The Standard Model and Strings

The Standard Model and Strings

Future/present Experiments The Standard Model and Strings - Can They Be Connected? High energy colliders: the primary tool • 1 The standard model NMSSM – TEVThe AstandaTROrdN;mFoermildel ab, 1.96 TeV pp¯ , exploration nMSSM • • UMSSM 2 |N | in UMSSM – Large Hadron Collider (LHC); CERN, 14 TeV pp, high lum16 inosity, TesTtiesngtingthethestandastandard rmod modeldel 0.8 • • discovery (Discovery machine for ) supersymmetry, Rp violation, string 1 0 remnants (e.g., Z!, exotics, Higgs); o! r compositeness, dynamical symmetry ProblemProblems s • • breaking, Higgless theories, Little Higgs,0.6 large extra dimensions, ) · · · Bey– InternationalBeyondondthethestandastandaLirdnerdamor moColdedelliderl (ILC), in planning; • • + (Singlino in 0.4 2 500 GeV-1 TeV e e−, cold technol| ogy, high precision studies 15 Where(PreciNewaTsionreeVwpaephrametergoing?ysics suggess to maptedback to|N string scale) • • by string constructions 0.2 CP violation (B decays, electric dipole moments), CKM universality, • flavoWherer changingare we neutrgoing?al currents (e.g0., µ eγ, µN eN, B φK ), • 0 → 100 → 200 → 300s M 0 (GeV) B violation (proton decay, n n¯ oscillations), neutrin!o physics − 1 Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments The New Standard Model High energy colliders: the primary tool • Standard model, supplemented with neutrino mass (Dirac or • – TEVMajoATranROa)N;: Fermilab, 1.96 TeV pp¯ , exploration – Large HadronSUC(3)olliderSU(L(2)HCU);(1)CERNclas, 14sicalTeVrelatppivit, highy luminosity, discovery (Discovery× machine× for s×upersymmetry, Rp violation, string remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · Mathematically consistent field theory of strong, weak, – •International Linear Collider (ILC), in planning; electromagnetic interactions+ 500 GeV-1 TeV e e−, cold technology, high precision studies (Precision parameters to map back to string scale) 16 Gauge interactions correct to first approximation to 10− cm • CP violation (B decays, electric dipole moments), CKM universality, • Complicated, free parameters, fine tunings must be new physics flavo• r changing neutral currents (e.g., µ eγ⇒, µN eN, B φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − WIN 05 (June 11, 2005) Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pThe Fundamentalresent ExperFoirmentsces Strong Electromagnetic Weak Gravity Highp energyncolliders: the primary tool 6 6 • 0 π e− ν¯e e− p p – TEVATRON; Fermil6ab, 1.966 TeV pp¯6 , explo6 r ©ation 6 6 pion γ W − g p 6 6n – Large Hadron Collider ¨ (L¨ H¨C); CERN§ ¤,§14¤ § ¤TeV pp, high lum ¨ inosi¨ ¨ty, d u ¦ ¥ ¦ ¥ ¦ ¥ graviton 6 6 © © © 6 IVB © © © discoverG y (Discovery6photonmachine6 for supersymmetry, R violation,6 string6 n p (spin 2) § ¤ § ¤ § ¤ e− p remnant¦gluon¥ ¦ ¥ s¦ ¥(e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry d 6 6u breaking, Higgless theories, Little Higgs, large extra dimensions, ) · · · – International Linear Collider (ILC), in planning; m m 2 e mπr e2 2 e MW r 1 2 V = g − + g − GN r 500π GeV-1r TeVr e e−, cold technolrogy, high precision studies (Precisiong2 parameters toe2 map1back to gs2trEing2 scale) 11 38 strength: π 14 α = 10− GN m1m2 10− 4π 4π ∼ 137 M2 ∼ ∼ ∼ W (m1=m2=1 GeV) (E = 1 MeV) CP violation (B decays, electric dipole moments), CKM universality, • h¯ h¯ 16 rangeflavo: r changing neutral currents (e.g., µ e10γ,− µNcm eN, B φKs), mπc ∞ MW c ∞ 13 ∼ →∼ → → 10B− violcmation1 fm(proton decay, n n¯ oscillations), neutrino physics ≡ − Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Unification of Forces HighStrongenergy collidersElectr: theomagnpretiimac ry toWeakol Gravity • hadrons: p, n; charged particles: p, n, π; e, µ, τ ;, all particles (always – TEVATRON;0 Fermilab, 1.96 TeV pp¯ , exploration pions: π±, π ; e−, µ−, τ −; neutrinos: attractive) ν , ν , ν – (QCDLarge: Hadronquarks,Collip; derπ± (LHC); CERNe , µ14 τTeV pp, high luminosity, gluons) discovery (Discovery machine for supersymmetry, Rp violation, string nuclearemnantr s binding;(e.g., Z!,atoms,exotics, Higgscrystal);s, ordecacompys:ositenen ss, dynamicweight;al sbindingymmetryof → enerbreakigyng,in stHarsiggless thmoleoecules;ries, Littllight;e Higgs,pela−rgeν¯e; extrelementa dimensisolons,ar system,) stars, chemical energy synthesis galaxies· · · – International Linear Collider (ILC), in planning; E + B ←+ → 500 GeV-1 TeV(Maxwe e−el,l) cold technology, high precision studies (Precision parameters toElmapectrobwaceakk to(SsUtr(2)ing scalU(1))e) QCD ← × → ← → Grand Unification (GUT)? CP violation← (B decays, electric dipole moments)→ , CKM universality, • Theory of Everything (superstring)? flavor changing← neutral currents (e.g., µ eγ, µN eN, B→ φK ), → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pGaugeresentTExpheorieseriments Gauge symmetry requires existence of (apparently) massless spin-1 • High(vectoenergyr, gauge)collidersbosons: the primary tool • – TEVInteractionsATRON; Fpermilrescribab,ed 1.96up TtoeVgroup,pp¯ , exploreprresentatation ions, gauge • coupling – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, disAnalogouscovery (Discto oveQEDry (mUachine(1)), fobutr sgaugeupersymmetryself interactions, Rp violation,for non-string • remnantabelians (e.groupsg., Z!, exotics, Higgs); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, ) Standard model: SU(3) SU(2) U(1) · · · – •International Linear Colli×der (ILC),× in planning; Application to strong+ (short range) confinement •500 GeV-1 TeV e e−, cold technol⇒ogy, high precision studies (PreciAppsionlicatpaionrameterto wseakto map(shobacrtk range)to string scale)spontaneous symmetry • ⇒ breaking (Higgs or dynamical) CP violation (B decays, electric dipole moments), CKM universality, • flavoUniquer changingrenormneutralizablal ecurfieldrentstheo(e.ryg.fo, µr spin-1eγ, µN eN, B φK ), • → → → s B violation (proton decay, n n¯ oscillations), neutrino physics − Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/pTheresentStandaExprderMoimentsdel Gauge group SU(3) SU(2) U(1); gauge couplings gs, g, g! High• energy colliders: the× prima×ry tool • u u u νe – TEVATRON; Fermild ab, 1.96d TeV pp¯ ,dexploratione− ! "L ! "L ! "L ! "L – Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, uR uR uR νeR(?) discovery (Discovery machine for supersymmetry, Rp violation, string dR dR dR e− remnants (e.g., Z!, exotics, Higgs); or compositeness,Rdynamical symmetry breaki( L ng,= Hleft-handed,iggless theories,R Li=ttright-handed)le Higgs, large extra dimensions, ) · · · – InternationalSU(3): u Liunear Colu, liderd (ILdC), din(glplanning;uons) • ↔ ↔+ ↔ ↔ 500 GeV-1 TeV e e−, cold technology, high precision studies 0 (PreciSUsion(2):paurameterds to, mapν backeto− s(trWing±)scal; phasese) (W ) • L ↔ L eL ↔ L CP Uvi(1)olation: phas(Bes deca(B)ys, electric dipole moments), CKM universality, • • flavor changing neutral currents (e.g., µ eγ, µN eN, B φKs), Heavy families (c, s, ν , µ ), (t, b, ν→, τ ) → → B violation (proton decay, nµ −n¯ oscillations)τ , neu− trino physics • − Introductory slides Paul Langacker (Penn) Chicago (12/1/2005) Paul Langacker (FNAL/Penn/IAS) Future/present Experiments Quantum Chromodynamics (Q9.CQuDant)um chromodynamics 17 required, for example, to facilitate the extraction of CKM elements from measurements Mode9rn. Qutaheontumrcoyfhcrhoofamrmoadthenydnbaomttostrongimcsdec7ay ratesi. ntSee eractiRef. 169 forona recsent review. High energy colliders: the primary tool • – TEVATRON;AverageFermilab, 1.96 TeV pp¯ , exploration Hadronic Jets – Large Hadron eC+eolli- ratesder (LHC); CERN, 14 TeV pp, high luminosity, Photo-production 0.3 discovery (Discovery machine for supersymmetry, Rp violation, string Fragmentation remnants (e.g., Z!, exotics, Higgs); or compositeness, dynamical symmetry Z width ) µ breaking, Higgless theories, Little Higgs,( large extra dimensions, ) ep event shapes 0.2s ! · · · – InternationalPolarized DIS Linear Collider (ILC), in planning; Deep Inelastic Scattering (DIS) + 500 GeV-1 TeV e e−, cold technology, high precision studies ! decays (Precision parameters to map back0.1to string scale) Spectroscopy (Lattice) " decay CP violation (B decays, electric dip0 ole moments), CKM universality, • 2 0.1 0.12 0.14 (e.1 g., µ eγ, 10µN eN, B10 φK ) flavor changing neutral currents µ GeV s , #s(MZ) → → → B violation (proton decay, n n¯ oscillations), neutrino physics − Figure 9.1: Summary of the value of αs(MZ) from various prFoicgeussrees.9T.2h:eSummaryvalues of the values of αs(µ) at the values of µ where they are shown indicate the process and the measured value of α extrampoelaastuerdedt.o Tµh=e Mlines. show the central values and the 1σ limits of our average. s Z ± The error shown is the total error including theoretical uncertaTinhteiefis.guTreheclaevaerrlyagsehows the decrease in αs(µ) with increasing µ. The data are, + quoted in thiChs reipcagoort wh(12/1/2005)ich comes from these measurements is ianlsoinschreoawsnin.gSoeredteerxotf µ, τ width, PΥ auldecaLangacys, deepkerinel(FNAL/Pastic scatteenn/IAS)ring, e e− event for discussion of

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    46 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us