Health Surveillance Survey of Christmas Island, Cocos (Keeling) Islands, and Taronga Reptile Populations

Total Page:16

File Type:pdf, Size:1020Kb

Health Surveillance Survey of Christmas Island, Cocos (Keeling) Islands, and Taronga Reptile Populations Health Surveillance Survey of Christmas Island, Cocos (Keeling) Islands, and Taronga Reptile Populations Guiding Translocation Opportunities November 2018 Health Surveillance Survey of Christmas Island, Cocos (Keeling) Islands, and Taronga Reptile Populations - Guiding Translocation Opportunities National Environmental Science Program’s Threatened Species Recovery Hub, School of BioSciences, University of Sydney. November 2018 Authors: Jessica Agius, David Phalen University of Sydney Front cover: Movement opportunities of Christmas Island critically endangered reptiles from their source locations (Taronga Zoo, Sydney and Christmas Island Captive Breeding Colony) to the proposed translocation site (Cocos Keeling Islands). 2 Table of Contents Summary ............................................................................................................................................................................................. 4 Introduction .........................................................................................................................................................................................5 Materials and Methods ..................................................................................................................................................................... 6 Study site ........................................................................................................................................................................................................... 6 Specimen collection & euthanasia ............................................................................................................................................................. 6 Taronga Zoo captive breeding colony ...................................................................................................................................................... 6 Histological preparation of reptile tissue ................................................................................................................................................. 6 Molecular analysis ........................................................................................................................................................................................... 6 Findings considered a potential risk .......................................................................................................................................................... 6 Results ..................................................................................................................................................................................................7 Geographic distribution ..................................................................................................................................................................................7 Macroscopic (gross) and microscopic (histology) parasite findings ...................................................................................................7 Molecular findings ............................................................................................................................................................................................7 Additional macroscopic (gross) findings ....................................................................................................................................................7 Additional microscopic (histology) findings ..............................................................................................................................................7 Enterococcus disease .....................................................................................................................................................................................7 Figures ................................................................................................................................................................................................. 8 Figure 1 ............................................................................................................................................................................................................... 8 Figure 2 .............................................................................................................................................................................................................. 8 Figure 3 .............................................................................................................................................................................................................. 9 Tables ................................................................................................................................................................................................. 10 Table 1 .............................................................................................................................................................................................................. 10 Table 2 .............................................................................................................................................................................................................. 10 Table 3 .............................................................................................................................................................................................................. 10 Table 4 ...............................................................................................................................................................................................................11 Table 5 ...............................................................................................................................................................................................................12 Table 6 ...............................................................................................................................................................................................................12 Table 7 ...............................................................................................................................................................................................................13 Discussion ......................................................................................................................................................................................... 14 Parasites ............................................................................................................................................................................................................14 Bacterial and suspected bacterial infections ...........................................................................................................................................14 Lesions of possible viral origin ....................................................................................................................................................................14 The risk posed by the novel Enterococcus species present on Christmas Island ........................................................................14 Limitations of this study ................................................................................................................................................................................15 Conclusions and recommendations ........................................................................................................................................................15 References .......................................................................................................................................................................................................15 Health Surveillance Survey of Christmas Island, Cocos (Keeling) Islands, and Taronga Reptile Populations Guiding Translocation Opportunities 3 Summary • This study forms part of an investigation into the feasibility of translocating the critically endangered Christmas Island Lister’s gecko and blue tailed skink to the Cocos (Keeling) Islands, as insurance populations to reduce the risks of extinction. • To assess the risks associated with infectious disease transmission and exposure resulting from the translocation of reptiles from Christmas Island and Taronga Zoo to the Cocos (Keeling) Islands, gross and microscopic examination of invasive species of lizards collected on Christmas Island and the Cocos (Keeling) Islands was performed. Additionally, the post mortem findings of Lister’s geckos and blue tailed skinks that died spontaneously at the Taronga Zoo captive breeding colony were reviewed. • Parasite infections were common in all three populations, but only one parasite, an uncharacterised amoeba, was confined to specimens from the Taronga Zoo captive breeding colony. Follow-up molecular testing of the Taronga colony for pathogenic Entamoeba species was negative. • Fungal infections were not observed in any population. • Bacterial infections occurred in all populations. Most appeared to be opportunistic infections from environmental sources. However, a novel Enterococcus sp. that is a known pathogen of both the blue tailed skink and the Lister’s gecko was found affecting introduced geckos located in and around the blue tailed
Recommended publications
  • On the Andaman and Nicobar Islands, Bay of Bengal
    Herpetology Notes, volume 13: 631-637 (2020) (published online on 05 August 2020) An update to species distribution records of geckos (Reptilia: Squamata: Gekkonidae) on the Andaman and Nicobar Islands, Bay of Bengal Ashwini V. Mohan1,2,* The Andaman and Nicobar Islands are rifted arc-raft of 2004, and human-mediated transport can introduce continental islands (Ali, 2018). Andaman and Nicobar additional species to these islands (Chandramouli, 2015). Islands together form the largest archipelago in the In this study, I provide an update for the occurrence Bay of Bengal and a high proportion of terrestrial and distribution of species in the family Gekkonidae herpetofauna on these islands are endemic (Das, 1999). (geckos) on the Andaman and Nicobar Islands. Although often lumped together, the Andamans and Nicobars are distinct from each other in their floral Materials and Methods and faunal species communities and are geographically Teams consisted of between 2–4 members and we separated by the 10° Channel. Several studies have conducted opportunistic visual encounter surveys in shed light on distribution, density and taxonomic accessible forested and human-modified areas, both aspects of terrestrial herpetofauna on these islands during daylight hours and post-sunset. These surveys (e.g., Das, 1999; Chandramouli, 2016; Harikrishnan were carried out specifically for geckos between and Vasudevan, 2018), assessed genetic diversity November 2016 and May 2017, this period overlapped across island populations (Mohan et al., 2018), studied with the north-east monsoon and summer seasons in the impacts of introduced species on herpetofauna these islands. A total of 16 islands in the Andaman and and biodiversity (e.g., Mohanty et al., 2016a, 2019), Nicobar archipelagos (Fig.
    [Show full text]
  • Hemidactylus Frenatus Across an Urban Gradient in Brisbane: Influence of Habitat and Potential for Impact on Native Gecko Species
    Presence of Asian House Gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species Author Newbery, Brock, Jones, Darryl Published 2007 Book Title Pest or Guest: The Zoology of Overabundance Copyright Statement © 2007 Royal Zoological Society of NSW. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the book link for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/18554 Link to published version http://www.rzsnsw.org.au/ Griffith Research Online https://research-repository.griffith.edu.au Presence of Asian House Gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species Brock Newbery1 and Darryl N. Jones1,2 1Suburban Wildlife Research Group, Australian School of Environmental Studies, Griffith University, Nathan, Qld. 4111, Australia. 2Corresponding author: Darryl Jones, [email protected] The Asian House Gecko Hemidactylus frenatus is an internationally significant invasive reptile which T has spread rapidly though the Pacific and elsewhere and has been implicated in the decline and extinction of a number of native gecko species. Although present in Darwin for some time, the C species has only recently become widespread in the Brisbane region. We investigated the density A and distribution of this and two native house-dwelling geckos in urban, suburban and bushland R environments within Brisbane. The spatially clumped insect resources associated with external light T sources were effectively utilised by both urban and suburban populations of Asian House Geckos, S suggesting likely competitive interactions between the species on structures where the species co-existed.
    [Show full text]
  • Revision of the Saxicoline Geckos of the Gehyra Punctata (Squamata: Gekkonidae) Species Complex in the Pilbara Region of Western Australia Paul Doughty1,*, Aaron M
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 33 001–050 (2018) DOI: 10.18195/issn.0312-3162.33(1).2018.001-050 Spots before the eyes: revision of the saxicoline geckos of the Gehyra punctata (Squamata: Gekkonidae) species complex in the Pilbara region of Western Australia Paul Doughty1,*, Aaron M. Bauer2, Mitzy Pepper3 and J. Scott Keogh3 1 Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. 2 Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, U.S.A. 3 Division of Evolution, Ecology & Genetics, Australian National University, Canberra, ACT 0200, Australia. * Corresponding author: [email protected] ABSTRACT – The Gehyra punctata species complex in the Pilbara and surrounding regions of Western Australia has long been known for its confused taxonomy. Recent collections in the region have enabled a reassessment of specimens currently referable to G. punctata. We assessed populations genetically using newly generated mitochondrial DNA data in conjunction with recently published phylogenomic data and an unpublished allozyme analysis. In addition, we carried out a detailed morphological examination involving hundreds of specimens across this taxon’s range. Many possible candidate species were recovered from these analyses, and the re-examination of morphology indicated two major clades: one small-bodied and one large-bodied, each comprising multiple divergent lineages within them. A syntype of Peropus variegatus punctatus Fry, 1914, believed to have been lost at the time of Mitchell’s revision in 1965, was recently found in the Western Australian Museum collections, and is here designated as the lectotype of G.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Survey of Reptiles and Amphibians at Bimblebox Nature Reserve - Queensland
    Summary of an Observational Survey of Reptiles and Amphibians at Bimblebox Nature Reserve - Queensland Graham Armstrong – May, 2016 Objective - to provide an updated and more complete list of the herpetofauna recorded from Bimblebox Nature Refuge. Approach - 1. Review available data and records pertaining to the herpetofauna at Bimblebox Nature Refuge. 2. Visit Bimblebox Nature Refuge during Spring, Summer and Autumn seasons to make observational and photographic records of the herpetofauna observed. Methodology - In order to maximise the number of species recorded, 3 successive 2.5 day visits were made to BNR, one in September 2015, Jan 2016 and the end of April 2016. This approach potentially broadens the range of weather conditions experienced and hence variety of reptiles and amphibians encountered when compared to a single field visit. Survey methodology involved walking and driving around the nature refuge during the day and after dark (with the aid of a head torch to detect eye-shine). Active reptiles including those that ran for or from cover while passing by were recorded. Frequently, in situ photographic evidence of individuals was obtained and the photographs are available for the purpose of corroborating identification. To avoid any double counting of individual animals the Refuge was traversed progressively and the locations of animals were recorded using a GPS. During any one visit no area was traversed twice and when driving along tracks, reptiles were only recorded the first time a track was traversed unless a new species was detected at a later time. Available Records The most detailed list of reptiles and amphibians recorded as occurring on Bimblebox Nature Reserve comes from the standardised trapping program of Eric Vanderduys of CSIRO in Townsville.
    [Show full text]
  • 1 7 an Identification Key to the Geckos of the Seychelles
    HERPETOLOGICAL JOURNAL. Vol. I. pp. 17-19 (19X5l 17 AN IDENTIFICATION KEY TO THE GECKOS OF THE SEYCHELLES, WITH BRIEF NOTES ON THEIR DISTRIBUTIONS AND HABITS ANDREW S. GARDNER Department of Zoology, University of Aberdren. Ti/lydrone Avenue, Aberdeen AB9 2TN. U. K. Present addresses: The Calton Laboratory. Department of Genetics and Biomet IT, Universif.I' Co/legr London. Wo/f�·on !-louse, 4 Stephenson Wa r London NWI 21-11'.. U.K. (A ccepted 24. /0. 84) INTRODUCTION 4. Scales on chest and at least anterior of belly keeled. Underside white. Phe!suma astriata The Republic of Seychelles, lying in the western Tornier. 5. Indian Ocean consists of a group of mountainous, granitic islands, and a large number of outlying coral Scales on chest and belly not keeled. 6. atolls and sand cays, distributed over 400,000 km2 of sea. There are over a hundred islands, ranging in size 5. Subcaudal scales keeled and not transversely from Mahe, at 148 km2 to islands little more than enlarged in original tails. Ground colour of emergent rocks. A total of eighteen species of lizard, rump and tail usually bright blue, and of from three families are recorded from the Seychelles nanks, green. Tail unmarked or spotted with (Gardner, 1984). The best represented family is the red. Red transverse neck bars often reduced or Gekkonidae with eleven species, fo ur of which are absent. Phe/suma astriata astriata Tornier i endemic to the islands. The identification key 90 1. presented here should enable interested naturalists to Subcaudal scales unkeeled and transversely identify any gecko encountered in the Seychelles to the enlarged in original tails.
    [Show full text]
  • Opportunistic Feeding by House-Dwelling Geckos: Does This Make Them More Successful Invaders?
    The Herpetological Bulletin 149, 2019: 38-40 SHORT COMMUNICATION https://doi.org/10.33256/hb149.3840 Opportunistic feeding by house-dwelling geckos: does this make them more successful invaders? ROBBIE WETERINGS1* & PREEYAPORN WETERINGS1 1 Cat Drop Foundation, Drachten, Netherlands *Corresponding author e-mail: [email protected] Abstract - Various species of ‘house’ gecko are found in and around buildings, where they can be observed feeding opportunistically on the insects attracted to artificial lights. Most of the species are considered strict insectivores. Nevertheless, there have been several recently published observations of ‘house’ geckos feeding on non-insect food. In order to assess how common this behaviour is among geckos worldwide, we offered an online questionnaire to ecologists and herpetologists. Of the 74 observations received, most reported Hemidactylus frenatus, H. platyurus and Gehyra mutilata feeding on rice, bread, fruits, vegetables, dog food or chocolate cream, taken from tables, plates, and garbage bins. This opportunistic feeding behaviour is much more common than previously thought and is perpetrated by species considered to be highly invasive, possibly contributing to their success as invaders. INTRODUCTION 2. What did the gecko consume? a. Insects or other invertebrates everal gecko species (e.g. Hemidactylus frenatus and b. Fruit or vegetables SGehyra mutilata) are often found in and around houses. c. Rice These, so-called ‘house’ geckos, are very well adapted to d. Bread urban life and are often observed feeding opportunistically e. Eggs on insects attracted to artificial lights at night (Tkaczenko f. Unsure et al., 2014). This provides them an easily accessible food g. Other... source in locations generally lacking predators.
    [Show full text]
  • Cfreptiles & Amphibians
    WWW.IRCF.ORG/REPTILESANDAMPHIBIANSJOURNALTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANS IRCF REPTILES • VOL15, &NO AMPHIBIANS 4 • DEC 2008 189 • 22(1):36–38 • MAR 2015 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES . ExploitingChasing Bullsnakes (Pituophis catenifer sayi ) inthe Wisconsin: Night-light Niche: On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: A WestA Hypothetical Excursion Indian ............................................................................................................................ Experience inRobert Hawaii W. Henderson 198 RESEARCH ARTICLES Robert Powell . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 Avila University, Kansas City, Missouri 64145, USA ([email protected]) . The Knight Anole (Anolis equestris) in Florida .............................................Brian J. Camposano, Kenneth L. Krysko, Kevin M. Enge, Ellen M. Donlan, and Michael Granatosky 212 CONSERVATION ALERT awaii has no native. World’s terrestrial Mammals in Crisis or freshwater............................................................................................................................................................. reptiles or mented, and exploitation of the night-light 220 niche by the Gold . More Than Mammals
    [Show full text]
  • Fitzroy, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • NSW REPTILE KEEPERS' LICENCE Species Lists 1006
    NSW REPTILE KEEPERS’ LICENCE SPECIES LISTS (2006) The taxonomy in this list follows that used in Wilson, S. and Swan, G. A Complete Guide to Reptiles of Australia, Reed 2003. Common names generally follow the same text, when common names were used, or have otherwise been lifted from other publications. As well as reading this species list, you will also need to read the “NSW Reptile Keepers’ Licence Information Sheet 2006.” That document has important information about the different types of reptile keeper licenses. It also lists the criteria you need to demonstrate before applying to upgrade to a higher class of licence. THESE REPTILES CAN ONLY BE HELD UNDER A REPTILE KEEPERS’ LICENCE OF CLASS 1 OR HIGHER Code Scientific Name Common Name Code Scientific Name Common Name Turtles Monitors E2018 Chelodina canni Cann’s Snake-necked Turtle G2263 Varanus acanthurus Spiney-tailed Monitor C2017 Chelodina longicollis Snake-necked Turtle Q2268 Varanus gilleni Pygmy Mulga Monitor G2019 Chelodina oblonga Oblong Turtle G2271 Varanus gouldii Sand Monitor Y2028 Elseya dentata Northern Snapping Turtle M2282 Varanus tristis Black-Headed Monitor K2029 Elseya latisternum Saw-shelled Turtle Y2776 Elusor macrurus Mary River Turtle E2034 Emydura macquarii Murray Short-necked Turtle Skinks T2031 Emydura macquarii dharra Macleay River Turtle A2464 Acritoscincus platynotum Red-throated Skink T2039 Emydura macquarii dharuk Sydney Basin Turtle W2331 Cryptoblepharus virgatus Cream-striped Wall Skink T2002 Emydura macquarii emmotti Emmott’s Short-necked Turtle W2375
    [Show full text]
  • Rules Amending Title 4
    Rules Amending Title 4 Hawaii Administrative Rules September 26, 2017 1. Chapter 71 of Title 4, Hawaii Administrative Rules, entitled “Plant and Non-Domestic Animal Quarantine Non-Domestic Animal Import Rules” is amended and compiled to read as follows: “HAWAII ADMINISTRATIVE RULES” TITLE 4 DEPARTMENT OF AGRICULTURE SUBTITLE 6 DIVISION OF PLANT INDUSTRY CHAPTER 71 PLANT AND NON-DOMESTIC ANIMAL QUARANTINE NON-DOMESTIC ANIMAL IMPORT RULES Subchapter 1 General Provisions §4-71-1 Objective §4-71-2 Definitions §4-71-3 Permits §4-71-3.1 User permit fees 71-1 §4-71-4 Submission of permit application to the board §4-71-4.1 Maximum time period for permit approvals, disapprovals, extensions, or automatic approvals §4-71-4.2 Public input and notification for listing §4-71-4.3 Violations Subchapter 2 Non-Domestic Animal Introductions §4-71-5 Notice of quarantine §4-71-6 Prohibited introductions §4-71-6.1 Ad hoc panel for identification of prohibited hybrid animal §4-71-6.5 Permitted introductions §4-71-7 Bond for certain animals §4-71-8 Bonding procedure §4-71-9 Conditions for bonding §4-71-10 Failure to comply with bond conditions Historical note: Chapter 71 is based substantially upon Regulation 2 entitled "Concerning the Introduction of Feral and Other Non-Domestic Animals into Hawaii," of the Division of Entomology and Marketing, Department of Agriculture and Conservation [Eff. 12/12/41; am and ren. Regulation 2 8/30/47; am 9/16/60; R 7/13/81]; and Regulation 3 entitled "Concerning the Introduction of Bacteria, Fungi and Viruses into Hawaii," of the Division of Entomology, Board of Commissioners of Agriculture and Forestry [Eff.
    [Show full text]