<<

Future/present Experiments The Standard Model and Strings - Can They Be Connected? High energy colliders: the primary tool • 1 The standard model NMSSM – TEVThe AstandaTROrdN;mFoermildel ab, 1.96 TeV pp¯ , exploration nMSSM • • UMSSM 2 |N | in UMSSM – Large Hadron Collider (LHC); CERN, 14 TeV pp, high lum16 inosity, TesTtiesngtingthethestandastandard rmod modeldel 0.8

• • discovery (Discovery machine for ) supersymmetry, Rp violation, string 1 0 remnants (e.g., Z!, exotics, Higgs); o! r compositeness, dynamical symmetry ProblemProblems s • • breaking, Higgless theories, Little Higgs,0.6 large extra dimensions, ) · · · Bey– InternationalBeyondondthethestandastandaLirdnerdamor moColdedelliderl (ILC), in planning;

• • + (Singlino in 0.4 2 500 GeV-1 TeV e e−, cold technol| ogy, high precision studies 15

Where(PreciNewaTsionreeVwpaephrametergoing?ysics suggess to maptedback to|N string scale) • • by string constructions 0.2 CP violation (B decays, electric dipole moments), CKM universality, • flavoWherer changingare we neutrgoing?al currents (e.g0., µ eγ, µN eN, B φK ), • 0 → 100 → 200 → 300s M 0 (GeV) B violation (proton decay, n n¯ oscillations), neutrin!o physics − 1

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments The New Standard Model

High energy colliders: the primary tool • Standard model, supplemented with neutrino mass (Dirac or • – TEVMajoATranROa)N;: Fermilab, 1.96 TeV pp¯ , exploration

– Large HadronSUC(3)olliderSU(L(2)HCU);(1)CERNclas, 14sicalTeVrelatppivit, highy luminosity, discovery (Discovery× machine× for s×upersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · Mathematically consistent field theory of strong, weak, – •International Linear Collider (ILC), in planning; electromagnetic interactions+ 500 GeV-1 TeV e e−, cold technology, high precision studies

(Precision parameters to map back to string scale) 16 Gauge interactions correct to first approximation to 10− cm • CP violation (B decays, electric dipole moments), CKM universality, • Complicated, free parameters, fine tunings must be new physics flavo• r changing neutral currents (e.g., µ eγ⇒, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

WIN 05 (June 11, 2005) Paul Langacker (Penn)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pThe Fundamentalresent ExperFoirmentsces

Strong Electromagnetic Weak Gravity Highp energyncolliders: the primary tool 6 6 • 0 π e− ν¯e e− p p – TEVATRON; Fermil6ab, 1.966 TeV pp¯6 , explo6 r ©ation 6 6 pion γ W − g p 6 6n – Large Hadron Collider ¨ (L¨ H¨C); CERN§ ¤,§14¤ § ¤TeV pp, high lum ¨ inosi¨ ¨ty, d u ¦ ¥ ¦ ¥ ¦ ¥ graviton 6 6 © © © 6 IVB © © © discoverG y (Discovery6photonmachine6 for supersymmetry, R violation,6 string6 n p (spin 2) § ¤ § ¤ § ¤ e− p remnant¦gluon¥ ¦ ¥ s¦ ¥(e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry d 6 6u breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · ·

– International Linear Collider (ILC), in planning; m m 2 e mπr e2 2 e MW r 1 2 V = g − + g − GN r 500π GeV-1r TeVr e e−, cold technolrogy, high precision studies

(Precisiong2 parameters toe2 map1back to gs2trEing2 scale) 11 38 strength: π 14 α = 10− GN m1m2 10− 4π 4π ∼ 137 M2 ∼ ∼ ∼ W (m1=m2=1 GeV) (E = 1 MeV) CP violation (B decays, electric dipole moments), CKM universality, • h¯ h¯ 16 rangeflavo: r changing neutral currents (e.g., µ e10γ,− µNcm eN, B φKs), mπc ∞ MW c ∞ 13 ∼ →∼ → → 10B− violcmation1 fm(proton decay, n n¯ oscillations), neutrino physics ≡ −

Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Unification of Forces

HighStrongenergy collidersElectr: theomagnpretiimac ry toWeakol Gravity • hadrons: p, n; charged particles: p, n, π; e, µ, τ ;, all particles (always – TEVATRON;0 Fermilab, 1.96 TeV pp¯ , exploration pions: π±, π ; e−, µ−, τ −; neutrinos: attractive) ν , ν , ν – (QCDLarge: Hadronquarks,Collip; derπ± (LHC); CERNe , µ14 τTeV pp, high luminosity, gluons) discovery (Discovery machine for supersymmetry, Rp violation, string nuclearemnantr s binding;(e.g., Z!,atoms,exotics, Higgscrystal);s, ordecacompys:ositenen ss, dynamicweight;al sbindingymmetryof → enerbreakigyng,in stHarsiggless thmoleoecules;ries, Littllight;e Higgs,pela−rgeν¯e; extrelementa dimensisolons,ar system,) stars, chemical energy synthesis galaxies· · · – International Linear Collider (ILC), in planning; E + B ←+ → 500 GeV-1 TeV(Maxwe e−el,l) cold technology, high precision studies (Precision parameters toElmapectrobwaceakk to(SsUtr(2)ing scalU(1))e) QCD ← × → ← → Grand Unification (GUT)? CP violation← (B decays, electric dipole moments)→ , CKM universality, • Theory of Everything (superstring)? flavor changing← neutral currents (e.g., µ eγ, µN eN, B→ φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pGaugeresentTExpheorieseriments

Gauge symmetry requires existence of (apparently) massless spin-1 • High(vectoenergyr, gauge)collidersbosons: the primary tool • – TEVInteractionsATRON; Fpermilrescribab,ed 1.96up TtoeVgroup,pp¯ , exploreprresentatation ions, gauge • coupling – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, disAnalogouscovery (Discto oveQEDry (mUachine(1)), fobutr sgaugeupersymmetryself interactions, Rp violation,for non-string • remnantabelians (e.groupsg., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) Standard model: SU(3) SU(2) U(1) · · · – •International Linear Colli×der (ILC),× in planning; Application to strong+ (short range) confinement •500 GeV-1 TeV e e−, cold technol⇒ogy, high precision studies (PreciAppsionlicatpaionrameterto wseakto map(shobacrtk range)to string scale)spontaneous symmetry • ⇒ breaking (Higgs or dynamical) CP violation (B decays, electric dipole moments), CKM universality, • flavoUniquer changingrenormneutralizablal ecurfieldrentstheo(e.ryg.fo, µr spin-1eγ, µN eN, B φK ), • → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − Introductory slides Paul Langacker (Penn)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pTheresentStandaExprderMoimentsdel

Gauge group SU(3) SU(2) U(1); gauge couplings gs, g, g! High• energy colliders: the× prima×ry tool • u u u νe – TEVATRON; Fermild ab, 1.96d TeV pp¯ ,dexploratione− ! "L ! "L ! "L ! "L – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, uR uR uR νeR(?) discovery (Discovery machine for supersymmetry, Rp violation, string dR dR dR e− remnants (e.g., Z!, exotics, Higgs); or compositeness,Rdynamical symmetry breaki( L ng,= Hleft-handed,iggless theories,R Li=ttright-handed)le Higgs, large extra dimensions, ) · · · – InternationalSU(3): u Liunear Colu, liderd (ILdC), din(glplanning;uons) • ↔ ↔+ ↔ ↔ 500 GeV-1 TeV e e−, cold technology, high precision studies 0 (PreciSUsion(2):paurameterds to, mapν backeto− s(trWing±)scal; phasese) (W ) • L ↔ L eL ↔ L

CP Uvi(1)olation: phas(Bes deca(B)ys, electric dipole moments), CKM universality, • • flavor changing neutral currents (e.g., µ eγ, µN eN, B φKs), Heavy families (c, s, ν , µ ), (t, b, ν→, τ ) → → B violation (proton decay, nµ −n¯ oscillations)τ , neu− trino physics • −

Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Quantum Chromodynamics (Q9.CQuDant)um chromodynamics 17 required, for example, to facilitate the extraction of CKM elements from measurements Mode9rn. Qutaheontumrcoyfhcrhoofamrmoadthenydnbaomttostrongimcsdec7ay ratesi. ntSee eractiRef. 169 forona recsent review. High energy colliders: the primary tool • – TEVATRON;AverageFermilab, 1.96 TeV pp¯ , exploration Hadronic Jets – Large Hadron eC+eolli- ratesder (LHC); CERN, 14 TeV pp, high luminosity, Photo-production 0.3 discovery (Discovery machine for supersymmetry, Rp violation, string Fragmentation remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry

Z width ) µ

breaking, Higgless theories, Little Higgs,( large extra dimensions, ) ep event shapes 0.2s ! · · · – InternationalPolarized DIS Linear Collider (ILC), in planning; Deep Inelastic Scattering (DIS) + 500 GeV-1 TeV e e−, cold technology, high precision studies ! decays (Precision parameters to map back0.1to string scale) Spectroscopy (Lattice) " decay

CP violation (B decays, electric dip0 ole moments), CKM universality, • 2 0.1 0.12 0.14 (e.1 g., µ eγ, 10µN eN, B10 φK ) flavor changing neutral currents µ GeV s , #s(MZ) → → → B violation (proton decay, n n¯ oscillations), neutrino physics − Figure 9.1: Summary of the value of αs(MZ) from various prFoicgeussrees.9T.2h:eSummaryvalues of the values of αs(µ) at the values of µ where they are shown indicate the process and the measured value of α extrampoelaastuerdedt.o Tµh=e Mlines. show the central values and the 1σ limits of our average. s Z ± The error shown is the total error including theoretical uncertaTinhteiefis.guTreheclaevaerrlyagsehows the decrease in αs(µ) with increasing µ. The data are, + quoted in thiChs reipcagoort wh(12/1/2005)ich comes from these measurements is ianlsoinschreoawsnin.gSoeredteerxotf µ, τ width, PΥ auldecaLangacys, deepkerinel(FNAL/Pastic scatteenn/IAS)ring, e e− event for discussion of errors. shapes at 22 GeV from the JADE data, shapes at TRISTAN at 58 GeV, Z width, + and e e− event shapes at 135 and 189 GeV. extracted [44,45] are consistent with the theoretical estimates. If the nonperturbative terms are omitted from the fit, the extracted value of αs(mτ ) decreases by 0.02. NYS APS (October 15, 2004) 9.13. Co∼nclusions Paul Langacker (Penn) For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ 3.058(1+0.112+0.064+0.036). The size (estimated error) of the nonperturbative term ∼is 20% (7The%) onfeedthe forsizeborevitf thye has meant that many other important topics in QCD 3 3 order αs term. The perturbation series is not very well convergpehnetn;oimf tehneolorgdyerhαavsetehramd to be omitted from this review. One should mention in 4 is omitted, the extracted value of αs(mτ ) increases by 0.05. Thpearotrdicuerlaαr sthteermstuhdays bofeeenxclusive processes (form factors, elastic scattering, . . .), the estimated [46] and attempts made to resum the entire series [47b,e4h8a].viTorheosfe qeustairmkastaesndcagnluons in nuclei, the spin properties of the theory, and QCD be used to obtain an estimate of the errors due to these unkenffoewctns tinermhasdr[4o9n,5s0p]e.ctWroescopy. assign an uncertainty of 0.02 to αs(mτ ) from these sources. We have focused on those high-energy processes which currently offer the most ± Rτ can be extracted from the semi-leptonic branching raqtuioantfritoamtivtehteesrteslaotfiopnerturbative QCD. Figure 9.1 shows the values of αs(MZ ) deduced Rτ = 1/(B(τ eνν) 1.97256); where B(τ eνν) is measured directly or extracted from the lifetim→e, the −muon mass, and the mu→on lifetime assuming universality of lepton September 8, 2004 15:07 couplings. Using the average lifetime of 290.6 1.1 fs and a τ mass of 1776.99 0.29 ± ±

September 8, 2004 15:07 Future/present Experiments QuQuantumantumElectroElectroddynamynamicsics High energy colliders: the primary tool • – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration 1 1 Experiment Value of α− Difference from α− (ae) – Large Hadron Collider (LHC1 ); CERN, 14 TeV9 pp, high luminosi1ty, ExperiDementviation from gyromagnetic Value137of.035α−999 58 (52) [3.8 10− ] –Difference from α− (ae) × 9 Deviationratio,fromdisaegyr=coverom(gagne2)yti/c2(Discfor e−ove137ry .035machine999 58 fo(52)r sup[3ersymmetry.8 10− ] , R– p violation, string − × 8 4 ratio,ac aJosephsone =remnant(g eff2)ect/s2 (e.forg.,e−Z!, exotics,137.035Higgs988 0);(51)or comp[3.7 os10itene− ]ss, dynamic(0.116 al0.051)symmetry10− − × 8 ± × 4 h/mn (mn is the neutron mass) 137.036 011 9 (51) [3.7 10 8] ( 0.123 0.051) 10 4 ac Josephson effect 137.035 988 0 (51) [3.7 ×10−− ] −(0.116± 0.051)× 10−− from nbreakibeam ng, Higgless theories, Little Higgs, large×extra8 dimensions,± ) × 4 h/mn (mn is the neutron mass) 137.036 011 9 (51) [3.7 10 ] ( 0.123 · ·0.·051) 10 × −8 − ± × 4− fromHypnerfibeamne structure in 137.035 993 2 (83) [6.0 10− ] (0.064 0.083) 10− – International+ Linear Collider (ILC), in ×planning; ± × muonium, µ e− 8 4 Hyperfine structure in 137+.035 993 2 (83) [6.0 10− ] (0.064 0.083) 10− Cesium D500lineGeV-1 TeV e 137e−.035, cold992 4 (41)technol[3.0ogy× 10, high8] p(0recis.072 ion±0.041)studi×10es4 muonium, µ+1e × − ± × − (Preci− sion parameters to map back to string scale) Cesium D line 137.035 992 4 (41) [3.0 10 8] (0.072 0.041) 10 4 1 × − ± × − CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) Future/pThe ElresentectroweakExperTheoimentsry

QED and weak charged current •High energy colliders: the primary tool • unified – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration Weak neutral current predicted •– Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, discovery (Discovery machine for supersymmetry, R violation, string Stringent tests of wnc, Z-pole p • remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry and beyond breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · –FInternationalermion gaugeLineandar Colgaugelider self(ILC), in planning; • + interactions500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Measurement Fit |Omeas!Ofit|/"meas 0 1 2 3 F(5)uture/present Experiments #$had(mZ) 0.02758 ± 0.00035 0.02767

mZ [GeV] 91.1875 ± 0.0021 91.1874

%Z [GeV] 2.4952 ± 0.0023 2.4959 High energy col0 linbders: 41.540the p r i0.037mary to41.478ol • "had [ ] ± Rl 20.767 ± 0.025 20.742 – TEVATRON;0,l Fermilab, 1.96 TeV pp¯ , exploration Afb 0.01714 ± 0.00095 0.01643

– Large HadronAl(P&)Collider0.1465(LH ±C 0.0032); CERN0.1480, 14 TeV pp, high luminosity, R 0.21629 0.00066 0.21579 discovery (Discb overy machine± for supersymmetry, Rp violation, string R 0.1721 ± 0.0030 0.1723 remnants (e.g.,c Z!, exotics, Higgs); or compositeness, dynamical symmetry 0,b Afb 0.0992 ± 0.0016 0.1038 breaking, Higgl0,cess theories, Little Higgs, large extra dimensions, ) Afb 0.0707 ± 0.0035 0.0742 · · ·

– InternationalAb Linear Col0.923lider ± 0.020(ILC), 0.935in planning; + 500 GeV-1AcTeV e e0.670−, cold ± 0.027technol0.668ogy, high precision studies

(Precision paArameterl(SLD) s to0.1513map b± ac0.0021k to str0.1480ing scale) 2 lept sin 'eff (Qfb) 0.2324 ± 0.0012 0.2314 m GeV 80.410 0.032 80.377 CP violation (WB[ deca] ys, electric± dipole moments), CKM universality, • %W [GeV] 2.123 ± 0.067 2.092 flavor changing neutral currents (e.g., µ eγ, µN eN, B φKs), m [GeV] 172.7 ± 2.9 173.3→ → → B violation (prtoton decay, n n¯ oscillations), neutrino physics − 0 1 2 3

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments SM correct and unique to zeroth 6 • Theory uncertainty approx. (gauge principle, group, (5) representations) High energy col!#hadli d= ers: the primary tool • 5 0.02758±0.00035 – TEVATRON;0.02749Fermil±0.00012ab, 1.96 TeVSMpp¯ co, rexplorect atratilooponlevel (renorm incl. low Q2 data • 4 ; m , α , M ) – Large Hadron Collider (LHC); CERN, 14 TeV ppt , shighHluminosity, 2 3 discovery (Discovery machine for supersymmetry, Rp violation, string !" TeV physics severely constrained • remnants (e.g., Z!, exotics, Higgs); or(unificcompatosionitenevs scomps, dynamicositenessal)symmetry 2 breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · Consistent with light elementary 1– International Linear Collider (IL•C), in planning; Higgs 500 GeV-1 TeV e+e , cold technology, high precision studies Excluded − 0 (Precision parameters to map back to string scale) 30 100 300 Precise gauge couplings (gauge • unification) m [GeV] CP violation H(B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ osciYoicllhiatroions)Nambu,Sympneuosiumtri(Aprilno 21,physic2005) s Paul Langacker (Penn) −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) ProblemFuture/ps resentwith theExpStandaerimentsrd Model

High energy colliders: the primary tool • Lagrangian after symmetry breaking: – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration ¯ miH – Large Hadron= LgaugeColli+derLHiggs(LH+C); CEψiRNi ,∂14 TmeVi pp, highψlumi inosity, L ! − − ν i " # discovery (Discovery machine!for supersymmetry, Rp violation, string g µ µ µ g µ remnants (e.g., Z!, exotics, Higgs); or comp+ ositeness, dynamical symmetry JW Wµ− + JW†Wµ eJQAµ JZZµ breaking, Higgl−2ess√2theories, Little Higgs, large−extra dimensi− 2ons,cos θW) $ % · · · – International Linear Collider (ILC), in planning; Standard model: SU+(2) U(1) (extended to include ν masses) + 500 GeV-1 TeV e e−×, cold technology, high precision studies (PreciQCDsion+pagerameterneral srelativito maptyback to string scale)

CP Mathemativiolation call(Bydecaconsiysstent,, electricrenodiprmolealizmabloments)e theo,ryCKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φKs), 16 → → → B violCorrationect to(p10roton− decacmy, n n¯ oscillations), neutrino physics −

Physics at LHC (July 16, 2004) Paul Langacker (Penn)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) However, too muchFuture/parbitrarresentiness andExpfine-ertuimentsning: O(27) parameters (+ 2 for Majorana ν) and electric charges

HighGaugeenergyProblemcolliders: the primary tool • • – –TEVcomplATicatedRON; gaugeFermilgrab,oup1.96withTeV3 couplipp¯ , ngsexploration

– –LachargergeHadronquantiCzatiollionder( (LqeH=C);qCEp )RNunexpl, 14ainedTeV pp, high luminosity, | | | | –disPcoverossibley (Discsolutioveons:ry machinestrings;for sgrandupersymmetryunificati, Ron;p violmagnetication, string remnantmonops oles(e.g.,(paZ!rtial, exotics,); anomalHiggsy);constraintsor compositene(parstis,al)dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) problem · · · •– International Linear Collider (ILC), in planning; + –500FermiGeV-1on masses,TeV emixingse−, cold, familtechnolies uneogyxplained, high precision studies –(PreciNeutrinosion pamassrameteres,s natto mapure?bacProbk toe softringPlanckscale)/GUT scale? – CP violation inadequate to explain baryon asymmetry – Possible solutions: strings; brane worlds; family symmetries; CP violation (B decays, electric dipole moments), CKM universality, • compositeness; radiative hierarchies. New sources of CP flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), violation. → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Higgs/hierarchy problem • – Expect M 2 = O(M 2 ) High energy colHliders: theW primary tool • – higher order corrections: – TEVδMAT2R/OMN;2 Fermil1034ab, 1.96 TeV pp¯ , exploration H W ∼ –PossiLargebleHadronsolutionsC:ollisupderers(Lymmetry;HC); CERNdynami, 14 calTeVsymmetrypp, high lumbreakinosiing;ty, ladisrgecoverextray dimens(Discoveions;ry mLachineittle Higgsfor sup; anthrersymmetryopicall, yRmotip violvatation,ed fine-string tuningremnant(splis (e.t supg., Zersy!, exotics,mmetry)Higgs(land);scapor e)compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · – InternationalStrong CP problemLinear Collider (ILC), in planning; •500 GeV-1 TeV e+e , cold technology, high precision studies – Can add θ g2F F˜ −to QCD (breaks, P, T, CP) (Precision parameter32π2 s s to map back to string scale) 9 3 – d θ < 10− , but δθ 10− N ⇒ |weak ∼ CP–viPolationossible sol(Butions:decays,spelectricontaneousdipolely bmrokoments)en global, CKMU(1)universali(Peccei-ty, • Quinn) axion; unbroken global U(1) (massless u quark); flavor changing⇒ neutral currents (e.g., µ eγ, µN eN, B φKs), spontaneously broken CP + other sym→metries → → B violation (proton decay, n n¯ oscillations), neutrino physics − Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Graviton problFuture/pem resent Experiments • – gravity not unified High– quantuenergymcolgravitlidersy :nottherenoprimarmalryizabletool • – cosmological constant: Λ = 8πG V > 1050Λ (10124 SSB N ! " obs – TEVforATGRUTs,ON;stFriermilngs)ab, 1.96 TeV pp¯ , exploration – LaPossrgeibleHadronsolutionCollis: der (LHC); CERN, 14 TeV pp, high luminosity, discovery (Discovery machine for supersymmetry, Rp violation, string remnant– supesrgravi(e.g.,tyZand!, exotics,KaluzaHiggsKlei);nounifyr compositeness, dynamical symmetry b–reakistringsng, Hyieligglessd finitetheories,graviLitttyl.e Higgs, large extra dimensions, ) · · · – Λ? Anthropically motivated fine-tuning (landscape)? – International Linear Collider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

ChicagoChicago(12/1/2005)(12/1/2005) PPaulaulLangacLangackkerer(FNAL/P(FNAL/Penn/IAS)enn/IAS) Future/present Experiments

Beyond the Standard Model High energy colliders: the primary tool • – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration The Whimper: A new layer at the TeV scale – La• rge Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, discoverThe Hyyb(Discrid: ovelowryfundamentalmachine for scalsupe/laersymmetryrge extr, aRdimensip violation,ons string • remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry 1/2 breakiTheng,Bang:Higglessunificationtheories, LiatttletheHiggs,Plancklarge sextrcale,a dimensiM =ons,G− ) 1019 • P N· · · ∼ – InternationalGeV Linear Collider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

NYS APS (October 15, 2004) Paul Langacker (Penn) Future/pComresentposiExptenesseriments

Onion-like layers High• energy colliders: the primary tool • Composite , scalars (dynamical sym. breaking) –•TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration

– LaNotrge liHadronke to atomCollidernucleus(LHC);+CEe−RN, 14p +TeVn pp,quahighrk luminosity, • → → → discovery (Discovery machine for supersymmetry, Rp violation, string remnantOther snew(e.g.,TeVZ!, lexotics,ayer: LittleHiggsHiggs); or compositeness, dynamical symmetry • breaking, Higgless theories, Little Higgs, large extra dimensions, ) At most one more layer accessible (Tevatron, LHC, ILC)· · · –•International Linear Collider (ILC), in planning; + 500RareGeV-1decaysT(e.eVg.,e Ke−, coldµe) technology, high precision studies •(Precision parameters to map→ back to string scale) Typically, few % effects at LEP/SLC, WNC (challenge for models) • CP violation (B decays, electric dipole moments), CKM universality, • flavoanomalr changingous VneutrV V ,alnecwurrentsparticles,(e.g.,futurµ eeγ,WµNW eNW, WB , φFCNC,K ), • → →→ → s B violEDMation (proton decay, n n¯ oscillations), neutrino physics −

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Large extra dimensions (deconstruction, brane worlds)

High energy colliders: the primary tool • Can be motivated by strings, but • – TEVnewAdimTReOnsN;ionsFermilmuchab,larger1.96thanTeV pp¯ , exploration 1 33 M − 10− cm – LargeP Hadron∼ Collider (LHC); CERN, 14 TeV pp, high luminosity, disFundamcoveryental(Discovescalery machineM for supersymmetry, Rp violation, string • F ∼ remnant1 100s (e.g.,TeVZ!, exotics,M¯Higgs);=or compositeness, dynamical symmetry − # P l breaki1/√ng,8πGHiggless2.th4 eories,1018LiGeVttle Higgs, large extra dimensions, ) N ∼ × · · · – International– Assume δ Liextranear Coldimliderensions(ILC), in planning; + δ 500withGeV-1volumTeeVV e eM−,−cold technology, high precision studies δ & F (Precision parameters to map back to string scale) M¯ 2 = M 2+δV M 2 P l F δ & F CP violation (B decays, electric dipole moments), CKM universality, • flavor(Ichangingntroduces newneutrhieraalrchycurprobrentslem)(e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

NYS APS (October 15, 2004) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Black holes, graviton emission at Future/pPresentarticle Ph•ysics PExprobes Oerf Extirmentsa Spacetime Dimensions 29 colliders!

High energy colliders: the primarMacrosy tool copic gravity effects • • – TEVATRON; Fermilab, 1.96 TAstropheV pp¯ , exploysics ration • – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity,

discovery (Discovery machine for supersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · – International Linear Collider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Figure 7: 95% confidence level upper limits on the strength α (relative to Newtonian gravity) Chicago (12/1/2005) as a functioNYSn of tAPShe ran(gOctobe λ of aerddPi15,tiaulona2004)lLangacYukawa kinerter(FNAL/Pactions. Thenn/IAS)e region excluded by previous Paul Langacker (Penn) experiments (55,56,61) lies above the curves labeled Irvine, Moscow and Lamoreaux, respectively. The most recent results (60) correspond to the curves labeled E¨ot-Wash. The heavy dashed line is the result from Ref. (60), the heavy solid line shows the most recent analysis that uses the total data sample. Future/present Experiments

Unification High energy colliders: the primary tool • – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration Unification of interactions – Large• Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, discoverGrandy (Discdeserovet ryto munificationachine for (GUTsupersymmetry) or Planck, Rpscaleviolation, string remnant• s (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) Elementary Higgs, supersymmetry (SUSY), GUTs, s·t·ri·ngs – International• Linear Collider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies Possibility of probing to MP and very early universe (Preci• sion parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

NYS APS (October 15, 2004) Paul Langacker (Penn) Future/present Experiments Supersymmetry

High energy colliders: the primary tool • Fermion boson symmetry • – TEVAT↔RON; Fermilab, 1.96 TeV pp¯ , exploration –MotiLargevatHadronions Collider (LHC); CERN, 14 TeV pp, high luminosity, • discovery (Discovery machine for supersymmetry, Rp violation, string – stabilize weak scale MSUSY < O(1 TeV) (but recent high scale remnants (e.g., Z!, exotics,⇒ Higgs); or compositeness, dynamical symmetry ideas) breaking, Higgless theories, Little Higgs, large extra dimensions, ) – supergravity (gauged supersymmetry): unification ·of· · gravity – International(non-renormaliLinezablareCol) lider (ILC), in planning; 500 GeV-1 TeV e+e , cold technology, high precision studies – coupling constants in−supersymmetric grand unification (Precision parameters to map back to string scale) – decoupling of heavy particles (precision) CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) Future/present Experiments Consequences

• 1000 Γ , σ , R , R – additional charged and neutral Z had l q asymmetries High energyHiggs pacolrticllidesers: the primary tool ν scattering 500 MW • m 2 2 2 t – MH0 < cos 2βMZ+ H.O.T. – TEVATRO4 N; Fermilab, 1.96 TeV2 pp¯ , exploration (O(m )) < (150 GeV) , all data t 90% CL – LargeconsiHadronstent withColliderLEP(LHC); CERN, 14200 TeV pp, high luminosity, discovery (Discovery machine for supersymmetry, Rp violation, string cf., standard model: MH0 < ∗ 100

remnants (e.g., Z!, exotics, Higgs); or comp [GeV] ositeness, dynamical symmetry

1000 GeV H breaking, Higgless theories, Little Higgs, largeM extra dimensions, ) 50 · · · – InternationalSimplest versiLionne: asupr Colersymlidermetric(ILC), in planning; • + 500contributionGeV-1 TtoeVHiggse e−m, asscoldmusttechnology, high precision studies 19 excluded (Precibe ofsionO(100)parameterGeVs to(notmap10back) to string scal20 e) (µ problem)

10 CP violation (B decays, electric dipole moments)100 ,120CKM140 universali160 180 ty, 200 m [GeV] • t flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) 800 m [GeV] 700 Superpartners Future/present Exp• eriments

600 g˜ – q q˜, scalar quark t˜2 ⇒ u˜ , d˜ L R ˜ ˜ u˜R, d˜L b2 – ! !, scalar lepton 500 High energy colliders: the prima˜b1 ry tool ⇒ • – W w˜, wino 0 0 ± ⇒ 400 H , A H 0 ± χ˜04 χ˜2 t˜1 – TEVATRON; Fχ˜3ermilab, 1.96 TeV pp¯– ,typiexplocalratiscale:on several hundred GeV 300 – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, – LSP: cold 200 discover˜lL y (Discτ˜2 overy machine for supersymmetry, Rp violation, string ν˜ 0 ± l χ˜2 χ˜1 candidate ˜l remnantsR (e.g.,τ˜1 Z!, exotics, Higgs); or compositeness, dynamical symmetry h0 100 0 breaking, Higglessχ˜1 theories, Little Higgs, la–rgeSUSYextra bdimensireakingons, large) mt ⇔· · · 0 – May be large FCNC, EDM, – International Linear Collider (ILC), in∆planning;(g 2) + µ 500 GeV-1 TeV e e−, cold technology, high− precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

NYS APS (October 15, 2004) Paul Langacker (Penn)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Grand Unification

) µ ( -1 i 60 High energy colliders: the primary to ! ol SM • Unify strong SU(3) and ! World Average • 50 1 – TEVelectroATROwN;eakFermilSUab,(2)1.96U(1)TeV pp¯40 , exploration × !2 in simple group, broken at – Large Hadron Collider (LHC); CERN30, 14 TeV pp, high luminosity, 16 10 GeV 20 !3 discovery (Discovery machine for supersymmetry, Rp viol! (Mation,)=0.117±0.005string ∼ S Z 2 ! 10 sin "__=0.2317±0.0004 remnants (e.g., Z , exotics, Higgs); or compositeness, dynamicMSal symmetry

0 breakiGaugeng, Higgluniessficationtheories, Li(onlttleyHiggs,in large extra dimensi5 ons,10 ) 15 • 1 10 10 · · · 10 µ (GeV) )

supersymmetric version) µ – International Linear Collider (ILC),( in planning; -1

i 60 500 GeV-1 TeV e+e , cold technol! ogy, high precisionMSSMstudies − 50 68% World Average CL ! (Precision parameters to map back to string scale) 1 40 !2 30

CP violation (B decays, electric dipole moments), !CKM universality, • 20 3 flavor changing neutral currents (e.g., µ eγ, µN eN, B φKs), 10 → → → U.A. W.d.B B violation (proton decay, n n¯ oscillations), neutrino physics H.F. 0 − 5 10 15 1 10 10 10 µ (GeV)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

NYS APS (October 15, 2004) Paul Langacker (Penn) 1636

mode exposure !Bm observed B.G. (ktï yr)F uture/p (%) event resent Experiments Seesa+w 0model for small mν (but • p " e + # 92 40 0 0.2 54 + 0 why are+ m0 ixings large?) p " e # p " µ + # 92 32 0 0.2 43 + + e $ p " e + $ 92 17 0 0.2 23 + + e ' p " __µ + $ 92 9 0 0.2 13 + 0 HighQun "a rk-%energy + $lepton45 col(q21lidersl5) :unithe9ficatpir on i5.6mary toeol & • + e+ K0 • p " e + & 92 4.2− 0 0.4 5.6 ( cha+ rge quantization) µ+ #0 – ⇒TEVp " e +A 'TR92ON; 2.9Fermil0 ab,0.5 1.96 3.8 TeV pp¯+ , exploration + µ $ p " e + ( 92 73 0 0.1 98 µ+ ' + + 0 –qLap " rge__µl +mas ( Hadrons 92relations61Colli0(wderork0.2(LonlyH82Cfor); CERNµ &, 14 TeV pp, high luminosity, • p− " % + K+ 92 22 + 0 third+ fami+ ly in simplest versions) µ K disK cover"%µ (spectrum)y (Disc34 ove-- ry m-- achine 4.2 for sup__ersymmetry+ , Rp violation, string + % # prompt ( + µ 8.6 0 0.7 11 __ + K+ + 0 6.0 0 0.6 7.9 % & remnant__"# # s (e.g., Z!, exotics, Higgs); or comp__ + ositeness, dynamical symmetry Protonn " % + K0 deca92y? (simplest versions 2.0 % K • breakiK0"#0#ng,0 Higgless 6.9 th14eories,19.2 Litt 3.0le Higgs, l+arge- extra dimensions, ) 0 + - n " e # excluded)K "# # 5.5 20 11.2 0.8 + - · · · + 0 e & p e + K 92 10.7 + - – International" 0 0 0 Linear Collider (ILC),µ in# planning; K "# # 9.2 1 1.1 8.7 + - 0 + - + µ & DouK bl"#et-triplet# problem? __ 0 500 GeV-1 TeV e e−, cold technol% # ogy, high precision studies • 2-ring 7.9 5 3.6 4.0 __ 3-ring 1.3 0 0.1 1.7 (Precision parameters to map back to str__%ing$ scale) p + + K0 92 13.9 % ' SK " 0µ 0 0 __ StringK "# # embedding? 5.4 0 (b0.4reaking, 7.1 % &0 IMB3 • 0 + - __ 0 famiKli"#es # may be entangled in extra % K KAM CP vi 2-ringolation (B 7.0 deca3 ys,3.2electric 4.9 dipole moments), CKM universaliSoudan2ty, • dimen 3-ringsions) 2.8 0 0.3 3.7 flavor changing neutral currents (e.g., µ eγ, µN31 eN32 , B 33φK ),34 → 10 →10 10→ 10s B violation (proton decay, n n¯ oscillations), neulifetimetrino physiclimit (years)s − Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) Fig. 1. The obtained lifetime limit of nucleons from SK–I (left figure) and their Chicago c(o12/1/2005)mparisons with other experiments (right figure). Paul Langacker (FNAL/Penn/IAS)

6. References

1. J. Ellis et al., Nucl. Phys. B 202, 43 (1982) 2. Y.Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998) 3. Y.Fukuda et al., Nucl. Instr. Meth. A 501, 418 (2003) 4. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974) 5. Y. Hayato et al., Phys. Rev. Lett. 83, 1529 (1999) 6. Jogesh C. Pati and Abdus Salam, Phys. Rev. Lett. 31, 661 (1973) 7. For example, Jogesh C. Pati, hep-ph/ 0005095. 8. N. Sakai and T. Yanagida, Nucl. Phys. B 197, 533 (1982) 9. M. Shiozawa et al., Phys. Rev. Lett. 81, 3319 (1998) 10. M. Shiozawa, PhD thesis, University of Tokyo (1999) 11. S. Weinberg, Phys. Rev. D 26, 287 (1982) The E8 E8 Heterotic String Future/p×SupresenterstringsExperiments Gauge interactions from strings beginning/ending on stack of • FiniEte8 ,paE“ral8palelrGametebranesSr-Ufr(one(3)ee”forS“eachUtheo(2)groryupU(1)factor) moduli-dependent gauge • • × → ⊃ × × → Highof beverything”yenergycompactificaticouplingscolandli(TOE),don,ersno:backgroundsithempleincludingpurniimaficationgaugery tounlol ess SU(5) stack • fields (Wilson lines) –quantuTEVAmTRgravitON;yFermilab, 1.96 TeV pp¯ , exploration – 1-dUsualChistring-llyralG ik=meatSobjectter:U(3) SstringsU(2) Uat(1)intersectin on of branes, e.g., – •Large• Hadron Collider× (LHC×); CERN, 14 TeV pp, high luminosity, ratheSrUt(hanN)GUTSU(M) bifundamental (N, M¯ ) –disAppcoverearsypoi(Disc×ntlikovee foryr→mresolachineutionfor supersymmetry, Rp violation, string 1 33 > M − 10− cm remnantFor GPs=(e.∼GUTg., ,Zha!,rdexotics,to obtainHiggsadjoints); or compositeness, dynamical symmetry • –bVibreakiandrating,highonalHdimensigglmoessdesionaltheoreries,ppaIresentatntLirtierttsclesecletinHiggs,igonsBrane lWargeorldsextr– AaPdimensiath to theons,Standard)Model? 5 → · · · – Consistent in 10 space- a – International Linear Collider (ILC), in planning;Gauge bosons in adj. timExistinge dimensimodels:onsadd+itional6 gaugemustfactors, Higgs, chiral matter •500 GeV-1 TeV e→e−,1 cold technology, highb precision studies compactify to scale MP−!"#$ (PreciGauge!"#$sionunipafirametercation,% !s butto mapoftenbacnon-ck to sanontringicalscalKae) ˇc-Moody level, –• 4-dim supersymmetric gauge especially for U& (1), and additional Higgs/exotics (Compensation?) theory belo%w MP CP violation (B decays, electric dipole moments), CKM universali¯ty, • –PHENOMay2005al(soMay b4, e2005)solitons (branes), Paul LangacChiraklerm(Paetntn)er in (N, M) flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), terminating open strings → → → s B violation (proton decay, n n¯ oscillations), neutrino physics The−open string spectrum on these intersecting branes contains the following fields [52]: NYS APSPHENO(October200515,(M2004)ay 4, 2005) PaulPaulLangacLangackkerer (Peennn)n) (i) = 4 gauge bosons in adjoint representation of U(N) U(M). N × Chicago (12/1/2005) (ii) Massless fermions in the PchauliraLangacl (N, M¯ker) r(FNAL/Pepresentaenn/IAS)tion. (iii) In general massive scalar fields, again in the (N, M¯ ) representation. The latter two fields originate from open strings stretching from one stack of Dp- branes to the other one. Since the scalar fields are in general massive, such a intersecting D-brane configurations generically breaks all space-time supersymmetries. This supersymmetry breaking manifests itself as the a massive/tachyonic scalar ground state with mass: 1 M 2 = ∆ΦI max ∆ΦI . (4) ab 2 ab − { ab} !I I (Φab is the angle between stacks a and b in some spatial plane I.) Only if the intersection angles take very special values, some of the scalars become massless, and some part of space-time supersymmetry gets restored. Specifically consider two special flat supersymmetric D6-brane configurations, as shown in the following figure: 5 7 9

Φ1 2 Φ Φ3 x x

4 6 8

Supersymmetry now gets restored for the following choice of angles: 2 D6-branes, with common world volume in the 123-directions, being parallel in • the 4-5, 6-7 and 8-9 planes: 1/2 BPS ( = 4 SUSY): Φ1 = Φ2 = Φ3 = 0 . N 2 intersecting D6-branes, with common world volume in the 123-directions, and • which intersect in 4-5 and 6-7 planes, being parallel in 8-9 plane: Problems Future/present Experiments • – Which type? Dualities High–energyWhich colcompactiliders:ficattheionprimmaanriyfold?tool • – TEV– RelATatROionN;toFermilsupersymmab, 1.96etricTstandaeV pp¯ r,dexplomodelrati, GUT?on – Supersymmetry breaking? Scale? Cosmological constant? – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, – Many moduli (vacua). Landscape ideas - any predictability left? discovery (Discovery machine for supersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaki– Theng, Hgreigglatessdethbate:eories,is LiourttlephysicHiggs,s lenviargerextronmaedimensintal orons,selected?) · · · – InternationalSmall cosmolLineaogicalr Colliconsdertant,(ILC),weakin scplanning;ale appear needed for life ∗ + 500 GeV-1 TeV e e−, cold technology, high precision studies (PrecisionPhyspaicsrameterdependss to mapon lobcacatkionto sintrimulting scalvere)se? ∗

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Need theoretiFcaluture/pprogresresents andExperiments • hints from experiment High– TeVenergyscalecolremnants,liders: the suchprimarasy tool • Z , extended Higgs, exotics – TEV! ATRON; Fermilab, 1.96 TeV pp¯ , exploration (suggested by most explicit semi- – LarealisrgeticHadronconstructiCollionsder) (LHC); CERN, 14 TeV pp, high luminosity, discovery (Discovery machine for supersymmetry, R violation, string – SUSY breaking patterns. p remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry bMireakinimalng, Hsigglupessergravitheories,ty unlLittikleelyHiggs, large extra dimensions, ) · · · –– InternationalNeed very Lipnereciar seCollidermass(ILesC), in planning; and couplings +International 500 GeV-1 TeV→e e−, cold technology, high precision studies (PreciLineasionr Collparameterider s to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Remnant Physics from the Top-Down

High energyZ! or othcolerlidgaugeers: the primary tool • • Extended Higgs/neutralino (doublet, singlet) – TEV• ATRON; Fermilab, 1.96 TeV pp¯ , exploration – LargeQuHadronasi-ChiralColliExoticder s(LHC); CERN, 14 TeV pp, high luminosity, • discovery (Discovery machine for supersymmetry, Rp violation, string remnantChas rge(e.g.,1/Z2 !(Confinement?, exotics, Higgs, Stable); or relicompc?)ositeness, dynamical symmetry • breaking, Higgless theories, Little Higgs, large extra dimensions, ) Quasi-hidden (Strong coupling? SUSY breaking? Composite famil· · ·y?) – International• Linear Collider (ILC), in planning; 500 TimeGeV-1varyiTenVg couplie+e ngs, cold technology, high precision studies • − (Precision parameters to map back to string scale) LED (TeV black holes, stringy resonances) • CP violation (B decays, electric dipole moments), CKM universality, • LIV, VEP (e.g., maximum speeds, decays, (oscillations) of HE γ, e, gravity flavor• changing neutral currents (e.g., µ eγ, µN eN, B φK ), waves (ν’s)) → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pA TeV-Scalresent eExpZ!eriments

Strings, grand unified theories, dynamical symmetry breaking, little • HighHiggs,energylarge extracolliddimers:ensionsthe proftenimaryinvoltoolve extra Z! • MZ [GeV] – TEVATRON; Fermilab, 1.96 TeV pp¯ 2500, exploration

Typically MZ! > 600 900 GeV • – Large Hadron Collider−(LHC); CERN, 14 TeV pp, high lumZ inosity, (Tevatron, LEP 2, WNC), θZ Z! < χ discovery3 (Discovery machine| − |for supersymmetry2000 , Rp violation, string few 10− (Z-pole) remnant× s (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry

breaking, Higgless theories, Little Higgs, large1500 extra dimensions, ) Discovery to MZ! 5 8 TeV · · · • +∼ −+ –atInternationalLHC, LC, (ppLinee aer−Col, µ liµder−, q(ILq¯)C), in planning; → X (depends on couplings, exotic+ s, sparticles) 500 GeV-1 TeV e e−, cold technol1000ogy, high precision studies (Precision parameters to map back to string scale)oo 5 1 0 Diagnostics to 1-2 TeV • 500 (asymmetries, y distributions, CP violation (B decays, electric dipole moments), CCDFKM excludeduniversality, • associated production, rare decays) flavor changing neutral currents (e.g., µ eγ, µN eN, B φKs), →0 → → B violation (proton decay, n n¯ oscillations)−0.01, neu−0.005trino physic0 0.005s 0.01 − sin θ Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) ImFuture/pplicationsresentof a ExpTeV-sericalementsZ!

Natural Solution to µ problem: supersymmetric contribution to • HighHiggsenergymass tiedcollidtoersZ:! themaspsrimary tool • 1 NMSSM nMSSM – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration UMSSM Extended Higgs/neutralino sectors 2 |N | in UMSSM • 16 –(tLaypirgecal inHadronstrings, eveCollin wder.o. (LZ!H) C); CE0.8RN, 14 TeV pp, high luminosity, )

discovery (Discovery machine for s1 upersymmetry, R violation, string

0 p ! –remnantCompslic(e.atg.,ed Z!, exotics, Higgs); or compositeness, dynamical symmetry 0.6 breakispectrng,a/decaHigglessys/castheories,cadesLittle Higgs, large extra dimensions, ) at colliders · · · – International Linear Collider (ILC), in planning;

+ (Singlino in 0.4 2 –500EnhancedGeV-1 TpeossiV bilie tiese−, coldfor technol| ogy, high precision studies 15

(Precielectrosionwpaeakrameterbaryogenesis to maps back to|N string scale) 0.2 CP violation (B decays, electric dipole moments), CKM universality, • – Enhanced possibilities for flavocolr changingd dark matterneutral currents (e.g., µ eγ, µN eN, B φKs), 0 → → → B violation (proton decay, n n¯ oscillati0ons), neutri100no physic200s 300 − M 0 (GeV) ! Chicago (12/1/2005) Paul Langacker1(FNAL/Penn/IAS)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pFuture/presentresentExpExpererimentsiments

High energy colliders: the primary tool • High energy colliders: the primary tool –• TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, discovery (Discovery machine for supersymmetry, Rp violation, string discovery (Discovery machine for supersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) breaking, Higgless theories, Little Higgs, large extra dimensions,· · · ) – International Linear Collider (ILC), in planning; · · · – International Linear Collider (ILC), in planning; 500 GeV-1 TeV e+e , cold technology, high precision studies 500 GeV-1 TeV e+−e , cold technology, high precision studies (Precision parameters to map− back to string scale) (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • Also, CP violation (B decays, electric dipole moments), flavor changing flavo• r changing neutral currents (e.g., µ eγ, µN eN, B φKs), neutral currents (e.g., µ eγ, µN eN→, B φKs→), neutrino→physics B violation (proton decay, n→ n¯ oscill→ations), neu→ trino physics −

ChicagoTPFNP(12/1/2005)(October, 2005) PaulPaulLangacLangackerker(FNAL/P(FNAL/Penn/IAS)enn/IAS) Future/present Experiments 33 +28 Neutrinos as a Unique Probe: 10− 10 cm − High energy colliders: the primary tool • – TEVParticATleROPhysN; Ficsermilab, 1.96 TeV pp¯ , exploration • – La–rgeνNHadron, µN, eNColliscattering:der (LHC);exisCEteRNnce/, 14prToeVpertppies, highof qualumrksinosi, QCtDy, discovery (Discovery machine for supersymmetry, Rp violation, string – Weak decays (n pe−ν¯ , µ− e−ν ν¯ ): Fermi theory, parity remnants (e.g., Z!, exotics,→ Higgse); or comp→ ositeneµ ess, dynamical symmetry breakiviolng,ation,Higglessmixingtheories, Little Higgs, large extra dimensions, ) · · · – International– Neutral currentLinea,r ZCol-pliole,deratomi(ILC),c painritplanning;y: electroweak unification, field theory, mt+; severe constraint on physics to TeV scale 500 GeV-1 TeV e e−, cold technology, high precision studies (Preci– Nesionutrinoparametermass:s toconstraintmap back toonstrTingeVscalphysice) s, grand unification, superstrings, extra dimensions; seesaw: m m2/M ν ∼ q GUT CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Xalapa (August, 2004) Paul Langacker (Penn) 2 3 4 1 10 10 10 10

Solar/atmosphericFuture/present Experiments • neutrino experiments

High– Neenergyutrinoscolhaveliders:titheny primary tool • masses (but large – TEVmiAxings)TRON; Fermilab, 1.96 TeV pp¯ , exploration – –LaStandarge Hadronrd SolaCollir mderodel(LHC); CERN, 14 TeV pp, high luminosity, disconfirmedcovery (Discovery machine for sup1.8ersymmetry, Rp violation, string 1.8 –remnantFirst s oscil(e.g.,latiZon!, exotics,dips Higgs); or comp1.6 ositeness, dynamical symmetry 1.6 breakiobserved!ng, Higgless(QthMeories,on Little Higgs,1.4large extra dimensions, ) 1.4 · · · large scale) 1.2 1.2 – International Linear Collider (ILC),1in planning; 1 + 500 GeV-1 TeV e e−, cold technol0.8 ogy, high precision studies 0.8 (Precision parameters to map back to str0.6ing scale) 0.6 0.4 0.4 CP violation (B decays, electric dipoleData/Prediction (null osc.) 0.2moments), CKM universality, 0.2 • 0 2 3 4 0 flavor changing neutral currents (e.g., µ1 eγ,10µN 10eN, B10 φK10 ), → → → s B violation (proton decay, n n¯ oscillations), neutriL/Eno (km/GeV)physics −

ChicagoNYS (APS12/1/2005)(October 15, 2004) Paul LangackPeraul(FNAL/PLangackerenn/IAS)(Penn) 3 ν Patterns Future/present Experiments – Solar: LMA (SNO, HighKamLenergyAND)colliders: the primary tool • – TEV2ATRON; Fermil5 ab,21.96 TeV pp¯ , exploration – ∆m 8 10− eV , ∼ × – nonmaxiLarge! Hadronmal Collider (LHC); CERN, 14 TeV pp, high luminosity,

discovery (Discovery machine for supersymmetry, Rp violation, string – Aremnanttmosphes (e.rig.,c: Z!, exotics, Higgs); or compositeness, dynamical symmetry 2 3 b∆reakim ng, Higgless th2eories,10−Little Higgs, large extra dimensions, ) | Atm| ∼ × · · · eV2, near-maximal mixing – International Linear Collider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies – Reactor: Ue3 small (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) NeFutrinouture/pImplresenticationsExp/queresimentstions

Key constituent of the Universe •High energy colliders: the primary tool • νL 6 v = φ νL 6 νL 6 Why are the masses 3so small2? ! " •– TEVATRON; Fermilab, 1.961 TeV pp¯ , exploration @@ @@ h  @@ @@ – Planck/GUT scale?2 e.g., seesaw  c N mD = hv ν ν ? – Large Hadron Colli1der (LH32C); CERN,R146 TeV pp, highR 6luminosiL ty, or generalization, mν mD/MN discovery (Discovery m∼achine for supersymmetry, Rp violation, string (may not be generic innostrings)rmal inverted Dirac Majorana remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) Are the neutrinos Dirac or · · · • –MajoInternationalrana? Linear Collider (ILC), in planning; 500 GeV-1 TeV e+e , cold technology, high precision studies – No SM gauge symmet− ry forbids (Precision parameters to map back to string scale) Majorana (but string, extended?) – Neutrinoless double beta decay CP(βviβolation) (invert(B eddecaoysr , degenelectriceratedipole moments), CKM universality, • 0ν flavosprectrchanginga) neutral currents (e.g., µ eγ, µN eN, B φKs), → → → B violation (proton decay, n n¯ oscillations), neutrino physics −

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) NYS APS (October 15, 2004) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) What is the spectrum: number, • Future/present Experiments νL 6 v = φ νL 6 νL 6 mass scale/pattern, mixings 3 2 ! " 1 @@ @@ degeneh rate  @@ @@ – Scale: β decay (KATRIN), ββ0ν, 2  c N mD = hv ν ν ? Highlargeenergyscale stcolructureliders(SDSS: the )primary tool 1 3 R 6 R 6 L • – Mixings and CP: reactor, long normal inverted –baselTEVineATRosOcilN;lationFermilexpab,erim1.96entsT, eV pp¯ , exploration Dirac Majorana Solar – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, – Pattern: long baseline, ββ0ν, supdisecoverrnovay (Discovery machine for supersymmetry, Rp violation, string – Nuremnantmber:s L(e.SNg.,D?ZMini!, exotics,BooNEHiggs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · Leptogenesis? • – International Linear Collider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies Relic neutrinos? • (Precision parameters to map back to string scale) – Indirect: Nucleosynthesis, large CPscalvieolationstructure.(B decaDirect?ys, electric(Z-dipole moments), CKM universality, • flavoburst?r changing) neutral currents (e.g., µ eγ, µN eN, B NYSφAPSK )(Octob, er 15, 2004) Paul Langacker (Penn) → → → s B violation (proton decay, n n¯ oscillations), neutrino physics Yoichiro Nambu Symposium (April 21, 2005) − Paul Langacker (Penn) NYS APS (October 15, 2004) Paul Langacker (Penn)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments The Minimal Seesaw Model?

2 HighVeryenergysimplecolfromlidersbott: omtheup:primamνry tomol/MN • • ∼ D – TEVRecentATRsOtudN;y FofermilZ heterab, 1.96otic oTrbifoldeV pp¯ (Giedt,, exploration • 3 – LaKane,rge HadronPL, Nelson)Collider (LHC); CERN, 14 TeV pp, high luminosity,

discovery (Discovery machine for supersymmetry, Rp violation, string Systematically studied large class of vacua •remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaki– Is ng,minimHigglalessseesatheow ries,comLimon?ttle Higgs, large extra dimensions, ) mD · · ·mD – International– If rare, guidanceLineator Colmolidelderbui(ILldiC),ng? in planning; NR NR + νL νL 500– ClGeV-1ues to textures,TeV e ete−c., cold technology, high precisMNion studies (Precision parameters to map back to string scale)

CP Noneviolationhad sim(B ultaneousdecays, electricDirac dipandoleMajomoments)rana m, assesCKMneededuniversalifor ty, • • flavomirnimchangingal seesawneutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

– Typeset by FoilTEX – 1 Property of classFuture/pof vacua?resent Experiments • Insist on rare seesaw-type vacua? •High energy colliders: the primary tool • Anthropic motivations for small neutrino masses? (nucleosynthesis, •– TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration galaxy formation, type II supernovae) – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, Alternatdiscoverives?y (Disc(Smalovel ryDiracmachineby high-difomensir suponersymmetryal operator,s? RExtep violndedation,seesaw?string • Higgsremnanttripslet(e.ing.,higherZ!, levelexotics,embHiggsedding?)); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · – International Linear Collider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pTheresentUniverseExperiments

HighThe concoenergyrdancecolliders: the primary tool •• –– TEV5% ATmaRtOterN; F(iermilncludiab,ng 1.96darkTeV pp¯ , exploration baryons): CMB, BBN, Lyman – Laα rge Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, discovery (Discovery machine for supersymmetry, R violation, string – 25% dark matter (galaxies, p remnantclusterss, (e.CMB,g., Zl!ensing), exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) – 70% dark energy (Acceleration · · · – International(Supernovae),LiCMBnear(ColWMAP))lider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

NYS APS (October 15, 2004) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) What is the dark matter? • – Lightest neutralino in supersymmetry (if R parity conserved)? Axion? – Direct searches: LHC, ILC; cold dark matter searches; high energy annihilation ν’s – Gravitation lensing (SNAP), CMB (Planck)

What is the dark energy? • Future/present Experiments – Vacuum energy (cosmological constant); time varying field (quintessence)? High– Highenergypreciscolionlidsupers:ernovathe prsurveyimary to(SNAP);ol • CMB (Planck) Expansion History of the Universe

– TEVATRON; Fermilab, 1.96Perlmutter,T eVPhysicspp¯ Today, (2003)exploration

NYS APS (October 15, 2004) Paul Langacker (Penn) expands forever relative 1

0.1 s – Large Hadron Collider (LHC); CERN, 14 TeV pp,0.01 high luminositsye , 0.001 p 1.5 brightness 0.0001 lla co discovery (Discovery machine for supersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) 1.0 · · · 0 – International Linear Collider (ILC), in planning; + 0.25 500 GeV-1 TeV e e−, coldAfter inflation,technology, high precision studies d 0.5 the expansion either... te a 0.75 (Precision parameters to map back to string scale)ed r redshift t e Scale of the Universe 0.5 ra l 1 le e

Relative to Today's Scale e cc c a e 1.5 n d he 2 , t s ed y 2.5 CP violation (B decays, electric diproleat moments)a , CKM universality,3 le w e l c a e • r t d past today future s o flavor changing neutral currentsr (e.g., µ eγ,. µN eN, B φK ), i 0.05 . s 0.0 f → . → → B violation (proton decay, n n¯ osci–20 llations),–10neutrino physic0 s 10 − Billions Years from Today

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) !GN IF Future/present Experiments !GJ What is the dark matter? IF •

!MF IF – Lightest neutralino in High energy>H#H%IJJKcolliders: the primary tool • supersymmetry (if R parity !MI E:*8B*4''%.FFG /%75216&849*:%32%3;*%5<-8*25= IF . conserved)? Axion? – TEVATRON; Fermilab,0>#?%7?4=1.96 TeV pp¯ , exploration !M. – Direct searches: LHC, ILC; IF C*D845!" – Large Hadron 0>#?%7)*=%.Collider!A2B*1 (LHC); CERN, 14 TeV pp, high luminosity,

'*-3425%(-6 cold dark matter searches; high ! !MG 0>#?%7)*=%-26@45*: IFdiscovery (Discovery machine for supersymmetry, Rp violation, string L IF LF IFF LFF energy annihilation ν’s

012'' . remnants (e.!"#$%#&''%()*+,-g., Z!, exotics,/ Higgs); o–r compAxionositeneseass,rchesdynamical(resonantsymmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) cavities) · · · – International Linear Collider (ILC),– Galaxyin planning;surveys (SDSS) + 500 GeV-1 TeV e e−, cold technol– Graviogytation, highlensingprecision(SNstAP),udies (Precision parameters to map back to strCMBing scal(Plancke) )

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Why is there matter and not • antimatter? Future/present Experiments

10 – nB/nγ 10− , nB¯ 0 High energy ∼colliders: the p∼rimary tool • – Electroweak baryogenesis – TEV(extensionsATRON;ofFMSSM)ermilab,? L1.96eptogeTeVnespp¯is?, exploration Decay of heavy fields? CP T – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, violation? discovery (Discovery machine for supersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry

breaking, Higgless theories, Little Higgs, large extra dimensions, v) · · · Wall

unbroken phase – International Linear Collider (ILC), in planning;broken phase + q φ = 0 q 500 GeV-1 TeV e e−, cold technolq ogy, high precision studiesq becomes our world (Precision parameters to map back to string scale) CP Sph ~_ 0 CP Γ B + L _ _ q q _ _ q q CP violation (B decays, electric dipole moments), CKM universaliSph ty, Γ >> H • B + L flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Why is there matter and not • antimatter?

10 – n /n 10− , n ¯ 0 B γ ∼ B ∼ – Electroweak baryogenesis? Leptogenesis? Decay of heavy fields? CP T violation? The very beginning (inflation) • Future/present Experiments – Relation to , strings, Λ?

– CMB (Planck); gravity waves (LISA) High energy colliders: the primary tool • – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity,

discovery (Discovery machine for supersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · ·

NYS– InternationalAPS (October 15, 2004)Linear Collider (ILC), in planning;Paul Langacker (Penn) + 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Far-Out Stuff Future/present Experiments

LIV, VEP (e.g., maximum speeds, decays, (oscillations) of HE γ, e, gravity • Highwavesenergy(ν’s)) colliders: the primary tool • Second extreme example: time varying couplings and parameters – TEVATRON; Fermilab, 1.96 TeV pp¯ , exploration LED, TeV black holes •– Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, Timediscovervaryiy n(Discg couplioveryngsmachine for supersymmetry, Rp violation, string • remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · – International Linear Collider (ILC), in planning; + 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale)

CP violation (B decays, electric dipole moments), CKM universality, • flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − (Murphy et al, astro-ph/0209488)

Yoichiro Nambu Symposium (April 21, 2005) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

TASI (June 5, 2003) Paul Langacker (Penn) Future/pConclresentusionsExperiments

The standard model is the correct description of fermions/gauge • 16 1 Highbosonsenergydowncoltoliders10:−thecmprimary tool • ∼ ∼ 1 TeV –StandaTEVArdTRmOoN;del Fisermilcomplab,icated1.96 TeVmuspp¯t ,beexplonewratiphysioncs • → – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, Precision tests severely constrain new TeV-scale physics • discovery (Discovery machine for supersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry Promising theoretical ideas at Planck scale • breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · –PromiInternationalsing experimentalLinear Colprogramlider (ILatC),cinolliplanning;ders, accelerators, low • + ener500gyGeV-1, cosmologyTeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale) Challenge to make contact between theory and experiment • CP violation (B decays, electric dipole moments), CKM universality, • Semi-realistic string constructions suggest extended gauge, Higgs, •flavor changing neutral currents (e.g., µ eγ, µN eN, B φK ), neutralino, fermion sectors → → → s B violation (proton decay, n n¯ oscillations), neutrino physics −

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)

Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS)