PARABOLIC DISH ANTENNAS Paul Wade N1BWT © 1994,1998
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Corrugated Feed-Horn Arrays for Future CMB Polarization Experiments Settore Scientifico Disciplinare FIS/01
UNIVERSITA` DEGLI STUDI DI MILANO FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI DOTTORATO DI RICERCA IN FISICA, ASTROFISICA E FISICA APPLICATA Corrugated feed-horn arrays for future CMB polarization experiments Settore Scientifico disciplinare FIS/01 Coordinatore: Prof. Marco BERSANELLI Tutore: Prof. Marco BERSANELLI Co-Tutore: Dott. Fabrizio VILLA Tesi di dottorato di: Francesco DEL TORTO Ciclo XXIV Anno Accademico 2011-2012 To my parents Introduction The actual most corroborated model of modern cosmology is the “Hot Big Bang Model”, that results in agree with the cosmological scientific discov- eries of the last 50 years. The main observational pillars that support the model are: the discovery by Edwin Hubble of the expansion of the Universe, the abundances of the primordial elements and the discovery of the Cosmic Microwave Background (CMB) radiation. In 1929 Edwin Hubble discovered the linear relationship in distant galax- ies between their distance and recession velocity: v = Hd. The current value for the Hubble constant is known with very high precision as 72 8 Km/sec/Mpc [1], from the measurements obtained by the Hubble Space Tele-± scope on even far distant galaxies w.r.t. to the Hubble measurements. According to the Hot Big Bang Model, in the first era of its life, the Universe was constituted by photons, electrons and protons. During this time the firsts primordial elements were produced, i.e. Helium, Deuterium, and Beryllium. The abundances of the primordial elements can be calculated with precision by the Hot Big Bang Model, resulting in good agreement with the measured abundances [2], [3]. In 1965 Arno Penzias and Robert Wilson discovered the CMB, already predicted in 1948 by George Gamow in the framework of an Hot Big Bang Model. -
Progress Toward Corrugated Feed Horn Arrays in Silicon Abstract
Progress Toward Corrugated Feed Horn Arrays in Silicon J. Britton,∗ K. W. Yoon, J. A. Beall, D. Becker, H. M. Cho, G. C. Hilton, M. D. Niemack, and K. D. Irwin Quantum Sensors Group, NIST, Boulder, CO 80305, USA Abstract We are developing monolithic arrays of corrugated feed horns fabricated in silicon for dual-polarization single-mode operation at 90, 145 and 220 GHz. The arrays consist of hundreds of platelet feed horns assembled from gold-coated stacks of micro- machined silicon wafers. As a first step, Au-coated Si waveguides with a circular, corrugated cross section were fabricated; their attenuation was measured to be less than 0.15 dB/cm from 80 to 110 GHz at room temperature. To ease the manufacture of horn arrays, electrolytic deposition of Au on degenerate Si without a metal seed layer was demonstrated. An apparatus for measuring the radiation pattern, optical efficiency, and spectral band-pass of prototype horns is described. Feed horn arrays made of silicon may find use in measurements of the polarization anisotropy of the cosmic microwave background radiation. Imaging detectors at millimeter wavelengths can now be built with hundreds of pixels.[1] However, parallel gains in free-space coupling optics have lagged. At NIST we are pursuing monolithic arrays of corru- gated platelet feed horns made with Si. Each layer in the stack is a Si wafer with photolithographically de- fined apertures. Once assembled and coated with Au, these horn arrays are expected to feature the same low loss, wide bandwidth, minimal side lobes and low cross- correlation as electroformed horns.[2, 3] Moreover, rel- ative to metal corrugated arrays [4], Si horn arrays are expected to have the following benefits: (a) a thermal ex- pansion matched to Si detectors, (b) lower thermal mass, and (c) a straightforward development to arrays of thou- sands of horns. -
Microwave Performance Characterization of Large Space Antennas
JPL PUBLICATION 77-21 N77-24333 PERFOPMANCE (NASA-CR-153206) MICROWAVE OF LARGE SPACE ANTNNAS CHARACTEPIZATION p HC A05/MF A01 Propulsion Lab.) 79 (Jet CSCL 20N Unclas G3/32 29228 Performance Microwave Space Characterization of Large Antennas Ep~tOUCED BY NATIONAL TECHNICAL SERVICE INFORMATION ER May 15, T977 . %TT OFCOMM CE ,,,.ESp.Sp , U1IELD, VA. 22161 National Aeronautics and Space Administration Jet Propulsion Laboratory Callfornia Institute of Technology Pasadena, California 91103 TECHNICAL REPORT STANDARD TITLE PAGE -1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. JPL Pub. 77-21 _______________ 4. Title and Subtitle 5. Report Date MICROWAVE PERFORMANCE CHARACTERIZATION OF May 15, 1977 LARGE SPACE ANTENNAS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. D. A. Bathker 9. Performing Organization Name and Address 10. Work Unit No. JET PROPULSION LABORATORY California Institute of Technology 11. Contract or Grant No. 4800 Oak Grove Drive NAS 7-100 Pasadena, California 91103 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address JPL Publication NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract The purpose of this report is to place in perspective various broad classes of microwave antenna types and to discuss key functional and qualitative limitations. The goal is to assist the user and program manager groups in matching applications with anticipated performance capabilities of large microwave space antenna con figurations with apertures generally from 100 wavelengths upwards. The microwave spectrum of interest is taken from 500 MHz to perhaps 1000 GHz. -
Resolving Interference Issues at Satellite Ground Stations
Application Note Resolving Interference Issues at Satellite Ground Stations Introduction RF interference represents the single largest impact to robust satellite operation performance. Interference issues result in significant costs for the satellite operator due to loss of income when the signal is interrupted. Additional costs are also encountered to debug and fix communications problems. These issues also exert a price in terms of reputation for the satellite operator. According to an earlier survey by the Satellite Interference Reduction Group (SIRG), 93% of satellite operator respondents suffer from satellite interference at least once a year. More than half experience interference at least once per month, while 17% see interference continuously in their day-to-day operations. Over 500 satellite operators responded to this survey. Satellite Communications Overview Satellite earth stations form the ground segment of satellite communications. They contain one or more satellite antennas tuned to various frequency bands. Satellites are used for telephony, data, backhaul, broadcast, community antenna television (CATV), internet, and other services. Depending on the application, each satellite system may be receive only or constructed for both transmit and receive operations. A typical earth station is shown in figure 1. Figure 1. Satellite Earth Station Each satellite antenna system is composed of the antenna itself (parabola dish) along with various RF components for signal processing. The RF components comprise the satellite feed system. The feed system receives/transmits the signal from the dish to a horn antenna located on the feed network. The location of the receiver feed system can be seen in figure 2. The satellite signal is reflected from the parabolic surface and concentrated at the focus position. -
Development of Conical Horn Feed for Reflector Antenna
International Journal of Engineering and Technology Vol. 1, No. 1, April, 2009 1793-8236 Development of Conical Horn Feed For Reflector Antenna Jagdish. M. Rathod, Member, IACSIT and Y.P.Kosta, Senior Member IEEE waveguide that provides the impedance transformation Abstract—We have designed a antenna feed with prime between the waveguide impedance and the free-space concerned that with the growing conjunctions in the mobile impedance. Horn radiators are used both as antennas in their networks, the parabolic antenna are evolving as an useful device own right, and as illuminators for reflector antennas. Horn for point to point communications where the need for high antennas are not a perfect match to the waveguide, although directivity and high power density is at the prime importance. With these needs we have designed the unusual type of feed standing wave ratios of 1.5:1 or less are achievable. The gain antenna for parabolic dish that is used for both reception and of a horn radiator is proportional to the area A of the flared transmission purpose. This different frequency band open flange), and inversely proportional to the square of the performance having horn feed, works for the parabolic wavelength [8].Following Fig.1 gives types of Horn reflector antenna. We have worked on frequency band between radiators. 4.8 GHz to 5.9 GHz for horn type of feed. Here function of the horn is to produce uniform phase front with a larger aperture than that of the waveguide and hence greater directivity. Parabolic dish antenna is the most commonly and widely used antenna in communication field mainly in satellite and radar communication. -
POWER MICROWAVE FEED HORN C. Chang Department of Engineering
Progress In Electromagnetics Research, PIER 101, 157{171, 2010 DESIGN AND EXPERIMENTS OF THE GW HIGH- POWER MICROWAVE FEED HORN C. Chang Department of Engineering Physics Tsinghua University Beijing, China X. X. Zhu, G. Z. Liu, J. Y. Fang, R. Z. Xiao, C. H. Chen H. Shao, J. W. Li, H. J. Huang, and Q. Y. Zhang Northwest Institute of Nuclear Technology Xi'an, Shannxi, China Z. Q. Zhang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi'an, Shannxi, China Abstract|Design and optimization of high-power microwave (HPM) feed horn by combining the aperture ¯eld with radiation patterns are presented in the paper. The optimized feed horn in C band satis¯es relatively uniform aperture ¯eld, power capacity higher than 3 GW, symmetric radiation patterns, low sidelobes, and compact length. Cold tests and HPM experiments were conducted to investigate the radiation patterns and power capacity of the horn. The theoretical radiation patterns are consistent with the cold test and HPM experimental results. The power capacity of the compact HPM horn has been demonstrated by HPM experiments to be higher than 3 GW. 1. INTRODUCTION The maximum power produced by S-band resonant BWO has attained 5 GW with 100 J energy pulses [1]. With the development of narrowband multi-giga-watt HPM sources operated under vacuum, the power capacity of the HPM horn has become the major factor of Corresponding author: C. Chang ([email protected]). 158 Chang et al. limiting HPM transmission and radiation [2{5]. When the electric ¯eld amplitude at the aperture of the horn is higher than the breakdown threshold, secondary electron multipactor and plasma discharge happen at the vacuum side of the dielectric radome, leading to HPM breakdown and pulse shortening [2{5]. -
W6IFE Newsletter March 2011 Edition President John Oppen KJ6HZ 4705 Ninth St Riverside, CA 92501951-288-1207 [email protected]
W6IFE Newsletter March 2011 Edition President John Oppen KJ6HZ 4705 Ninth St Riverside, CA 92501951-288-1207 [email protected]. Vice President Doug Millar, K6JEY 2791 Cedar Ave Long Beach, CA 90806 562-424-3737 [email protected] Recording Sec Larry Johnston K6HLH 16611 E Valeport Lancaster CA 93535 661-264-3126 [email protected] Corresponding Sec Jeff Fort Kn6VR 10245 White Road Phelan CA 92371 909-994-2232 [email protected] Treasurer Dick Bremer, WB6DNX 1664 Holly St Brea CA 92621 714-529-2800 [email protected] Editor Bill Burns, WA6QYR 247 Rebel Rd Ridgecrest, CA 93555 760-375-8566 [email protected] Webmaster Dave Glawson, WA6CGR 1644 N. Wilmington Blvd Wilmington, CA 90744 310-977-0916 [email protected] ARRL Interface Frank Kelly, WB6CWN PO Box 1246, Thousand Oaks, CA 91358 805 558-6199 [email protected] W6IFE License Trustee Ed Munn, W6OYJ 6255 Radcliffe Dr. San Diego, CA 92122 858-453-4563 [email protected]. At the March 3, 2011 SBMS meeting we will have Doug, K6JEY talking to us about power meters. His talk will have two parts. The first part will be a review of the theory of how power meter couplers, terminated meters, and calorimeters work and what their general calibration limits are. The second part of the presentation will be to calibrate member's 23cm and 13cm watt meters using a high power calorimeter from Doug's lab (A Bird 6091). We hope to have 10-200 watts available on 23cm and a smaller amount for 13cm. We may also have a set up for 2m as well for general calibration. -
Communications Satellites
I. I IPAGESJ i < INASA CR OR fmx OR AD NUMBER) COMMUNICATIONS SATELLITES A CONTINUING BIBLIOGRAPHY Hard copy (HC) Microfiche (MF) NATIONAL AERONAUTICS AND SPACE ADMINISTRATION .J I I, i This bibliography was prepared by the Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Documentation Incorporated ~ ~~~ NASA SP-7004 (01) COMMUNICATIONS SATELLITES A CONTINUING BIBLIOGRAPHY A selection of annotated references to unclas- sified reports and journal articles that were introduced into the NASA Information System during the period May 1964-January 1965. Scientific and Technical In formotion Division NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. APRIL 1965 This document is available from the Clearinghouse for Federal Scientific and Technical Information (OTS), Springfield, Virginia, 22 1 5 1 , for $1 .OO INTRODUCTION With the publication of this first supplement, NASA SP-7004 (Ol), to the Continuing Bibliography on “Communications Satellites” (SP-7004), the National Aeronautics and Space Administration continues its program of distributing selected references to reports and articles on aerospace topics that are currently under intensive study. The references are assembled in this form to provide a convenient source of information for use by scientists and engineers who need this kind of specialized compilation. Continuing Bibliographies are updated periodically by supplements which can be appended to the original issue. All references included in SP-7004 (01) have been announced in either Scientific and Technical Aerospace Reports (STAR)or International Aerospace Abstracts (IAA) and were introduced into the NASA information system during the period May, 1964-January, 1965. The transmission of information by means of communications satellites is a new tech- nique that promises to be a powerful stimulus for effective international cooperation in the investigation of space. -
Characteristics of Naval Fire . Control Radar
COPY~ CO NFI oP 1895· CHARACTERISTICS OF ,. NAVAL FIRE .CONTROL RADAR • ~ r' -i8Nfi6ENtiAt• ABUREAU OF ORDNANCE PUBLICATION ~ OP 1895 CHARACTERISTICS OF NAVAL FIRE CONTROL RADAR 12 NOVEMBER 1954 DEPARTMENT OF THE NAVY BUREAU OF ORDNANCE WASHINGTON 25, D. C. 12 November 1954 ORDNANCE PAMPHLET 1895 CHARACTERISTICS OF NAVAL FIRE CONTROL RADAR 1. Ordnance Pamphlet 1895 describes both the fundamental principles of operation of radar equipment in general and the characteristics of specific United States Naval fire control radar equipment. 2. This publication is intended for use by all personnel concerned with radar operation in general, and with the application of basic radar principles to fire control radar. 3. This publication does not supersede any existing publication. 4. This publication is El8N¥'1!HU! AitL and shall be safeguarded in ac cordance with the security provisions of U. S. Navy Regulations. It is for bidden to make extracts from or to copy this classified document, except as provided for in Article 0910 of the United States Navy Security Manual for Classified Matter. M. F. ScHoEFFEL Rear Admiral, U. S. Navy Ohief, Bureau of Ordnance .tONFIDENTIAL- 'i!Qt 'FilEt 'IJ,ll CONTENTS Chapter Page Chapte1· Page FOREWORD vi 2. Close-in Targets ............. 28 (cont) Merging Targets ............. 28 PART I-GENERAL Propeller Modulation ......... 28 1. PRINCIPLES OF THE RADAR ART 1 Geographical and Atmospheric The Echo Principle ............. 1 Conditions ................ 28 The Radio Echo at Work ......... 1 Low-flying Targets ........... 29 Radar Measurements ........... 2 Land Echoes ................ 29 Factors Affecting Radar Radar Countermeasures ...... 31 Measurements ............... 6 Spotting Surface Gun Fire ...... 32 Power and Range ............ 6 Range Spotting ............. -
Highlights of Antenna History
~~ IEEE COMMUNICATIONS MAGAZINE HlOHLlOHTS OF ANTENNA HISTORY JACK RAMSAY A look at the major events in the development of antennas. wires. Antenna systems similar to Edison’s were used by A. E. Dolbear in 1882 when he successfully and somewhat mysteriously succeeded in transmitting code and even speech to significant ranges, allegedly by groundconduction. NINETEENTH CENTURY WIRE ANTENNAS However, in one experiment he actually flew the first kite T is not surprising that wire antennas were inaugurated antenna.About the same time, the Irish professor, in 1842 by theinventor of wire telegraphy,Joseph C. F. Fitzgerald, calculated that a loop would radiate and that Henry, Professor’ of Natural Philosophy at Princeton, a capacitance connected to a resistor would radiate at VHF NJ. By “throwing a spark” to a circuit of wire in an (undoubtedly due to radiation from the wire connecting leads). Iupper room,Henry found that thecurrent received in a In Hertz launched,processed, and received radio 1887 H. parallel circuit in a cellar 30 ft below codd.magnetize needies. waves systematically. He used a balanced or dipole antenna With a vertical wire from his study to the roof of his house, he attachedto ’ an induction coilas a transmitter, and a detected lightning flashes 7-8 mi distant. Henry also sparked one-turn loop (rectangular) containing a sparkgap as a to a telegraph wire running from his laboratory to his house, receiver. He obtained “sympathetic resonance” by tuning the and magnetized needles in a coil attached to a parailel wire dipole with sliding spheres, and the loop by adding series 220 ft away. -
The Cassegrain Antenna
The Cassegrain Antenna Principle of a Cassegrain telescope: a convex secondary reflector is located at a concave primary reflector. Figure 1: Principle of a Cassegrain telescope Sieur Guillaume Cassegrain was a French sculptor who invented a form of reflecting telescope. A Cassegrain telescope consists of primary and secondary reflecting mirrors. In a traditional reflecting telescope, light is reflected from the primary mirror up to the eye-piece and out the side the telescope body. In a Cassegrain telescope, there is a hole in the primary mirror. Light enters through the aperture to the primary mirror and is reflected back up to the secondary mirror. The viewer then peers through the hole in the primary reflecting mirror to see the image. A Cassegray antenna used in a fire-control radar. Figure 2: A Cassegray antenna used in a fire-control radar. In telecommunication and radar use, a Cassegrain antenna is an antenna in which the feed radiator is mounted at or near the surface of a concave main reflector and is aimed at a convex subreflector. Both reflectors have a common focal point. Energy from the feed unit (a feed horn mostly) illuminates the secondary reflector, which reflects it back to the main reflector, which then forms the desired forward beam. Advantages Disadvantage: The subreflectors of a Cassegrain type antenna are fixed by bars. These bars The feed radiator is more easily and the secondary reflector constitute supported and the antenna is an obstruction for the rays coming geometrically compact from the primary reflector in the most effective direction. It provides minimum losses as the receiver can be mounted directly near the horn. -
Day 2 Session 3
Day 2 Session 3 VSAT installation 1 1- VSAT Installation IDU Satellite receivers and routers are versatile and powerful networking platforms that receive and manage content at the network edge Modern IDUs incorporate many functions: • Routing • Encryption • Compression • Acceleration • QoS • Modem • NMS 2 1- VSAT Installation Satellite Modems Satellite modems have several options that must be considered: • 70/140 MHz or L-band IF • BUC power supply • Voltage of BUC power supply (24 or 48) 3 1- VSAT Installation Router Routers are available from a variety of manufacturers but most modern satellite modems and IDU’s incorporate this functionality internally. Modem based routers provide features not generally found in terrestrial routers: • Compatibility with encapsulators • TCP spoofing (to reduce latency and improve speed) 4 1- VSAT Installation Firewall Firewalls provide proactive threat defense that stops attacks before they spread through the network. 5 1- VSAT Installation Typical configuration 6 1- VSAT Installation Sample Hardware list The VSAT system consists of the following hardware: • The Indoor unit • The Outdoor unit assembly 7 1- VSAT Installation Sample Hardware list The outdoor unit assembly consists of: TRF FEED OMT • OMT (Orthomode Transducer) separates the transmit signal from the received signal, taking advantage of their different polarization. • TRF (Transmit Reject Filter) prevents the high power transmit signal from entering (and overloading) the receive chain. 8 1- VSAT Installation Sample Hardware list The outdoor unit assembly consists of: LNB BUC • LNB (for the receiving signal). The LNB converts the C/Ku band signal received from the satellite into an L band signal. • BUC. The BUC converts the L band signal from the IDU into a C/Ku band signal for transmission.