PreciNewaTsionreeVwpaephrametergoing?ysics suggess to maptedback to|N string scale) • • by string constructions 0.2 CP violation (B decays, electric dipole moments), CKM universality, • flavoWherer changingare we neutrgoing?al currents (e.g0., µ eγ, µN eN, B φK ), • 0 → 100 → 200 → 300s M 0 (GeV) B violation (proton decay, n n¯ oscillations), neutrin!o physics − 1 Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments The New Standard Model High energy colliders: the primary tool • Standard model, supplemented with neutrino mass (Dirac or • – TEVMajoATranROa)N;: Fermilab, 1.96 TeV pp¯ , exploration – Large HadronSUC(3)olliderSU(L(2)HCU);(1)CERNclas, 14sicalTeVrelatppivit, highy luminosity, discovery (Discovery× machine× for s×upersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · Mathematically consistent field theory of strong, weak, – •International Linear Collider (ILC), in planning; electromagnetic interactions+ 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale) 16 Gauge interactions correct to first approximation to 10− cm • CP violation (B decays, electric dipole moments), CKM universality, • Complicated, free parameters, fine tunings must be new physics flavo• r changing neutral currents (e.g., µ eγ⇒, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − WIN 05 (June 11, 2005) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pThe Fundamentalresent ExperFoirmentsces Strong Electromagnetic Weak Gravity Highp energyncolliders: the primary tool 6 6 • 0 π e− ν¯e e− p p – TEVATRON; Fermil6ab, 1.966 TeV pp¯6 , explo6 r ©ation 6 6 pion γ W − g p 6 6n – Large Hadron Collider ¨ (L¨ H¨C); CERN§ ¤,§14¤ § ¤TeV pp, high lum ¨ inosi¨ ¨ty, d u ¦ ¥ ¦ ¥ ¦ ¥ graviton 6 6 © © © 6 IVB © © © discoverG y (Discovery6photonmachine6 for supersymmetry, R violation,6 string6 n p (spin 2) § ¤ § ¤ § ¤ e− p remnant¦gluon¥ ¦ ¥ s¦ ¥(e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry d 6 6u breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · – International Linear Collider (ILC), in planning; m m 2 e mπr e2 2 e MW r 1 2 V = g − + g − GN r 500π GeV-1r TeVr e e−, cold technolrogy, high precision studies (Precisiong2 parameters toe2 map1back to gs2trEing2 scale) 11 38 strength: π 14 α = 10− GN m1m2 10− 4π 4π ∼ 137 M2 ∼ ∼ ∼ W (m1=m2=1 GeV) (E = 1 MeV) CP violation (B decays, electric dipole moments), CKM universality, • h¯ h¯ 16 rangeflavo: r changing neutral currents (e.g., µ e10γ,− µNcm eN, B φKs), mπc ∞ MW c ∞ 13 ∼ →∼ → → 10B− violcmation1 fm(proton decay, n n¯ oscillations), neutrino physics ≡ − Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Unification of Forces HighStrongenergy collidersElectr: theomagnpretiimac ry toWeakol Gravity • hadrons: p, n; charged particles: p, n, π; e, µ, τ ;, all particles (always – TEVATRON;0 Fermilab, 1.96 TeV pp¯ , exploration pions: π±, π ; e−, µ−, τ −; neutrinos: attractive) ν , ν , ν – (QCDLarge: Hadronquarks,Collip; derπ± (LHC); CERNe , µ14 τTeV pp, high luminosity, gluons) discovery (Discovery machine for supersymmetry, Rp violation, string nuclearemnantr s binding;(e.g., Z!,atoms,exotics, Higgscrystal);s, ordecacompys:ositenen ss, dynamicweight;al sbindingymmetryof → enerbreakigyng,in stHarsiggless thmoleoecules;ries, Littllight;e Higgs,pela−rgeν¯e; extrelementa dimensisolons,ar system,) stars, chemical energy synthesis galaxies· · · – International Linear Collider (ILC), in planning; E + B ←+ → 500 GeV-1 TeV(Maxwe e−el,l) cold technology, high precision studies (Precision parameters toElmapectrobwaceakk to(SsUtr(2)ing scalU(1))e) QCD ← × → ← → Grand Unification (GUT)? CP violation← (B decays, electric dipole moments)→ , CKM universality, • Theory of Everything (superstring)? flavor changing← neutral currents (e.g., µ eγ, µN eN, B→ φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pGaugeresentTExpheorieseriments Gauge symmetry requires existence of (apparently) massless spin-1 • High(vectoenergyr, gauge)collidersbosons: the primary tool • – TEVInteractionsATRON; Fpermilrescribab,ed 1.96up TtoeVgroup,pp¯ , exploreprresentatation ions, gauge • coupling – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, disAnalogouscovery (Discto oveQEDry (mUachine(1)), fobutr sgaugeupersymmetryself interactions, Rp violation,for non-string • remnantabelians (e.groupsg., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) Standard model: SU(3) SU(2) U(1) · · · – •International Linear Colli×der (ILC),× in planning; Application to strong+ (short range) confinement •500 GeV-1 TeV e e−, cold technol⇒ogy, high precision studies (PreciAppsionlicatpaionrameterto wseakto map(shobacrtk range)to string scale)spontaneous symmetry • ⇒ breaking (Higgs or dynamical) CP violation (B decays, electric dipole moments), CKM universality, • flavoUniquer changingrenormneutralizablal ecurfieldrentstheo(e.ryg.fo, µr spin-1eγ, µN eN, B φK ), • → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pTheresentStandaExprderMoimentsdel Gauge group SU(3) SU(2) U(1); gauge couplings gs, g, g! High• energy colliders: the× prima×ry tool • u u u νe – TEVATRON; Fermild ab, 1.96d TeV pp¯ ,dexploratione− ! "L ! "L ! "L ! "L – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, uR uR uR νeR(?) discovery (Discovery machine for supersymmetry, Rp violation, string dR dR dR e− remnants (e.g., Z!, exotics, Higgs); or compositeness,Rdynamical symmetry breaki( L ng,= Hleft-handed,iggless theories,R Li=ttright-handed)le Higgs, large extra dimensions, ) · · · – InternationalSU(3): u Liunear Colu, liderd (ILdC), din(glplanning;uons) • ↔ ↔+ ↔ ↔ 500 GeV-1 TeV e e−, cold technology, high precision studies 0 (PreciSUsion(2):paurameterds to, mapν backeto− s(trWing±)scal; phasese) (W ) • L ↔ L eL ↔ L CP Uvi(1)olation: phas(Bes deca(B)ys, electric dipole moments), CKM universality, • • flavor changing neutral currents (e.g., µ eγ, µN eN, B φKs), Heavy families (c, s, ν , µ ), (t, b, ν→, τ ) → → B violation (proton decay, nµ −n¯ oscillations)τ , neu− trino physics • − Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Quantum Chromodynamics (Q9.CQuDant)um chromodynamics 17 required, for example, to facilitate the extraction of CKM elements from measurements Mode9rn. Qutaheontumrcoyfhcrhoofamrmoadthenydnbaomttostrongimcsdec7ay ratesi. ntSee eractiRef. 169 forona recsent review. High energy colliders: the primary tool • – TEVATRON;AverageFermilab, 1.96 TeV pp¯ , exploration Hadronic Jets – Large Hadron eC+eolli- ratesder (LHC); CERN, 14 TeV pp, high luminosity, Photo-production 0.3 discovery (Discovery machine for supersymmetry, Rp violation, string Fragmentation remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry Z width ) µ breaking, Higgless theories, Little Higgs,( large extra dimensions, ) ep event shapes 0.2s ! · · · – InternationalPolarized DIS Linear Collider (ILC), in planning; Deep Inelastic Scattering (DIS) + 500 GeV-1 TeV e e−, cold technology, high precision studies ! decays (Precision parameters to map back0.1to string scale) Spectroscopy (Lattice) " decay CP violation (B decays, electric dip0 ole moments), CKM universality, • 2 0.1 0.12 0.14 (e.1 g., µ eγ, 10µN eN, B10 φK ) flavor changing neutral currents µ GeV s , #s(MZ) → → → B violation (proton decay, n n¯ oscillations), neutrino physics − Figure 9.1: Summary of the value of αs(MZ) from various prFoicgeussrees.9T.2h:eSummaryvalues of the values of αs(µ) at the values of µ where they are shown indicate the process and the measured value of α extrampoelaastuerdedt.o Tµh=e Mlines. show the central values and the 1σ limits of our average. s Z ± The error shown is the total error including theoretical uncertaTinhteiefis.guTreheclaevaerrlyagsehows the decrease in αs(µ) with increasing µ. The data are, + quoted in thiChs reipcagoort wh(12/1/2005)ich comes from these measurements is ianlsoinschreoawsnin.gSoeredteerxotf µ, τ width, PΥ auldecaLangacys, deepkerinel(FNAL/Pastic scatteenn/IAS)ring, e e− event for discussion of