Assessment of the Distribution and Activity of Dunes in Iran Based on T Mobility Indices and Ground Data ⁎ H.R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
City Name Altitude
Barometric Summer Winter Pressure Dry Bulb Wet Bulb RH Dry Bulb RH City Name Altitude [In Hg] [°C] [°C] [%] [°C] [%] ABADAN 7 29.91 114 74.71 15.47 37 35.5 ABADAN(1% 99%) 7 29.91 116 81.91 23.98 41 85 ABADAN(1% 37.5%) 7 29.91 115 31.91 22.98 39 35 ABADAN(2.5% 97.5%) 7 29.91 113 30.91 25.64 39 35 ABADAN(5% 97.5%) 7 29.91 110 30.33 29 39 85 ABADEH 6580 23.45 94 60.52 15.69 19 68 ABALI 3035 22.19 79 55.2 25.09 4.5 74 ABIEK 4000 35.84 34 54.01 30.79 12 76 AZAR SHAHR 4560 25.3 91.5 67.51 31.08 10 85 ARAN 3100 26.71 106.5 71.12 18.48 24 81 AZAD SHAHR 423 29.46 96 79.04 48.11 27.5 84 ASTARA -72 29.99 30.5 78.83 60.19 28 88 ASTANEH 6300 23.7 90.5 57.72 14.27 2 87 ASHTIYAN 5870 24.09 90.5 54.07 26.02 15 67 AGHAJARI 30 29.82 115.2 73.31 12.5 34 85 AGHGHALEH -33 29.95 101 82.39 46.15 25 85 AMOL 250 29.65 89 79.71 67.34 29 88 AVAJ 6430 23.59 89.5 62.04 23.65 4.5 72 ABARKOH 4940 24.95 103 66 14.97 17 75 ABHAR 5050 24.84 89 60.12 19.54 8.5 74 AHMADABAD 1800 28.02 95 73.71 37.82 22.5 79 AKHTEEHAN 6560 23.47 91.5 61.72 20.89 5 70 ARAK 5750 24.2 96 62.72 16.94 10 79 ARDEBIL 4300 25.55 85.5 68.47 44.34 -7.5 78 ARDESTAN 3950 25.38 102 67.63 17.82 22 74 ARDAKAN - FARS 7350 22.78 86 66.04 38.6 13 70 ARDEKAN 3400 25.42 103 66.63 14.27 17 73.3 ARDAL 6200 22.79 37 64.91 19.37 13 71.3 ARSANJAN 5000 24.89 98 63.68 15.95 24.5 82 OROOMIEH 4400 25.45 87.5 65 31.86 8 86 AZNA 6130 23.86 39.5 60.2 19.75 -3 85 ESTAHBAN 5670 24.27 97 63.84 17.62 27 74 ASADABAD 5200 24.7 93 63.08 20.41 -1.5 88 ESFRAYAN 3940 25.89 93.5 68.12 28.99 16 76 ESFANDABAD 4870 25.01 100.5 69.27 -
Review Article Biological Method in Stabilization of Sand Dunes Using the Ornamental Plants and Woody Trees: Review Article
Journal of Innovations in Pharmaceuticals and Biological Sciences JIPBS www.jipbs.com ISSN: 2349-2759 Review article Biological method in stabilization of sand dunes using the ornamental plants and woody trees: Review article Metwally S.A.*1, Abouziena H.F.2, Bedour M.H. Abou- Leila3, M.M. Farahat1, E. El. Habba1 1Department of Ornamental Plants and Woody Trees, National Research Centre, Dokki, Cairo, Egypt, 12622. 2Department of Botany, National Research Centre, Dokki, Cairo, Egypt, 12622. 3 Department of Water Relation and Field irrigation, National Research Centre, Dokki, Cairo, Egypt, 12622. Abstract Sand dunes are considered one of the most obstacles that face the horizontal or vertical expansion of agriculture in the desert. Sand dunes are a collection of a loose grouping of sand on the land surface in the form of a pile with top. In the recent years, increasing attention has been taken to cultivate the timber trees and ornamental plants in a narrow range to combat the desertification, sand encroachment and sand dunes. The climate factors are characterized by high temperature, strong winds laden with sand and sandy dunes, lead to soil erosion and remove the fertility soil in the surface layer, and destroying cultivated lands. Therefore, it's important to planting windbreaks and stabilization sand dunes to reduce the damage and loss of all areas of development aspects. The methods used for combating the sand dunes can be classified into two types; biological methods or plant measure and the second are the mechanical methods or engineering measure. We will focus in this article on the biological methods where the trees, shrubs and grasses are planted. -
Sand Dune Systems in Iran - Distribution and Activity
Sand Dune Systems in Iran - Distribution and Activity. Wind Regimes, Spatial and Temporal Variations of the Aeolian Sediment Transport in Sistan Plain (East Iran) Dissertation Thesis Submitted for obtaining the degree of Doctor of Natural Science (Dr. rer. nat.) i to the Fachbereich Geographie Philipps-Universität Marburg by M.Sc. Hamidreza Abbasi Marburg, December 2019 Supervisor: Prof. Dr. Christian Opp Physical Geography Faculty of Geography Phillipps-Universität Marburg ii To my wife and my son (Hamoun) iii A picture of the rock painting in the Golpayegan Mountains, my city in Isfahan province of Iran, it is written in the Sassanid Pahlavi line about 2000 years ago: “Preserve three things; water, fire, and soil” Translated by: Prof. Dr. Rasoul Bashash, Photo: Mohammad Naserifard, winter 2004. Declaration by the Author I declared that this thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. Hamidreza Abbasi iv List of Contents Abstract ................................................................................................................................................. 1 1. General Introduction ........................................................................................................................ 7 1.1 Introduction and justification ........................................................................................................ -
Boundary Condition Controls on the High-Sand-Flux Regions of Mars Matthew Chojnacki1, Maria E
https://doi.org/10.1130/G45793.1 Manuscript received 8 November 2018 Revised manuscript received 18 January 2019 Manuscript accepted 20 February 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 11 March 2019 Boundary condition controls on the high-sand-flux regions of Mars Matthew Chojnacki1, Maria E. Banks2, Lori K. Fenton3, and Anna C. Urso1 1Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA 2National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 3Carl Sagan Center at the SETI (Search for Extra-Terrestrial Intelligence) Institute, Mountain View, California 94043, USA ABSTRACT DATA SETS AND METHODS Wind has been an enduring geologic agent throughout the history of Mars, but it is often To assess bed-form morphology and dynamics, unclear where and why sediment is mobile in the current epoch. We investigated whether we analyzed images acquired by the High Resolu- eolian bed-form (dune and ripple) transport rates are depressed or enhanced in some areas tion Imaging Science Experiment (HiRISE) cam- by local or regional boundary conditions (e.g., topography, sand supply/availability). Bed- era on the Mars Reconnaissance Orbiter (0.25–0.5 form heights, migration rates, and sand fluxes all span two to three orders of magnitude m/pixel; McEwen et al., 2007; see Table DR1 in across Mars, but we found that areas with the highest sand fluxes are concentrated in three the GSA Data Repository1). Digi tal terrain mod- regions: Syrtis Major, Hellespontus Montes, and the north polar erg. -
Komandorsky Zapovednik: Strengthening Community Reserve Relations on the Commander Islands
No. 36 Summer 2004 Special issue: Russia’s Marine Protected Areas PROMOTING BIODIVERSITY CONSERVATION IN RUSSIA AND THROUGHOUT NORTHERN EURASIA CONTENTS CONTENTS Voice from the Wild (A letter from the editors)......................................1 Komandorsky Zapovednik: Strengthening Community Reserve Relations on the Commander Islands......................................24 AN INTRODUCTION TO MARINE Lazovsky Zapovednik: PROTECTED AREAS Working to Create a Marine Buffer Zone...................................................28 MPAs: An Important Tool in Marine Conservation......…………………...2 Kurshskaya Kosa National Park: Tides of Change: Tracing the Development Preserving World Heritage on the Baltic Sea ..........................................30 of Marine Protected Areas in Russia .................................................................4 Dalnevostochny Morskoi Zapovednik: How Effective Are Our MPAs? Looking for Answers An Important Role to Play.........................................................................................6 with Russia’s First Marine Protected Area..................................................32 The Challenges that Lie Ahead.....................………………………………………………8 Russia’s Marine Biosphere Reserves......………………………………………………10 MPA Workshop Offers Opportunities for Dialogue..........................13 THE FUTURE Plans for the Future: Developing a Network of Marine Protected Areas .....................................................……....………………...35 CASE STUDIES An Introduction .............................................................................……....………………...14 -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
Iran Map, the Middle East
THE REGIONAL GUIDE AND MAP OF Bandar-e Anzali Astaneh Lahijan Rasht Rud Sar GILAN Ramsar Manjil Tonekabon ChalusNow Shahr Qareh Tekan Amol Marshun Kojur Kuhin Qazvin MAZANDARAN Gach Sur Baladeh QAZVIN Ziaran Kahak IranHashtjerd Takestan Tairsh Karaj Tehran Nehavand Damavand Eslamshahr ReyEyvanki Robatkarim Zarand Varamin Saveh Manzariyeh Tafresh QOM Qom Weller 09103 WELLER CARTOGRAPHIC SERVICES LTD. is pleased to continue its efforts to provide map information on the internet for free but we are asking you for your support if you have the financial means to do so? With the introduction of Apple's iPhone and iPad using GoodReader you can now make our pdf maps mobile. If enough users can help us, we can update our existing material and create new maps. We have joined PayPal to provide the means for you to make a donation for these maps. We are asking for $5.00 per map used but would be happy with any support. Weller Cartographic is adding this page to all our map products. If you want this file without this request please return to our catalogue and use the html page to purchase the file for the amount requested. click here to return to the html page If you want a file that is print enabled return to the html page and purchase the file for the amount requested. click here to return to the html page We can sell you Adobe Illustrator files as well, on a map by map basis please contact us for details. click here to reach [email protected] Weller Cartographic Services Ltd. -
Sand Dune Stabilization and Reclamation in Southeastern Colorado
Sand Dune Stabilization And Reclamation In Southeastern Colorado Mike Scharp Parker Ag Services, LLC 4570 Kashmire Drive Colorado Springs, CO 80920 ABSTRACT This paper will discuss how and why Enviro-Gro Technologies (EGT) developed a large- scale sand dune reclamation program using New York City biosolids. The biosolids were applied during the winter of 1992 and 1993. The application site is located about 25 miles east of Lamar, CO and is comprised of 258 acres. Reclamation of the site resulted in its stabilization because vegitation was established on the site thus eliminating the encroachment into other areas. Based upon experience and negotiation with the Colorado Department of Public Health and Environment (CDPH&E) and the United State Environmental Protection Agency (USEPA) an application rate of 30 dry tons per acre was permitted. In addition, 10 dry tons per acre of woodchips were co-applied. The intent was that the excess carbon would bind some of nitrogen on the site and thus limit the amount of nitrogen that would leach from the site. Although data indicates that alternative application rates of 10 and 20 dry tons per acre of biosolids were applied for demonstration purposes, little data exist regarding these parcels. Therefore, this paper will deal with the main part of the site where 30 dry tons per acre of biosolids was applied. BACKGROUND Enviro-Gro Technologies began April 22, 1992 applying New York City biosolids near Lamar, CO. Typically about 150 wet tons of biosolids were land applied on privately owned dry land winter wheat. The average application rate was of 2.0 dry tons per acre. -
Sustainable Urban and Architecture Future of Iranian Islamic Cities (Strategic and Challenges) the Case Sample of Zahedan City
J. Appl. Environ. Biol. Sci. , 4(12S )329 -338 , 2015 ISSN: 2090-4274 Journal of Applied Environmental © 2015, TextRoad Publication and Biological Sciences www.textroad.com Sustainable Urban and Architecture Future of Iranian Islamic Cities (Strategic and Challenges) The Case Sample of Zahedan City Zeynab Karkeh Abadi (PHD), Reza Mohammadi, Sasan Masoudi 1,2,3, Department of Geography, College of human science, Semnan Branch, Islamic Azad University, Semnan, Iran Received: November 21, 2014 Accepted: January 25, 2015 ABSTRACT Although the future is uncertain, but the definitions all in the fields of concepts "forecast" and "future" or providence whatever the look to tomorrow has in common points. But we can guess that it's the broad and full orientations and deal with by reasonable to it. Futurism not only profit all the tools of the future it is also seeking to optimize present the tasks and actions. Relationship of urban planning (urban) with sustainable urban architecture has directly relationship and is of a type that cannot be led distribute or in order to defined separate form for each them. the study was carried out in the past few decades, particularly since 1304 solar pahlavi era began with the arrival of modernity to country planning and architecture for large and medium-sized cities were palpably affected of it that with the study found that the documents appear on the facts between these two cities were the dominant instability rather than stability, therefore, migration and subsequent creation of uncontrolled urbanization , urban planning retardation and has suffered from unbalanced , so in this paper, a sample of case study Putting Zahedan that the so-called is mega-cities this issue will be discussed. -
Scf Pan Sahara Wildlife Survey
SCF PAN SAHARA WILDLIFE SURVEY PSWS Technical Report 12 SUMMARY OF RESULTS AND ACHIEVEMENTS OF THE PILOT PHASE OF THE PAN SAHARA WILDLIFE SURVEY 2009-2012 November 2012 Dr Tim Wacher & Mr John Newby REPORT TITLE Wacher, T. & Newby, J. 2012. Summary of results and achievements of the Pilot Phase of the Pan Sahara Wildlife Survey 2009-2012. SCF PSWS Technical Report 12. Sahara Conservation Fund. ii + 26 pp. + Annexes. AUTHORS Dr Tim Wacher (SCF/Pan Sahara Wildlife Survey & Zoological Society of London) Mr John Newby (Sahara Conservation Fund) COVER PICTURE New-born dorcas gazelle in the Ouadi Rimé-Ouadi Achim Game Reserve, Chad. Photo credit: Tim Wacher/ZSL. SPONSORS AND PARTNERS Funding and support for the work described in this report was provided by: • His Highness Sheikh Mohammed bin Zayed Al Nahyan, Crown Prince of Abu Dhabi • Emirates Center for Wildlife Propagation (ECWP) • International Fund for Houbara Conservation (IFHC) • Sahara Conservation Fund (SCF) • Zoological Society of London (ZSL) • Ministère de l’Environnement et de la Lutte Contre la Désertification (Niger) • Ministère de l’Environnement et des Ressources Halieutiques (Chad) • Direction de la Chasse, Faune et Aires Protégées (Niger) • Direction des Parcs Nationaux, Réserves de Faune et de la Chasse (Chad) • Direction Générale des Forêts (Tunis) • Projet Antilopes Sahélo-Sahariennes (Niger) ACKNOWLEDGEMENTS The Sahara Conservation Fund sincerely thanks HH Sheikh Mohamed bin Zayed Al Nahyan, Crown Prince of Abu Dhabi, for his interest and generosity in funding the Pan Sahara Wildlife Survey through the Emirates Centre for Wildlife Propagation (ECWP) and the International Fund for Houbara Conservation (IFHC). This project is carried out in association with the Zoological Society of London (ZSL). -
Slender-Horned Gazelle Gazella Leptoceros Conservation Strategy 2020-2029
Slender-horned Gazelle Gazella leptoceros Conservation Strategy 2020-2029 Slender-horned Gazelle (Gazella leptoceros) Slender-horned Gazelle (:Conservation Strategy 2020-2029 Gazella leptoceros ) :Conservation Strategy 2020-2029 Conservation Strategy for the Slender-horned Gazelle Conservation Strategy for the Slender-horned Conservation Strategy for the Slender-horned The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of any participating organisation concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organisations. Compiled and edited by David Mallon, Violeta Barrios and Helen Senn Contributors Teresa Abaígar, Abdelkader Benkheira, Roseline Beudels-Jamar, Koen De Smet, Husam Elalqamy, Adam Eyres, Amina Fellous-Djardini, Héla Guidara-Salman, Sander Hofman, Abdelkader Jebali, Ilham Kabouya-Loucif, Maher Mahjoub, Renata Molcanova, Catherine Numa, Marie Petretto, Brigid Randle, Tim Wacher Published by IUCN SSC Antelope Specialist Group and Royal Zoological Society of Scotland, Edinburgh, United Kingdom Copyright ©2020 IUCN SSC Antelope Specialist Group Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Recommended citation IUCN SSC ASG and RZSS. 2020. Slender-horned Gazelle (Gazella leptoceros): Conservation strategy 2020-2029. IUCN SSC Antelope Specialist Group and Royal Zoological Society of Scotland. -
The Environmental History and Present Condition of Saudi Arabia's
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY The environmental history and present condition of Saudi Arabia's northern sand seas by J. W. Whitney I/, D. J. Faulkender, and Meyer Rubin 2/ Open-File Report 83- 7V Prepared for Ministry of Petroleum and Mineral Resources, Deputy Ministry for Mineral Resources Jiddah, Kingdom of Saudi Arabia This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature I/ U.S. Geological Survey, Denver, CO 80225 2/ U.S. Geological Survey, Radiocarbon Lab., Reston, VA 22092 1983 CONTENTS Page ABSTRACT................................................ 1 INTRODUCTION............................................ 2 PHYSICAL SETTING AND SEDIMENT SOURCES OF THE SAND SEAS.. 4 AGE AND ORIGIN OF THE SAND SEAS......................... 8 QUATERNARY EOLIAN AND LACUSTRINE DEPOSITS............... 12 Dune systems........................................ 12 Active versus stable dunes.......................... 15 Pleistocene and Holocene lake deposits.............. 18 Diatomite........................................... 24 PRESENT CONDITION OF THE SAND SEAS...................... 25 Precipitation and temperature....................... 25 Vegetation.......................................... 27 Modern and paleo-wind systems....................... 29 ENVIRONMENTAL HISTORY OF THE SAND SEAS.................. 32 DATA STORAGE............................................ 35 REFERENCES CITED........................................ 36 ILLUSTRATIONS