Mobile Intel Pentium 4 Processor-M’S Behavior to Deviate from Published Specifications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design and Implementation of Pentium-M Based Floswitch for Intracluster Communication Veerappa Chikkagoudar, Dr
Design and Implementation of Pentium-M Based Floswitch for Intracluster Communication Veerappa chikkagoudar, Dr. U. N. Sinha, Prof. B. L. Desai. [email protected], [email protected], [email protected] Department of Electronics and Communication B. V. Bhoomaraddi college of Engg. And Tech. Hubli-580031 Abstract: aero dynamical problems, [1].Since 1986, six Flosolver MK6 is a Parallel processing system, generations of Flosolver machine have evolved based on distributed memory concept and built namely Flosolver MK-1, MK-2, MK-3, MK-4, MK-5 around Pentium-III processors, which acts as and MK-6. processing elements (PEs). Communication Flosolver MK-6 is the latest of the parallel between processing elements is very important, computer based on 128 Pentium III processors which is done through hardware switch called (which act as processing elements, PEs) in 64 dual Floswitch. Floswitch supports both message processor boards each with 1GB RAM and 80 GB passing as well as message processing. Message HDD. It is essentially a distributed memory system. processing is a unique feature of Floswitch. A group of four Dual processor boards with a Floswitch and an optical module is a natural cluster. In existing MK-6 system, communication 16 such clusters form the system. Processing between PEs is done through the Intel 486-based elements (PEs) communicate through Floswitch (a Floswitch, which operates at 32MHz and has 32- communication switch) using PCI-DPM interface bit wide data path. The data transfer rate and card. Clusters communicate through Optical module. floating point computation of existing switch need to be increased. -
Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance
White Paper Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance Ofri Wechsler Intel Fellow, Mobility Group Director, Mobility Microprocessor Architecture Intel Corporation White Paper Inside Intel®Core™ Microarchitecture Introduction Introduction 2 The Intel® Core™ microarchitecture is a new foundation for Intel®Core™ Microarchitecture Design Goals 3 Intel® architecture-based desktop, mobile, and mainstream server multi-core processors. This state-of-the-art multi-core optimized Delivering Energy-Efficient Performance 4 and power-efficient microarchitecture is designed to deliver Intel®Core™ Microarchitecture Innovations 5 increased performance and performance-per-watt—thus increasing Intel® Wide Dynamic Execution 6 overall energy efficiency. This new microarchitecture extends the energy efficient philosophy first delivered in Intel's mobile Intel® Intelligent Power Capability 8 microarchitecture found in the Intel® Pentium® M processor, and Intel® Advanced Smart Cache 8 greatly enhances it with many new and leading edge microar- Intel® Smart Memory Access 9 chitectural innovations as well as existing Intel NetBurst® microarchitecture features. What’s more, it incorporates many Intel® Advanced Digital Media Boost 10 new and significant innovations designed to optimize the Intel®Core™ Microarchitecture and Software 11 power, performance, and scalability of multi-core processors. Summary 12 The Intel Core microarchitecture shows Intel’s continued Learn More 12 innovation by delivering both greater energy efficiency Author Biographies 12 and compute capability required for the new workloads and usage models now making their way across computing. With its higher performance and low power, the new Intel Core microarchitecture will be the basis for many new solutions and form factors. In the home, these include higher performing, ultra-quiet, sleek and low-power computer designs, and new advances in more sophisticated, user-friendly entertainment systems. -
Validating the Intel® Pentium® 4 Microprocessor
16.1 9DOLGDWLQJ WKH ,QWHO 3HQWLXP 0LFURSURFHVVRU %RE%HQWOH\ ,QWHO&RUSRUDWLRQ 1(WK$YHQXH +LOOVERUR2UHJRQ86$ EREEHQWOH\#LQWHOFRP ABSTRACT 2. OVERVIEW Developing a new leading edge IA-32 microprocessor is an The Pentium® 4 processor is Intel’s most advanced IA-32 immensely complicated undertaking. In the case of the Pentium® microprocessor, incorporating a host of new microarchitectural 4 processor, the microarchitecture is significantly more complex features including a 400-MHz system bus, hyper-pipelined than any previous IA-32 microprocessor and the implementation technology, advanced dynamic execution, rapid execution engine, borrows almost nothing from any previous implementation. This advanced transfer cache, execution trace cache, and Streaming paper describes how we went about the task of finding bugs in the SIMD (Single Instruction, Multiple Data) Extensions 2 (SSE2). Pentium® 4 processor design prior to initial silicon, and what we For the most part, we applied similar tools and methodologies to found along the way. validating the Pentium® 4 processor that we had used previously General Terms on the Pentium® Pro processor. However, we developed new Management, Verification. methodologies and tools in response to lessons learnt from previous projects, and to address some of the new challenges that the Pentium® 4 processor design presented from a validation 1. INTRODUCTION perspective. In particular, the use of Formal Verification, Cluster Validation case studies are relatively rare in the literature of Test Environments and focused Power Reduction Validation were computer architecture and design ([1] and [2] contain lists of either new or greatly extended from previous projects; each of some recent papers) and case studies of commercial these is discussed in more detail in a section of this paper microprocessors are even rarer. -
HP Compaq Nc6120/Nx6120 Notebook Pcs Overview
QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Overview 1. Presentation Mode Button 12. Fast Infrared Port 2. Wireless On/Off Button with LED 13. Wireless On/Off LED 3. HP Info Center Button 14. Power/Standby LED 4. Power Button with LED 15. Battery Charging LED 5. 2 USB 2.0 Ports 16 Hard Drive Activity LED 6. VGA/External Monitor Connector 17. Touchpad with Scroll Zone (or Pointstick, not pictured) 7. RJ-11 Port (Modem) 18. Stereo Speakers 8. RJ-45 Port (NIC) 19. 6-in-1 Media Reader 9. IEEE 1394 Port 20. Volume Up Button 10. PC Card Slots (and optional Smart Card Reader) 21. Volume Down Button 11. PC Card Eject Button 22. Volume Mute Button with LED DA - 12136 Worldwide — Version 26 — September 6, 2006 Page 1 QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Overview 1. Headphone Jack 6. Serial Port 2. Microphone Jack 7. Kensington Lock Slot 3. 2 USB 2.0 Ports 8. DC Power Connector 4. Optical Drive 9. Parallel Port 5. Optical Drive Button 10. S-Video TV Out At A Glance Genuine Windows XP Professional, Genuine Windows XP Home Edition (select countries), or FreeDOS Certified for Novell Linux Desktop 9 Intel® Pentium® M processors 730 to 770* or Intel Celeron® M processors 350J to 380* Sleek industrial design starting at 5.82 lb/2.64 kg and 1.2-inch/30.3 mm thin at front Mobile Intel 915GM Express Chipset 256-MB DDR SDRAM, upgradeable to 2048-MB maximum Up to 100-GB 5400 rpm hard drive Intel Graphics Media Accelerator 900 Optional Integrated 802.11a/b/g or 802.11b/g wireless LAN module Support for optional Intel Centrino™ mobile technology Optional integrated Bluetooth® 6-in-1 Media Reader NetXtreme Gigabit Ethernet Controller Choice of Touchpad with scroll zone or Pointstick Protected by one-year or three-year (depending on country and/or model) standard parts and labor warranty - certain restrictions and exclusions apply *Intel's numbering system is not a measurement of performance. -
The Microarchitecture of the Pentium 4 Processor
The Microarchitecture of the Pentium 4 Processor Glenn Hinton, Desktop Platforms Group, Intel Corp. Dave Sager, Desktop Platforms Group, Intel Corp. Mike Upton, Desktop Platforms Group, Intel Corp. Darrell Boggs, Desktop Platforms Group, Intel Corp. Doug Carmean, Desktop Platforms Group, Intel Corp. Alan Kyker, Desktop Platforms Group, Intel Corp. Patrice Roussel, Desktop Platforms Group, Intel Corp. Index words: Pentium® 4 processor, NetBurst™ microarchitecture, Trace Cache, double-pumped ALU, deep pipelining provides an in-depth examination of the features and ABSTRACT functions of the Intel NetBurst microarchitecture. This paper describes the Intel® NetBurst™ ® The Pentium 4 processor is designed to deliver microarchitecture of Intel’s new flagship Pentium 4 performance across applications where end users can truly processor. This microarchitecture is the basis of a new appreciate and experience its performance. For example, family of processors from Intel starting with the Pentium it allows a much better user experience in areas such as 4 processor. The Pentium 4 processor provides a Internet audio and streaming video, image processing, substantial performance gain for many key application video content creation, speech recognition, 3D areas where the end user can truly appreciate the applications and games, multi-media, and multi-tasking difference. user environments. The Pentium 4 processor enables real- In this paper we describe the main features and functions time MPEG2 video encoding and near real-time MPEG4 of the NetBurst microarchitecture. We present the front- encoding, allowing efficient video editing and video end of the machine, including its new form of instruction conferencing. It delivers world-class performance on 3D cache called the Execution Trace Cache. -
Intel(R) Pentium(R) 4 Processor on 90 Nm Process Datasheet
Intel® Pentium® 4 Processor on 90 nm Process Datasheet 2.80 GHz – 3.40 GHz Frequencies Supporting Hyper-Threading Technology1 for All Frequencies with 800 MHz Front Side Bus February 2005 Document Number: 300561-003 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Pentium® 4 processor on 90 nm process may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 1Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a Hyper-Threading Technology enabled chipset, BIOS and operating system. -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
The Secret Processor Will Go to the Ball Benchmark Insider-Proof Encrypted Computing
The Secret Processor Will Go to the Ball Benchmark Insider-Proof Encrypted Computing Peter T. Breuer Jonathan P. Bowen Esther Palomar Zhiming Liu Hecusys LLC London South Bank University Birmingham City University South West University Atlanta, GA London, UK Birmingham, UK Chongqing, China Abstract—Appropriately modifying the arithmetic in a pro- processor designs that depend on a modified arithmetic and cessor causes data to remain in encrypted form throughout encrypted working, where before they were only intuitively processing. That principle is the basis for the design re- safer. It was always probable from an engineering point of ported here, extending our initial reports in 2016. The design view, however, that such a processor would run fast or could aims to prevent insider attacks by the operator against the be made to with current technology. That is because, in user. Progress and practical experience with the prototype principle, only one piece of stateless logic, the arithmetic superscalar pipelined RISC processor and supporting software logic unit (ALU), needs to be changed from a conventional 1 infrastructure is reported. The privileged, operator mode of design – the rest remains the same. This paper provides the processor runs on unencrypted data and has full access to experimental data from our prototype to support that view. all registers and memory in the conventional way, facilitating If the reader is to take away one thing from this paper, 2 operating system and infrastructure development. The user it should be the understanding that in supervisor mode mode has restricted access rights, as is conventional, but the this processor runs unencrypted, while in user mode it runs security barrier that protects it is not based on access but on encrypted. -
The Intel X86 Microarchitectures Map Version 2.0
The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128 -
Enhanced Intel Speedstep Technology for the Intel Pentium M Processor
Enhanced Intel® SpeedStep® Technology for the Intel® Pentium® M Processor White Paper March 2004 Order Number: 301170-001 ® ® ® ® Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. This document as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. -
Features PCA-6188 Socket 478 Pentium® 4/Celeron® D
Socket 478 Pentium® 4/Celeron® D/ Celeron Processor Card with 64-bit PCI-X/VGA/Dual PCA-6188 GbE LAN Features . Supports up to 2 Serial ATA devices . Supports Dual Channel DDR 266/333/400 SDRAM . Intel® 875P chipset 400/533/800 MHz FSB . Supports up to two devices with software Serial ATA RAID 0, 1 . Onboard AGP 8X ATi Mobility™ Radeon® 9600 Pro VGA controller, 64 MB DDR SDRAM integrated . Supports dual display, LVDS and DVI . PCI-X 64-bit @ 66 MHz . Supports 10/100/1000Base-T Ethernet . 4 USB 2.0 ports . CMOS automatic backup and restore to prevent accidental data loss of BIOS setup data Specifications CPU Intel Pentium® 4 Intel Celeron® D Intel Celeron 3.06 GHz (533 FSB), 3.4 GHz (800 FSB) Max. Speed 3.06 GHz 2.8 GHz * Vcore 1.75 V CPU (Willamette) not supported Processor System L2 Cache 256 KB/ 512 KB/ 1 MB 256 KB 128/256 KB Chipset Intel 875P + 6300ESB BIOS Award 4 Mbit FWH Front Side Bus 400/533/800 MHz PCI 64-bit/33/66 MHz PCI, 66 MHz PCI-X Bus ISA HISA (ISA high drive), no DMA support Technology Dual Channel DDR 266/333/400 SDRAM with ECC support Memory Max. Capacity 4 GB Socket 184-pin DIMM x 4 Controller ATi Mobility Radeon 9600 Pro (AGP 8X) VRAM 64 MB DDR SDRAM integrated Graphic 1 CRT1, 2048 x 1536, up to 200 Hz vertical rate 1 CRT2, 2048 x 1536, up to 200 Hz vertical rate Video Output 1 LVDS, dual 115MHz interface, 2048 x 1536 @ 60 Hz 1 DVI, 1600 x 1200 @ 60 Hz, 165 MHz Interface 10/100/1000Base-T LAN 1: Intel 82547GI (Gigabit, CSA) Ethernet Controller LAN 2: Intel 82541GI (Gigabit) Connector RJ-45 x 2 Max. -
Test Drive Report for Intel Pentium 4 660
Test Drive Report for Intel Pentium 4 660 The Pentium 4 600 series processors from Intel may not hold an upper hand over their 500 series brethren in terms of clock frequencies, but they do sport quite a few significant new features: support for EM64T as well as EIST technology (for the reduction of processor power consumption and heat), and, very importantly, a series-wide upgrade to 2MB L2 Cache. Overall, the technical advances that have been achieved are rather obvious. First, a tech spec comparison chart is listed below: Pentium 4 5XX Pentium 4 6XX Model number 570, 560, 550, 540, 530, 520 660, 650, 640, 630 Clock speed 2.8 – 3.8GHz 3.0 – 3.6GHz FSB 800MHz 800MHz L2 Cache 1024KB 2048KB EM64T None Yes EDB Yes* Yes EIST None Yes Transistors 125m 169m Die size 112mm2 135mm2 *Only J-suffix 500 series processors (e.g. 560J, 570J) support EDB technology. From the outside, the new Pentium 4 600 series processors are completely identical to the Pentium 4 500 series processors. The 600 series continue to use the Prescott core, but its L2 Cache is enlarged to 2MB, resulting in increased transistor count and die size. CPU-Z Information Comparison Pentium 4 560 Pentium 4 660 “X86-64” appears in the Instructions caption for the Pentium 4 660. Both AMD’s 64-bit computing and Intel’s EM64T technologies belong to the x86-64 architecture, which means that these are expanded from traditional x86 architecture. Elsewhere, the two processors are shown to have different L2 Cache sizes.