UNIVERSITY of CALIFORNIA Los Angeles Southern California

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA Los Angeles Southern California UNIVERSITY OF CALIFORNIA Los Angeles Southern California Climate and Vegetation Over the Past 125,000 Years from Lake Sequences in the San Bernardino Mountains A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geography by Katherine Colby Glover 2016 © Copyright by Katherine Colby Glover 2016 ABSTRACT OF THE DISSERTATION Southern California Climate and Vegetation Over the Past 125,000 Years from Lake Sequences in the San Bernardino Mountains by Katherine Colby Glover Doctor of Philosophy in Geography University of California, Los Angeles, 2016 Professor Glen Michael MacDonald, Chair Long sediment records from offshore and terrestrial basins in California show a history of vegetation and climatic change since the last interglacial (130,000 years BP). Vegetation sensitive to temperature and hydroclimatic change tended to be basin-specific, though the expansion of shrubs and herbs universally signalled arid conditions, and landscpe conversion to steppe. Multi-proxy analyses were conducted on two cores from the Big Bear Valley in the San Bernardino Mountains to reconstruct a 125,000-year history for alpine southern California, at the transition between mediterranean alpine forest and Mojave desert. Age control was based upon radiocarbon and luminescence dating. Loss-on-ignition, magnetic susceptibility, grain size, x-ray fluorescence, pollen, biogenic silica, and charcoal analyses showed that the paleoclimate of the San Bernardino Mountains was highly subject to globally pervasive forcing mechanisms that register in northern hemispheric oceans. Primary productivity in Baldwin Lake during most of its ii history showed a strong correlation to historic fluctuations in local summer solar radiation values. Rapid organic perturbations in the Baldwin Lake core were coeval with Dansgaard- Oeschger (D-O) events from the North Atlantic, which were evident in records from the Santa Barbara Basin. The predominant vegetation signal at Baldwin Lake was one of temperate conifer forest expansion during moist conditions, and contraction during dry conditions. This expansion and contraction was paced with summer insolation fluctuations during Marine Isotope Stage 5 (110,000 – 71,000 years BP), before a regime change towards more rapid, shorter-lived hydroclimate extremes. Wildfire is an important agent of landscape change throughout the Valley’s history, with two hiatuses during cold and moist conditions from 25,000 – 14,000 years BP, and arid conditions 7,000 – 3,000 years BP. Taken together, this multi-proxy dataset suggests that paleoclimatic changes in alpine southern California have been highly sensitive to three climate drivers: 1) shifts in local summer insolation, 2) rapid warming in the North Atlantic, and 3) changes in the strength of the California Current. The record also showed a wide range of possible moisture states in southern California’s past that vary from present conditions, including multi-millennial states of long-term aridity and pre-glacial deep lake conditions. iii The dissertation of Katherine Colby Glover is approved. Thomas Welch Gillespie Matthew E. Kirby Marilyn Raphael Glen Michael MacDonald, Committee Chair University of California, Los Angeles 2016 iv For my family — John, Mom, Dad, Andrew, Olivia, and Athena. v Table of Contents 1. Introduction . 1 2. Palynology in California: Vegetation and Climate Change Patterns over the past 130 kyr. 7 2.1 Abstract . 7 2.2 Introduction . 8 2.3 Present-Day Climate Dynamics and Vegetation . 9 2.3.1 Ocean-Atmosphere Dynamics. 9 2.3.2 Ecoregions and their dominant vegetation . 11 2.3.2.1 Mediterranean Ecoregion . 14 2.3.2.2 Temperate Desert Ecoregion . 16 2.3.2.3 Tropical-Subtropical Arid Southwest. 17 2.4 The Nature of the Pollen Record . 18 2.4.1 Pollen as a Proxy: Preservation Dynamics and Sources of Bias . 18 2.4.2 Current Data Quality and Availability . 21 2.5 Patterns of Change . 22 2.5.1 The Record from the Last Interglacial (MIS 5e, 130 – 120 ka). 22 2.5.2 The Record from the Last Glacial Maximum (26 – 19 ka) . 27 2.5.3 The Holocene (10 – 0 ka) . 28 2.6 Summary . 31 2.6.1 Review Questions . 31 2.6.2 Best Practices for Palynological Data . 33 3. Insolation and North Atlantic Climate Forcing in alpine S. California since 125 ka . 34 3.1 Abstract . 34 3.2 Introduction . 35 3.3 Setting . 36 3.4 Materials and Methods . 39 3.4.1 Core recovery and Initial Core Description (ICD) . 39 3.4.2 Chronologic control . 39 3.4.3 Sedimentary Analyses . 40 3.4.4 Biogenic Silica (BSi) . 44 3.5 Results and Proxy Interpretation . 44 3.5.1 Age Model. 44 3.5.2 Sedimentology and Summary of Proxy Data . 44 3.5.3 Relationships and Environmental Interpretation from proxy data . 45 3.6 Discussion . 52 3.6.1 Baldwin Lake’s Environmental Change from 125 – 10 ka . 52 3.6.2 Important Climatic Drivers in California . 54 3.6.2.1 Orbital-Scale Radiative Forcing . 54 3.6.2.2 Millennial-Scale Forcing during MIS 3. 56 vi 3.6.3 Pacific- and North Atlantic-induced events . 59 3.7 Conclusions . 66 4. Terrestrial Organics, Vegetation, and Wildfire in alpine Southern California 120 – 10 ka . 68 4.1 Abstract . 68 4.2 Introduction . 69 4.3 Background . 70 4.3.1 Setting and Biogeographic Importance . 70 4.3.2 Prior Work. 71 4.4 Materials and Methods . 73 4.4.1 Stable Isotope Analysis . 73 4.4.2 Palynology. 73 4.4.3 Charcoal . 74 4.5 Results . 77 4.5.1 Stable Isotopes. 77 4.5.2 Fossil Pollen . 77 4.5.3 Charcoal . 80 4.6 Discussion . 84 4.6.1 Does isotopic data reveal organic matter source? . 84 4.6.2 Climate change from pollen data . 85 4.6.3 Linkages between wildfire, vegetation, and climate drivers . 88 4.6.4 The Role of the Pacific . 89 4.7 Conclusions . 91 5. Holocene Vegetation, Wildfire, and Hydroclimatic History from Lower Bear Lake . 95 5.1 Abstract . 95 5.2 Introduction . 96 5.3 Background . 97 5.4 Materials and Methods . 98 5.4.1 Stable Isotope Analysis . 98 5.4.2 Charcoal Analysis . 100 5.4.3 Mollusk identification, and geochemical analysis . 101 5.4.4 Fossil Pollen Data . 102 5.5 Results . 102 5.5.1 Bayesian Age Modeling. 102 5.5.2 Charcoal . 104 5.5.3 Mollusk Identification, Stable Isotope, and Trace Element Data . 104 5.5.4 Fossil Pollen . 107 5.6 Discussion . 107 5.7 Conclusions . 114 6. Dissertation Conclusions . 117 7. References . 120 vii List of Figures and Tables Figure 1.1. Location of paleoclimatic records mentioned in Ch 1 . 4 Figure 2.1. West Coast ecoregions and Pacific dynamics . 10 Figure 2.2. Palynological sites in California that date to at least 2 ka . 13 Table 2.1. Modern climate, vegetation characteristics in California’s three ecoregions . 15 Table 2.2. Palynological sites in California dating to at least 2 ka, by climate events . 22 Figure 2.3. Patterns of ecosystem change since the last interglacial at key sites . 25 Table 2.3. Summary of California’s palynological response to climate change during MIS 5e and LGM . 26 Table 2.4. Summary of California’s palynological response to Holocene climate change . 29 Figure 3.1 Location map of lacustrine records in Big Bear Valley . 38 Table 3.1 Baldwin Lake core (BDL12) chronologic control . 41 Figure 3.2 Bacon 2.2 age-depth model for BDL12 . 42 Figure 3.3 Sedimentological data of BDL12 by depth . 46 Table 3.2 Multi-proxy results summary, with paleoenvironmental conditions and events . 47 Figure 3.4 BDL12 multi-proxy data plotted by age . 50 Figure 3.5 Dansgaard-Oeschger events in the North Atlantic, California margin, and at terrestrial Southern California sites . 57 Figure 3.6 Paleoclimatic records throughout the Great Basin, California, U.S. Southwest 60 Figure 3.7 California, Great Basin, and U.S. Southwest response to D-O events. 62 Figure 4.1 Schematic of charcoal deposition, and BDL12 sampling strategy . 76 Figure 4.2 Bulk organic matter, biogenic silica, and molar C:N data from BDL12 . 78 Figure 4.3 Pollen diagram of terrestrial taxa with cluster analysis and pollen zonation . 79 Table 4.1 Key changes within BDL12 pollen zones . 81 Figure 4.4 Pollen diagram of aquatic, tracer, and pollen group sums . 82 Figure 4.5 BDL12 charcoal and pollen summer, with potential drivers . 83 Figure 4.6 Comparison of Lake Elsinore and BDL12 pollen data 35 – 10 ka . 86 Figure 4.7 Comparison of BDL12 conifers to global and California marine records . 90.
Recommended publications
  • Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, B, *, Hongshan Wangc, David L
    ISSN 0031-0301, Paleontological Journal, 2019, Vol. 53, No. 11, pp. 1216–1235. © Pleiades Publishing, Ltd., 2019. Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, b, *, Hongshan Wangc, David L. Dilchera, b, d, E. Bugdaevae, Xiao Tana, b, d, Tao Lia, b, Yu-Ling Naa, b, and Chun-Lin Suna, b, ** aKey Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Changchun, Jilin, 130026 China bResearch Center of Palaeontology and Stratigraphy, Jilin University, Changchun, Jilin, 130026 China cFlorida Museum of Natural History, University of Florida, Gainesville, Florida, 32611 USA dDepartment of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, 47405 USA eFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia *e-mail: [email protected] **e-mail: [email protected] Received April 3, 2018; revised November 29, 2018; accepted December 28, 2018 Abstract—The Ordos Basin is one of the largest continental sedimentary basins and it represents one major and famous production area of coal, oil and gas resources in China. The Jurassic non-marine deposits are well developed and cropped out in the basin. The Middle Jurassic Yan’an Formation is rich in coal and con- tains diverse plant remains. We recognize 40 species in 25 genera belonging to mosses, horsetails, ferns, cycadophytes, ginkgoaleans, czekanowskialeans and conifers. This flora is attributed to the early Middle Jurassic Epoch, possibly the Aalenian-Bajocian. The climate of the Ordos Basin during the Middle Jurassic was warm and humid with seasonal temperature and precipitation fluctuations.
    [Show full text]
  • Supplement of the Global Forest Above-Ground Biomass Pool for 2010 Estimated from High-Resolution Satellite Observations
    Supplement of Earth Syst. Sci. Data, 13, 3927–3950, 2021 https://doi.org/10.5194/essd-13-3927-2021-supplement © Author(s) 2021. CC BY 4.0 License. Supplement of The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations Maurizio Santoro et al. Correspondence to: Maurizio Santoro ([email protected]) The copyright of individual parts of the supplement might differ from the article licence. 1 Supplement of manuscript 2 The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite 3 observations 4 Maurizio Santoro et al. 5 S.1 Auxiliary datasets 6 7 The European Space Agency (ESA) Climate Change Initiative Land Cover (CCI-LC) dataset consists of 8 annual (1992-2018) maps classifying the world’s land cover into 22 classes (Table S6). The overall 9 accuracy of the 2010 land cover dataset was 76% (Defourny et al., 2014), with the most relevant 10 commission and omission errors in mixed classes or in regions of strongly heterogeneous land cover. The 11 land cover maps were provided in equiangular projection with a pixel size of 0.00278888° in both latitude 12 and longitude. In this study, we used the land cover map of 2010, version 2.07. The dataset was re- 13 projected to the map geometry of our AGB dataset. 14 15 The Global Ecological Zones (GEZ) dataset produced by the Food and Agriculture Organization (FAO, 16 2001) divides the land surface into 20 zones (Figure S2, Table S2) with “broad yet relatively 17 homogeneous natural vegetation formations, similar (but not necessarily identical) in physiognomy” 18 (FAO, 2001).
    [Show full text]
  • Tectonic-Driven Climate Change and the Diversification of Angiosperms
    Tectonic-driven climate change and the diversification of angiosperms Anne-Claire Chaboureaua,1, Pierre Sepulchrea, Yannick Donnadieua, and Alain Francb aLaboratoire des Sciences du Climat et de l’Environnement, Unité Mixte, Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique– Université de Versailles Saint-Quentin-en-Yvelines, 91191 Gif-sur-Yvette, France; and bUnité Mixte de Recherche Biodiversité, Gènes et Communautés, Institut National de la Recherche Agronomique, 33612 Cestas, France Edited by Robert E. Dickinson, The University of Texas at Austin, Austin, TX, and approved August 1, 2014 (received for review December 23, 2013) In 1879, Charles Darwin characterized the sudden and unexplained covers the large uncertainties of pCO2 estimates for these rise of angiosperms during the Cretaceous as an “abominable mys- geological periods. tery.” The diversification of this clade marked the beginning of To validate our paleoclimatic experiments, the geographical a rapid transition among Mesozoic ecosystems and floras formerly distribution of climate-sensitive sediments such as evaporites (dry dominated by ferns, conifers, and cycads. Although the role of en- or seasonally dry climate indicators) and coals (humid climate vironmental factors has been suggested [Coiffard C, Gómez B (2012) indicators) have been compared with our maps of simulated biomes Geol Acta 10(2):181–188], Cretaceous global climate change has for each time period (Fig. S1). Overall, for every time period, the barely been considered as a contributor to angiosperm radiation, spatial fit between coals and humid biomes is higher for 1,120-ppm and focus was put on biotic factors to explain this transition. Here and 2,240-ppm pCO2 scenarios than for 560 ppm (Table S1 and we use a fully coupled climate model driven by Mesozoic paleogeo- Fig.
    [Show full text]
  • The Archaeology and Paleoclimate of the Mud Lake Basin, Nye County, Nevada
    University of Nevada, Reno Changing Landscapes During the Terminal Pleistocene/Early Holocene: The Archaeology and Paleoclimate of the Mud Lake Basin, Nye County, Nevada A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Arts in Anthropology By Lindsay A. Fenner Dr. Geoffrey M. Smith/Thesis Advisor May, 2011 © by Lindsay A. Fenner 2011 All Rights Reserved THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by LINDSAY A. FENNER entitled Changing Landscapes During The Terminal Pleistocene/Early Holocene: The Archaeology And Paleoclimate Of The Mud Lake Basin, Nye County, Nevada be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS Geoffrey M. Smith, Ph.D., Advisor Gary Haynes, Ph.D., Committee Member Kenneth D. Adams, Ph.D., Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School May, 2011 i ABSTRACT Archaeological investigation along Pleistocene lakeshores is a longstanding and common approach to prehistoric research in the Great Basin. Continuing in this tradition, this thesis considers the archaeological remains present from pluvial Mud Lake, Nye County, Nevada coupled with an examination of paleoclimatic conditions to assess land-use patters during the terminal Pleistocene/early Holocene. Temporally diagnostic lithic assemblages from 44 localities in the Mud Lake basin provide the framework for which environmental proxy records are considered. Overwhelmingly occupied by Prearchaic groups, comprising 76.6% of all diagnostic artifacts present, Mud Lake was intensively utilized right up to its desiccation after the Younger Dryas, estimated at 9,000 radiocarbon years before present. Intermittently occupied through the remainder of the Holocene, different land-use strategies were employed as a result of shifting subsistence resources reacting to an ever changing environment.
    [Show full text]
  • The History of Valentine Camp by Mary Farrell
    History of Valentine Camp Mary M. Farrell Trans-Sierran Archaeological Research P.O. Box 840 Lone Pine, CA 93545 November 7, 2015 Prepared for Valentine Eastern Sierra Reserve University of California, Santa Barbara, Natural Reserve System Sierra Nevada Aquatic Research Laboratory 1016 Mt. Morrison Road Mammoth Lakes, CA 93546 Abstract Located in Mammoth Lakes, California, Valentine Camp and the nearby Sierra Nevada Aquatic Research Laboratory form the Valentine Eastern Sierra Reserve, a field research station in the University of California's Natural Reserve System. The University’s tenure at Valentine Camp began over 40 years ago, but the area’s history goes back thousands of years. Before the arrival of Euroamericans in the nineteenth century, the region was home to Paiutes and other Native American tribes. Land just east of Valentine Camp was surveyed under contract with the United States government in 1856, and mineral deposits in the mountains just west of Valentine Camp brought hundreds of miners to the vicinity in the last decades of the nineteenth century. Even as mining in the region waned, grazing increased. The land that became Valentine Camp was patented in 1897 by Thomas Williams, a rancher and capitalist who lived in Owens Valley. It was Williams’s son, also Thomas, who sold the 160 acres to Valentine Camp’s founders. Those founders were very wealthy, very influential men in southern California who could have, and did, vacation wherever they wanted. Anyone familiar with the natural beauty of Mammoth Lakes would not be surprised that they chose to spend time at Valentine Camp. Valentine Camp was donated to the University of California Natural Land and Water Reserve System (now the Natural Reserve System) in 1972 to ensure the land’s continued protection.
    [Show full text]
  • San Bernardino County, California
    DEPARTMENT OF THE INTERIOR TO ACCOMPAN~ MAP MF-1493-A UNITED STATES GEOLOGICAL SURVEY IIINE1lAL RESOURCE POTBM"nAL OP THE BIGHORN MOUNTAINS WU.DERNJmS STUDY AREA (CDCA-217), SAN BERNARDINO COUNTY, CALIFORNIA SUMMARY REPORT By Miathan C. Matti, Brett P. Cox, Ecblrdo A. Rodriguez, CUrtis M. Obi, Robert E. Powell, Margaret E. Hinkle, and Andrew Griscom U.S. Geological Survey and Charles Sabine and Gary J. Cwick U.S. Bureau of Mines STUDIES RELATED TO WU.DERNESS Bureau of Land Management Wilderness Study Areas The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S. Geological Survey and the U.S. Bureau of Mines to conduct mineral surveys in certain areas to determine their mineral resource potential. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results of a mineral survey of the Bighorn Mountains Wilderness Study Area (CDCA-217), California Desert Conservation Area, San Bernardino County, California. SUMMARY Geological, geochemical, and geophysical evidence, together with a review of historical mining and prospecting activities, suggests that most of the Bighorn Mountains Wilderness Study Area has low potential for the discovery of all types of mineral and energy resources-including precious and base metals, building stone and aggregate, fossil fuels, radioactive-mineral resources, . and geothermal resources. Low-grade mineralization has been documented in one small area near Rattlesnake Canyon, and this area has low to moderate potential for future small-scale exploration and development of precious and base metals. Thorium and uranium enrichment have been documented in two small areas in the eastern part of the wilderness study area; these two areas have low to moderate potential for future small-scale exploration and development of radioactive-mineral resources.
    [Show full text]
  • Chapter 9 Geology Soils and Seismicity
    Chapter 9—Geology, Soils, and Seismicity 9.1 Introduction This chapter describes the existing conditions (environmental and regulatory) and assesses the potential of the 2016 Metropolitan Transportation Plan/Sustainable Communities Strategy (proposed MTP/SCS) to affect the regional geology, seismicity, soils, and mineral resources within the MTP/SCS plan area. This chapter evaluates potential impacts to geology, seismicity, soils, and mineral resources that may result from implementation of the proposed MTP/SCS. Where necessary and feasible, mitigation measures are identified to reduce these impacts. The information presented in this chapter is based on a review of existing and available information and is regional in scope. Data provided in this section is programmatic. It is appropriate for general policy planning and tiering of subsequent environmental documents; however site-specific evaluations may be necessary to determine future project-level environmental effects and appropriate mitigation. No comments regarding geology, soils, and seismicity were received during circulation of the Notice of Preparation (NOP). Appendix PD-1 includes all NOP comments received. 9.2 Environmental Setting 9.2.1 Geology and Topography This section addresses the geology and topography of the proposed MTP/SCS plan area. Figure 9.1 provides a geologic map of the SACOG region. The proposed MTP/SCS plan area includes El Dorado, Placer, Sacramento, Sutter, Yolo, and Yuba counties, which are located within the Great Valley geomorphic province and the Sierra Nevada geomorphic province. Both geomorphic provinces are discussed below. REGIONAL PHYSIOGRAPHIC SETTING OF THE MTP/SCS PLAN AREA The Great Valley of California, also called the Central Valley of California, is a nearly flat alluvial plain extending from the Tehachapi Mountains at the south to the Klamath Mountains at the north, and from the Sierra Nevada on the east to the Coast Ranges on the west.
    [Show full text]
  • References and Appendices
    References Ainley, D.G., S.G. Allen, and L.B. Spear. 1995. Off- Arnold, R.A. 1983. Ecological studies on six endan- shore occurrence patterns of marbled murrelets gered butterflies (Lepidoptera: Lycaenidae): in central California. In: C.J. Ralph, G.L. Hunt island biogeography, patch dynamics, and the Jr., M.G. Raphael, and J.F. Piatt, technical edi- design of habitat preserves. University of Cali- tors. Ecology and Conservation of the Marbled fornia Publications in Entomology 99: 1–161. Murrelet. USDA Forest Service, General Techni- Atwood, J.L. 1993. California gnatcatchers and coastal cal Report PSW-152; 361–369. sage scrub: the biological basis for endangered Allen, C.R., R.S. Lutz, S. Demairais. 1995. Red im- species listing. In: J.E. Keeley, editor. Interface ported fire ant impacts on Northern Bobwhite between ecology and land development in Cali- populations. Ecological Applications 5: 632-638. fornia. Southern California Academy of Sciences, Allen, E.B., P.E. Padgett, A. Bytnerowicz, and R.A. Los Angeles; 149–169. Minnich. 1999. Nitrogen deposition effects on Atwood, J.L., P. Bloom, D. Murphy, R. Fisher, T. Scott, coastal sage vegetation of southern California. In T. Smith, R. Wills, P. Zedler. 1996. Principles of A. Bytnerowicz, M.J. Arbaugh, and S. Schilling, reserve design and species conservation for the tech. coords. Proceedings of the international sym- southern Orange County NCCP (Draft of Oc- posium on air pollution and climate change effects tober 21, 1996). Unpublished manuscript. on forest ecosystems, February 5–9, 1996, River- Austin, M. 1903. The Land of Little Rain. University side, CA.
    [Show full text]
  • 150 Geologic Facts About California
    California Geological Survey - 150th Anniversary 150 Geologic Facts about California California’s geology is varied and complex. The high mountains and broad valleys we see today were created over long periods of time by geologic processes such as fault movement, volcanism, sea level change, erosion and sedimentation. Below are 150 facts about the geology of California and the California Geological Survey (CGS). General Geology and Landforms 1 California has more than 800 different geologic units that provide a variety of rock types, mineral resources, geologic structures and spectacular scenery. 2 Both the highest and lowest elevations in the 48 contiguous states are in California, only 80 miles apart. The tallest mountain peak is Mt. Whitney at 14,496 feet; the lowest elevation in California and North America is in Death Valley at 282 feet below sea level. 3 California’s state mineral is gold. The Gold Rush of 1849 caused an influx of settlers and led to California becoming the 31st state in 1850. 4 California’s state rock is serpentine. It is apple-green to black in color and is often mottled with light and dark colors, similar to a snake. It is a metamorphic rock typically derived from iron- and magnesium-rich igneous rocks from the Earth’s mantle (the layer below the Earth’s crust). It is sometimes associated with fault zones and often has a greasy or silky luster and a soapy feel. 5 California’s state fossil is the saber-toothed cat. In California, the most abundant fossils of the saber-toothed cat are found at the La Brea Tar Pits in Los Angeles.
    [Show full text]
  • Southern California Edison
    PROPOSED GENERAL RETAIL STORE PROJECT DRAFT GENERAL BIOLOGICAL RESOURCES ASSESSMENT LANDERS, SAN BERNARDINO COUNTY, CALIFORNIA USGS 7.5’ YUCCA VALLEY NORTH QUADRANGLE TOWNSHIP 2 NORTH, RANGE 5 EAST, SECTION 27 APN 0629-051-62 Prepared for Owner/Applicant: Dynamic Development Company, LLC 1725 21st Street Santa Monica, CA 90404 Office: (310) 315-5411 x 119 Contact: Jon Tanury Project Manager Prepared by: AMEC Environment & Infrastructure, Inc. 3120 Chicago Avenue, Suite 110 Riverside, California 92507 Office: (951) 369-8060 Principal Investigator: John F. Green, Biologist Biologists Who Performed Fieldwork On-Site: John F. Green February 2013 AMEC Project No. 1355400526 TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY ................................................................................................ 1 2.0 INTRODUCTION ............................................................................................................ 1 2.1 Project and Property Description ......................................................................... 1 3.0 METHODS ...................................................................................................................... 2 3.1 Literature Review and Records Search ............................................................... 2 3.2 General Biological Resources Assessment ......................................................... 2 4.0 RESULTS ....................................................................................................................... 3 4.1 Literature Review and
    [Show full text]
  • III. General Description of Environmental Setting Acres, Or Approximately 19 Percent of the City’S Area
    III. GENERAL DESCRIPTION OF ENVIRONMENTAL SETTING A. Overview of Environmental Setting Section 15130 of the State CEQA Guidelines requires an EIR to include a discussion of the cumulative impacts of a proposed project when the incremental effects of a project are cumulatively considerable. Cumulative impacts are defined as impacts that result from the combination of the proposed project evaluated in the EIR combined with other projects causing related impacts. Cumulatively considerable means that the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects. Section 15125 (c) of the State CEQA Guidelines requires an EIR to include a discussion on the regional setting that the project site is located within. Detailed environmental setting descriptions are contained in each respective section, as presented in Chapter IV of this Draft EIR. B. Project Location The City of Ontario (City) is in the southwestern corner of San Bernardino County and is surrounded by the Cities of Chino and Montclair, and unincorporated areas of San Bernardino County to the west; the Cities of Upland and Rancho Cucamonga to the north; the City of Fontana and unincorporated land in San Bernardino County to the east; the Cities of Eastvale and Jurupa Valley to the east and south. The City is in the central part of the Upper Santa Ana River Valley. This portion of the valley is bounded by the San Gabriel Mountains to the north; the Chino Hills, Puente Hills, and San Jose Hills to the west; the Santa Ana River to the south; and Lytle Creek Wash on the east.
    [Show full text]
  • Outlook on Climate Change Adaptation in the Tropical Andes Mountains
    MOUNTAIN ADAPTATION OUTLOOK SERIES Outlook on climate change adaptation in the Tropical Andes mountains 1 Southern Bogota, Colombia photo: cover Front DISCLAIMER The development of this publication has been supported by the United Nations Environment Programme (UNEP) in the context of its inter-regional project “Climate change action in developing countries with fragile mountainous ecosystems from a sub-regional perspective”, which is financially co-supported by the Government Production Team of Austria (Austrian Federal Ministry of Agriculture, Forestry, Tina Schoolmeester, GRID-Arendal Environment and Water Management). Miguel Saravia, CONDESAN Magnus Andresen, GRID-Arendal Julio Postigo, CONDESAN, Universidad del Pacífico Alejandra Valverde, CONDESAN, Pontificia Universidad Católica del Perú Matthias Jurek, GRID-Arendal Björn Alfthan, GRID-Arendal Silvia Giada, UNEP This synthesis publication builds on the main findings and results available on projects and activities that have been conducted. Contributors It is based on available information, such as respective national Angela Soriano, CONDESAN communications by countries to the United Nations Framework Bert de Bievre, CONDESAN Convention on Climate Change (UNFCCC) and peer-reviewed Boris Orlowsky, University of Zurich, Switzerland literature. It is based on review of existing literature and not on new Clever Mafuta, GRID-Arendal scientific results generated through the project. Dirk Hoffmann, Instituto Boliviano de la Montana - BMI Edith Fernandez-Baca, UNDP The contents of this publication do not necessarily reflect the Eva Costas, Ministry of Environment, Ecuador views or policies of UNEP, contributory organizations or any Gabriela Maldonado, CONDESAN governmental authority or institution with which its authors or Harald Egerer, UNEP contributors are affiliated, nor do they imply any endorsement.
    [Show full text]