King's Research Portal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review Article Biological Method in Stabilization of Sand Dunes Using the Ornamental Plants and Woody Trees: Review Article
Journal of Innovations in Pharmaceuticals and Biological Sciences JIPBS www.jipbs.com ISSN: 2349-2759 Review article Biological method in stabilization of sand dunes using the ornamental plants and woody trees: Review article Metwally S.A.*1, Abouziena H.F.2, Bedour M.H. Abou- Leila3, M.M. Farahat1, E. El. Habba1 1Department of Ornamental Plants and Woody Trees, National Research Centre, Dokki, Cairo, Egypt, 12622. 2Department of Botany, National Research Centre, Dokki, Cairo, Egypt, 12622. 3 Department of Water Relation and Field irrigation, National Research Centre, Dokki, Cairo, Egypt, 12622. Abstract Sand dunes are considered one of the most obstacles that face the horizontal or vertical expansion of agriculture in the desert. Sand dunes are a collection of a loose grouping of sand on the land surface in the form of a pile with top. In the recent years, increasing attention has been taken to cultivate the timber trees and ornamental plants in a narrow range to combat the desertification, sand encroachment and sand dunes. The climate factors are characterized by high temperature, strong winds laden with sand and sandy dunes, lead to soil erosion and remove the fertility soil in the surface layer, and destroying cultivated lands. Therefore, it's important to planting windbreaks and stabilization sand dunes to reduce the damage and loss of all areas of development aspects. The methods used for combating the sand dunes can be classified into two types; biological methods or plant measure and the second are the mechanical methods or engineering measure. We will focus in this article on the biological methods where the trees, shrubs and grasses are planted. -
Sand Dune Systems in Iran - Distribution and Activity
Sand Dune Systems in Iran - Distribution and Activity. Wind Regimes, Spatial and Temporal Variations of the Aeolian Sediment Transport in Sistan Plain (East Iran) Dissertation Thesis Submitted for obtaining the degree of Doctor of Natural Science (Dr. rer. nat.) i to the Fachbereich Geographie Philipps-Universität Marburg by M.Sc. Hamidreza Abbasi Marburg, December 2019 Supervisor: Prof. Dr. Christian Opp Physical Geography Faculty of Geography Phillipps-Universität Marburg ii To my wife and my son (Hamoun) iii A picture of the rock painting in the Golpayegan Mountains, my city in Isfahan province of Iran, it is written in the Sassanid Pahlavi line about 2000 years ago: “Preserve three things; water, fire, and soil” Translated by: Prof. Dr. Rasoul Bashash, Photo: Mohammad Naserifard, winter 2004. Declaration by the Author I declared that this thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. Hamidreza Abbasi iv List of Contents Abstract ................................................................................................................................................. 1 1. General Introduction ........................................................................................................................ 7 1.1 Introduction and justification ........................................................................................................ -
Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, B, *, Hongshan Wangc, David L
ISSN 0031-0301, Paleontological Journal, 2019, Vol. 53, No. 11, pp. 1216–1235. © Pleiades Publishing, Ltd., 2019. Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, b, *, Hongshan Wangc, David L. Dilchera, b, d, E. Bugdaevae, Xiao Tana, b, d, Tao Lia, b, Yu-Ling Naa, b, and Chun-Lin Suna, b, ** aKey Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Changchun, Jilin, 130026 China bResearch Center of Palaeontology and Stratigraphy, Jilin University, Changchun, Jilin, 130026 China cFlorida Museum of Natural History, University of Florida, Gainesville, Florida, 32611 USA dDepartment of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, 47405 USA eFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia *e-mail: [email protected] **e-mail: [email protected] Received April 3, 2018; revised November 29, 2018; accepted December 28, 2018 Abstract—The Ordos Basin is one of the largest continental sedimentary basins and it represents one major and famous production area of coal, oil and gas resources in China. The Jurassic non-marine deposits are well developed and cropped out in the basin. The Middle Jurassic Yan’an Formation is rich in coal and con- tains diverse plant remains. We recognize 40 species in 25 genera belonging to mosses, horsetails, ferns, cycadophytes, ginkgoaleans, czekanowskialeans and conifers. This flora is attributed to the early Middle Jurassic Epoch, possibly the Aalenian-Bajocian. The climate of the Ordos Basin during the Middle Jurassic was warm and humid with seasonal temperature and precipitation fluctuations. -
Supplement of the Global Forest Above-Ground Biomass Pool for 2010 Estimated from High-Resolution Satellite Observations
Supplement of Earth Syst. Sci. Data, 13, 3927–3950, 2021 https://doi.org/10.5194/essd-13-3927-2021-supplement © Author(s) 2021. CC BY 4.0 License. Supplement of The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations Maurizio Santoro et al. Correspondence to: Maurizio Santoro ([email protected]) The copyright of individual parts of the supplement might differ from the article licence. 1 Supplement of manuscript 2 The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite 3 observations 4 Maurizio Santoro et al. 5 S.1 Auxiliary datasets 6 7 The European Space Agency (ESA) Climate Change Initiative Land Cover (CCI-LC) dataset consists of 8 annual (1992-2018) maps classifying the world’s land cover into 22 classes (Table S6). The overall 9 accuracy of the 2010 land cover dataset was 76% (Defourny et al., 2014), with the most relevant 10 commission and omission errors in mixed classes or in regions of strongly heterogeneous land cover. The 11 land cover maps were provided in equiangular projection with a pixel size of 0.00278888° in both latitude 12 and longitude. In this study, we used the land cover map of 2010, version 2.07. The dataset was re- 13 projected to the map geometry of our AGB dataset. 14 15 The Global Ecological Zones (GEZ) dataset produced by the Food and Agriculture Organization (FAO, 16 2001) divides the land surface into 20 zones (Figure S2, Table S2) with “broad yet relatively 17 homogeneous natural vegetation formations, similar (but not necessarily identical) in physiognomy” 18 (FAO, 2001). -
Tectonic-Driven Climate Change and the Diversification of Angiosperms
Tectonic-driven climate change and the diversification of angiosperms Anne-Claire Chaboureaua,1, Pierre Sepulchrea, Yannick Donnadieua, and Alain Francb aLaboratoire des Sciences du Climat et de l’Environnement, Unité Mixte, Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique– Université de Versailles Saint-Quentin-en-Yvelines, 91191 Gif-sur-Yvette, France; and bUnité Mixte de Recherche Biodiversité, Gènes et Communautés, Institut National de la Recherche Agronomique, 33612 Cestas, France Edited by Robert E. Dickinson, The University of Texas at Austin, Austin, TX, and approved August 1, 2014 (received for review December 23, 2013) In 1879, Charles Darwin characterized the sudden and unexplained covers the large uncertainties of pCO2 estimates for these rise of angiosperms during the Cretaceous as an “abominable mys- geological periods. tery.” The diversification of this clade marked the beginning of To validate our paleoclimatic experiments, the geographical a rapid transition among Mesozoic ecosystems and floras formerly distribution of climate-sensitive sediments such as evaporites (dry dominated by ferns, conifers, and cycads. Although the role of en- or seasonally dry climate indicators) and coals (humid climate vironmental factors has been suggested [Coiffard C, Gómez B (2012) indicators) have been compared with our maps of simulated biomes Geol Acta 10(2):181–188], Cretaceous global climate change has for each time period (Fig. S1). Overall, for every time period, the barely been considered as a contributor to angiosperm radiation, spatial fit between coals and humid biomes is higher for 1,120-ppm and focus was put on biotic factors to explain this transition. Here and 2,240-ppm pCO2 scenarios than for 560 ppm (Table S1 and we use a fully coupled climate model driven by Mesozoic paleogeo- Fig. -
The Coastal Plains
Hydrology of Yemen Dr. Abdulla Noaman INTRODUCTION • Location and General Topography • Yemen is located on the south of the Arabian Peninsula, between latitude 12 and 20 north and longitude 41 and 54east, with a total area estimated at 555000 km2 excluding the Empty Quarter. Apart from the mainland it includes more than 112 islands, the largest of which are Soqatra in the Arabian Sea to the Far East of the country with total area of 3650 km2 and Kamaran in the Red Sea YEMENYEMEN: Basic Information • Area: 555,000 km2 • Cultivated area: 1,200,000 ha • Population: 22,1 million – Rural 75% – Urban 25% – Growth rate 3.5 % / year • Rainfall: 50 mm - 800 mm /year average 200 mm / year NWRA-Yemen 2005 Socio-economic features • Population • The total population is around 22.1 million (MPD, 2004), of which 74.4 % is rural. The average population density is about 31 inhabitants/km2, but in the western part of the country the density can reach up to 300 inhabitants/km2 (Ibb province) while in the three eastern provinces of the country the density is less than 5 inhabitants/km2. Socio-economic features • The largest part of the population lives in the Yemen Mountain area in the western part of the country, where rainfall is still significant, although not high in many locations. The hostile environment of the desert and eastern upland areas is reflected by low population density. Concentration of population in Yemen Area Pop. 8% 46.8% 12.2% 58.66% 32.74% 85.59% NWRA-Yemen 2005 Socio-economic features • Agriculture and economy • Agriculture contributes 25% to the Gross Domestic Product (GDP) in Yemen, employs 60% of the population, and provides livelihood for rural residents who constitute about 76%of the total population. -
Komandorsky Zapovednik: Strengthening Community Reserve Relations on the Commander Islands
No. 36 Summer 2004 Special issue: Russia’s Marine Protected Areas PROMOTING BIODIVERSITY CONSERVATION IN RUSSIA AND THROUGHOUT NORTHERN EURASIA CONTENTS CONTENTS Voice from the Wild (A letter from the editors)......................................1 Komandorsky Zapovednik: Strengthening Community Reserve Relations on the Commander Islands......................................24 AN INTRODUCTION TO MARINE Lazovsky Zapovednik: PROTECTED AREAS Working to Create a Marine Buffer Zone...................................................28 MPAs: An Important Tool in Marine Conservation......…………………...2 Kurshskaya Kosa National Park: Tides of Change: Tracing the Development Preserving World Heritage on the Baltic Sea ..........................................30 of Marine Protected Areas in Russia .................................................................4 Dalnevostochny Morskoi Zapovednik: How Effective Are Our MPAs? Looking for Answers An Important Role to Play.........................................................................................6 with Russia’s First Marine Protected Area..................................................32 The Challenges that Lie Ahead.....................………………………………………………8 Russia’s Marine Biosphere Reserves......………………………………………………10 MPA Workshop Offers Opportunities for Dialogue..........................13 THE FUTURE Plans for the Future: Developing a Network of Marine Protected Areas .....................................................……....………………...35 CASE STUDIES An Introduction .............................................................................……....………………...14 -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
UNIVERSITY of CALIFORNIA Los Angeles Southern California
UNIVERSITY OF CALIFORNIA Los Angeles Southern California Climate and Vegetation Over the Past 125,000 Years from Lake Sequences in the San Bernardino Mountains A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geography by Katherine Colby Glover 2016 © Copyright by Katherine Colby Glover 2016 ABSTRACT OF THE DISSERTATION Southern California Climate and Vegetation Over the Past 125,000 Years from Lake Sequences in the San Bernardino Mountains by Katherine Colby Glover Doctor of Philosophy in Geography University of California, Los Angeles, 2016 Professor Glen Michael MacDonald, Chair Long sediment records from offshore and terrestrial basins in California show a history of vegetation and climatic change since the last interglacial (130,000 years BP). Vegetation sensitive to temperature and hydroclimatic change tended to be basin-specific, though the expansion of shrubs and herbs universally signalled arid conditions, and landscpe conversion to steppe. Multi-proxy analyses were conducted on two cores from the Big Bear Valley in the San Bernardino Mountains to reconstruct a 125,000-year history for alpine southern California, at the transition between mediterranean alpine forest and Mojave desert. Age control was based upon radiocarbon and luminescence dating. Loss-on-ignition, magnetic susceptibility, grain size, x-ray fluorescence, pollen, biogenic silica, and charcoal analyses showed that the paleoclimate of the San Bernardino Mountains was highly subject to globally pervasive forcing mechanisms that register in northern hemispheric oceans. Primary productivity in Baldwin Lake during most of its ii history showed a strong correlation to historic fluctuations in local summer solar radiation values. -
Cambridge IGCSE Geography Past Paper Questions
PAST PAPER QUESTIONS Cambridge IGCSE Geography past paper questions Past paper questions are reproduced by permission of University of Cambridge International Examinations. Chapter 8: Climate and vegetation QUESTION 1: Cambridge IGCSE Geography 0460/11 Q4 November 2009 (a) Study Fig. 7, which shows the location of areas with a tropical rain forest ecosystem. Tropic of Cancer Equator Tropic of Capricorn Key Tropical rain forest ecosystem Fig. 7 (i) What is meant by the term ecosystem? [1] (ii) Describe the distribution of areas with a tropical rain forest ecosystem. [2] (iii) Explain why areas of tropical rain forest have a high annual precipitation. [3] (iv) Explain the effects of climate on the natural vegetation in tropical rain forests. [4] 1 © OXFORD UNIVERSITY PRESS 2012 Chapter 8: Climate and vegetation PAST PAPER QUESTIONS (b) Study Fig. 8, which shows deforestation of an area of tropical rain forest. 1960 Settlement Tropical rain forest River 2000 Tree felling New road Mining Farming River Fig. 8 Describe and explain the likely effects of deforestation on: (i) food chains; [3] (ii) rivers. [5] (c) Name an area of tropical desert which you have studied. Describe and explain the main features of its climate. [7] [ Total: 25 marks] 2 © OXFORD UNIVERSITY PRESS 2012 Chapter 8: Climate and vegetation PAST PAPER QUESTIONS QUESTION 2: Cambridge IGCSE Geography 0460/ 01 Q3 June 2008 (a) Study Fig. 5A, which shows the location of the Mojave Desert, along with Fig. 5B, a graph showing its climate. N N NEVADA NEVADA UTAH UTAH CALIFORNIA CALIFORNIA Mojave Desert Mojave Desert ARIZONA Pacific Ocean ARIZONA Pacific Ocean 0 250 km 0 250 km Fig. -
Sand Dune Stabilization and Reclamation in Southeastern Colorado
Sand Dune Stabilization And Reclamation In Southeastern Colorado Mike Scharp Parker Ag Services, LLC 4570 Kashmire Drive Colorado Springs, CO 80920 ABSTRACT This paper will discuss how and why Enviro-Gro Technologies (EGT) developed a large- scale sand dune reclamation program using New York City biosolids. The biosolids were applied during the winter of 1992 and 1993. The application site is located about 25 miles east of Lamar, CO and is comprised of 258 acres. Reclamation of the site resulted in its stabilization because vegitation was established on the site thus eliminating the encroachment into other areas. Based upon experience and negotiation with the Colorado Department of Public Health and Environment (CDPH&E) and the United State Environmental Protection Agency (USEPA) an application rate of 30 dry tons per acre was permitted. In addition, 10 dry tons per acre of woodchips were co-applied. The intent was that the excess carbon would bind some of nitrogen on the site and thus limit the amount of nitrogen that would leach from the site. Although data indicates that alternative application rates of 10 and 20 dry tons per acre of biosolids were applied for demonstration purposes, little data exist regarding these parcels. Therefore, this paper will deal with the main part of the site where 30 dry tons per acre of biosolids was applied. BACKGROUND Enviro-Gro Technologies began April 22, 1992 applying New York City biosolids near Lamar, CO. Typically about 150 wet tons of biosolids were land applied on privately owned dry land winter wheat. The average application rate was of 2.0 dry tons per acre. -
CLASS- IX SUBJECT- GEOGRAPHY CHAPTER- NATURAL REGIONS of the WORLD {2ND TERM} Unit- (1) Tropical Deserts (2) Tropical Monsoo
CLASS- IX SUBJECT- GEOGRAPHY CHAPTER- NATURAL REGIONS OF THE WORLD {2ND TERM} Unit- (1) Tropical Deserts (2) Tropical Monsoon 1. With reference to the Tropical Desert: • The Tropical Deserts are located between 15⁰ - 30⁰ North and South latitudes, on the West coast of the continents. • List of Deserts in each continents - ❖ Sahara Desert, Kalahari and Namib Desert in Africa. ❖ Arabian Desert, Thar Desert in Asia. ❖ Mexican Desert in North America. ❖ Atacama Desert in South America. ❖ The Great Australian Desert in Australia. • Climate Conditions- ❖ It is characterised by off shore dry Trade winds originated from the high pressure belt. ❖ Summer temperatures may range from 30⁰ to 45⁰. ❖ Rainfall is less than 25cm annually. ❖ Relative humidity is extremely low, less than 30% ❖ Hot and dry winds like Mistral, Bora and Sirocco blow over and bring pleasant weather conditions there. • Natural Vegetation- ❖ The natural Vegetation is scanty due to the scarcity of rainfall. ❖ The vegetation is Xerophytic which have special adaptations to the climate like they have- ➢ Long roots to absorb ground water. ➢ Leaves modified into spines to prevent the loss of water. ➢ Fleshy sterns to store water. ❖ The important tree like cacti, acacia and date palms are found there. • Human Adaptations- ❖ The desert inhabitants are primitive tribes like, The Bushmen of the Kalahari Desert and The Bindibu of Australian desert live there. They are nomadic hunters and food gatherers. 2. With reference to the Tropical Monsoon: • It extends between 10⁰ to 25⁰ North and South latitude • It covers- ❖ India, Bangladesh, Pakistan, Sri Lanka, Thailand in Asia ❖ Northern Australia. • Climatic Conditions- ❖ The average summer temperature is about 30⁰c and the winter temperature is about 18⁰c.