Practicing Continuous Integration and Delivery On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Core Elements of Continuous Testing
WHITE PAPER CORE ELEMENTS OF CONTINUOUS TESTING Today’s modern development disciplines -- whether Agile, Continuous Integration (CI) or Continuous Delivery (CD) -- have completely transformed how teams develop and deliver applications. Companies that need to compete in today’s fast-paced digital economy must also transform how they test. Successful teams know the secret sauce to delivering high quality digital experiences fast is continuous testing. This paper will define continuous testing, explain what it is, why it’s important, and the core elements and tactical changes development and QA teams need to make in order to succeed at this emerging practice. TABLE OF CONTENTS 3 What is Continuous Testing? 6 Tactical Engineering Considerations 3 Why Continuous Testing? 7 Benefits of Continuous Testing 4 Core Elements of Continuous Testing WHAT IS CONTINUOUS TESTING? Continuous testing is the practice of executing automated tests throughout the software development cycle. It’s more than just automated testing; it’s applying the right level of automation at each stage in the development process. Unlike legacy testing methods that occur at the end of the development cycle, continuous testing occurs at multiple stages, including development, integration, pre-release, and in production. Continuous testing ensures that bugs are caught and fixed far earlier in the development process, improving overall quality while saving significant time and money. WHY CONTINUOUS TESTING? Continuous testing is a critical requirement for organizations that are shifting left towards CI or CD, both modern development practices that ensure faster time to market. When automated testing is coupled with a CI server, tests can instantly be kicked off with every build, and alerts with passing or failing test results can be delivered directly to the development team in real time. -
Version Control Systems, Build Automation and Continuous Integration Integration and Verification Techniques
Version Control Systems, Build Automation and Continuous Integration Integration and Verification Techniques Systematic methods and automation can highly enhance the teamwork on software projects. During this laboratory we will learn the basics of the following techniques: • Version control systems to support efficient teamwork. • Build automation to ensure stable and consistent builds. • Continuous Integration to provide automatic and systematic build, test execution and also deployments. 1 Version Control Systems Version control systems allow to keep all the historical versions of your software for easy tracking. Using version control also benefits team collaboration and improves the efficiency of the development team. In addition, it can be used as a central repository for the data, making build automation and continuous integration possible. There are historically two different approaches for managing the repositories: • Centralized model (CVS and Subversion/SVN): there is one server that contains “the repository” and everyone else checks code into and out of that repository. An important feature of these systems is that only the repository has the full history of all changes made. A checkout from this central repository will place a “working copy” on the user’s machine. This is a snapshot from a certain version of the project on his/her disk. • Distributed model (Git): In a distributed version control system, instead of a checkout, a user will clone a repository from a remote server. In return, he/she receives a full-fledged repository, not just a working copy. The user then has his/her own repository on the local machine – including all of the project’s history. -
Rugby - a Process Model for Continuous Software Engineering
INSTITUT FUR¨ INFORMATIK DER TECHNISCHEN UNIVERSITAT¨ MUNCHEN¨ Forschungs- und Lehreinheit I Angewandte Softwaretechnik Rugby - A Process Model for Continuous Software Engineering Stephan Tobias Krusche Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Informatik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Helmut Seidl Prufer¨ der Dissertation: 1. Univ.-Prof. Bernd Brugge,¨ Ph.D. 2. Prof. Dr. Jurgen¨ Borstler,¨ Blekinge Institute of Technology, Karlskrona, Schweden Die Dissertation wurde am 28.01.2016 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Informatik am 29.02.2016 angenommen. Abstract Software is developed in increasingly dynamic environments. Organizations need the capability to deal with uncertainty and to react to unexpected changes in require- ments and technologies. Agile methods already improve the flexibility towards changes and with the emergence of continuous delivery, regular feedback loops have become possible. The abilities to maintain high code quality through reviews, to regularly re- lease software, and to collect and prioritize user feedback, are necessary for con- tinuous software engineering. However, there exists no uniform process model that handles the increasing number of reviews, releases and feedback reports. In this dissertation, we describe Rugby, a process model for continuous software en- gineering that is based on a meta model, which treats development activities as parallel workflows and which allows tailoring, customization and extension. Rugby includes a change model and treats changes as events that activate workflows. It integrates re- view management, release management, and feedback management as workflows. As a consequence, Rugby handles the increasing number of reviews, releases and feedback and at the same time decreases their size and effort. -
Continuous Delivery with Spinnaker Fast, Safe, Repeatable Multi-Cloud Deployments
Continuous Delivery with Spinnaker Fast, Safe, Repeatable Multi-Cloud Deployments Emily Burns, Asher Feldman, Rob Fletcher, Tomas Lin, Justin Reynolds, Chris Sanden, Lars Wander, and Rob Zienert Beijing Boston Farnham Sebastopol Tokyo Continuous Delivery with Spinnaker by Emily Burns, Asher Feldman, Rob Fletcher, Tomas Lin, Justin Reynolds, Chris Sanden, Lars Wan‐ der, and Rob Zienert Copyright © 2018 Netflix, Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐ tions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Acquisitions Editor: Nikki McDonald Interior Designer: David Futato Editor: Virginia Wilson Cover Designer: Karen Montgomery Production Editor: Nan Barber Illustrator: Rebecca Demarest Copyeditor: Charles Roumeliotis Technical Reviewers: Chris Devers and Jess Males Proofreader: Kim Cofer May 2018: First Edition Revision History for the First Edition 2018-05-11: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous Delivery with Spin‐ naker, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsi‐ bility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. -
Enterprise Devops: Continuous Delivery Services Accelerate Innovation and Application Release End-To-End
Services Flyer Application Delivery Management Enterprise DevOps: Continuous Delivery Services Accelerate innovation and application release end-to-end Many organizations recognize DevOps as the collaborate. Adding Continuous Deployment ■ Management of Organizational Change best way to deliver value faster, reduce risk, and and Release is more than adding automated to drive adoption and cultural change achieve outcomes for both the organization infrastructure provisioning. It is about chang- and customers. Many have taken a bottom-up ing how apps and ops teams work together. All Our approach is iterative. We: approach: adopt an initial set of capabilities, these changes necessitate not just new tech- ■ Assess your current capabilities depending on their needs, and expand from nology but alignment of processes, teams, and Develop a prioritized roadmap of there. While this seems like a reasonable ap- KPIs. In fact, it is in the latter components that ■ proach, it suffers from one serious drawback: the tough challenges lie. activities, clearly identifying quick adopting one DevOps capability after another wins as well as mid- and long-term in a piecemeal manner is incredibly challenging DevOps spans the entire IT Value Chain, and initiatives and usually does not deliver on the end-to-end driving adoption of the necessary changes ■ Accelerate implementation using the DevOps promise. across technology, process, culture, and over- Model Office as the reference point all mindset is key to success. ■ Combine coaching with Management Micro Focus® Enterprise DevOps: Continuous of Organizational Change consulting Delivery Services bring a top-down approach Our Approach to assist with the adoption of any new to complement the bottom-up one you have At Micro Focus Professional Services, we have DevOps practices, processes, and tools likely taken. -
Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation
Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation : Application in a Healthcare Company Clément Duffau, Bartosz Grabiec, Mireille Blay-Fornarino To cite this version: Clément Duffau, Bartosz Grabiec, Mireille Blay-Fornarino. Towards Embedded System Agile Develop- ment Challenging Verification, Validation and Accreditation : Application in a Healthcare Company. ISSRE 2017- IEEE International Symposium on Software Reliability Engineering, Oct 2017, Toulouse, France. pp.1-4. hal-01678815 HAL Id: hal-01678815 https://hal.archives-ouvertes.fr/hal-01678815 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation Application in a Healthcare Company Clement´ Duffau Bartosz Grabiec Mireille Blay-Fornarino AXONIC and I3S AXONIC I3S Universite´ Coteˆ d’Azur, CNRS Sophia Antipolis, France Universite´ Coteˆ d’Azur, CNRS Sophia Antipolis, France [email protected] Sophia Antipolis, France [email protected] [email protected] Abstract—When Agile development meets critical embedded to survive. Moreover, with limited human resources, quality systems, verification, validation and accreditation activities are improvement with Agility usage remains to be demonstrated. impacted. Challenges such as tests increase or accreditation The remainder of this paper is organized as follows. -
Leading Practice: Test Strategy and Approach in Agile Projects
CA SERVICES | LEADING PRACTICE Leading Practice: Test Strategy and Approach in Agile Projects Abstract This document provides best practices on how to strategize testing CA Project and Portfolio Management (CA PPM) in an agile project. The document does not include specific test cases; the list of test cases and steps for each test case are provided in a separate document. This document should be used by the agile project team that is planning the testing activities, and by end users who perform user acceptance testing (UAT). Concepts Concept Description Test Approach Defines testing strategy, roles and responsibilities of various team members, and test types. Testing Environments Outlines which testing is carried out in which environment. Testing Automation and Tools Addresses test management and automation tools required for test execution. Risk Analysis Defines the approach for risk identification and plans to mitigate risks as well as a contingency plan. Test Planning and Execution Defines the approach to plan the test cases, test scripts, and execution. Review and Approval Lists individuals who should review, approve and sign off on test results. Test Approach The test approach defines testing strategy, roles and responsibilities of various team members, and the test types. The first step is to define the testing strategy. It should describe how and when the testing will be conducted, who will do the testing, the type of testing being conducted, features being tested, environment(s) where the testing takes place, what testing tools are used, and how are defects tracked and managed. The testing strategy should be prepared by the agile core team. -
Continuous Delivery: the First Steps
Continuous Delivery: The First Steps By Dave Jabs. Article as published in Article Reprint AccuRev Article Reprint Continuous Delivery: The First Steps Continuous Delivery: The First Steps Continuous delivery integrates many practices that in their totality might seem daunting. But starting with a few basic steps brings immediate benefits. Here’s how. Software development groups that achieve high performance in teams unused to it and, frequently, changes to processes and tools. development and delivery provide a strategic advantage to their For continuous delivery to be done properly, it also requires organi- business. However, many organizations struggle with delivering zational changes. Achieving excellence in continuous delivery isn’t software in a timely manner. The set of practices called “continu- easy, but the reward is enormous: Development teams will be able to ous delivery” is gaining favor as an important part of the work of move at velocities not previously thought possible. delivering new software on time. Continuous delivery defines a set of practices that aim to eliminate mechanical impediments and Steps to Continuous Delivery deliver software with greater velocity to respond to market needs. The overarching concept of continuous delivery is not new; in fact, the first Agile principle states, “the highest priority is to satisfy the customer Continuous Delivery as a Pipeline through early and continuous delivery of valuable software.” Despite this Let’s start by outlining what continuous delivery is. One of my familiarity, many companies—even those committed to Agile processes— favorite definitions comes from Jez Humble of Thoughtworks, whose struggle to just get started. book is the seminal text on the discipline. -
Agile Playbook V2.1—What’S New?
AGILE P L AY B O OK TABLE OF CONTENTS INTRODUCTION ..........................................................................................................4 Who should use this playbook? ................................................................................6 How should you use this playbook? .........................................................................6 Agile Playbook v2.1—What’s new? ...........................................................................6 How and where can you contribute to this playbook?.............................................7 MEET YOUR GUIDES ...................................................................................................8 AN AGILE DELIVERY MODEL ....................................................................................10 GETTING STARTED.....................................................................................................12 THE PLAYS ...................................................................................................................14 Delivery ......................................................................................................................15 Play: Start with Scrum ...........................................................................................15 Play: Seeing success but need more fexibility? Move on to Scrumban ............17 Play: If you are ready to kick of the training wheels, try Kanban .......................18 Value ......................................................................................................................19 -
Towards a Discipline for Agile Requirements
Forging High-Quality User Stories: Towards a Discipline for Agile Requirements Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E.M. van der Werf and Sjaak Brinkkemper Department of Information and Computing Sciences Utrecht University Email: g.lucassen, f.dalpiaz, j.m.e.m.vanderwerf, s.brinkkemper @uu.nl { } Abstract—User stories are a widely used notation for formulat- which will remain impossible to achieve in the foreseeable ing requirements in agile development. Despite their popularity in future [11]. industry, little to no academic work is available on determining Instead, tools that want to harness NLP are effective only their quality. The few existing approaches are too generic or employ highly qualitative metrics. We propose the Quality User when they focus on the clerical part of RE that a tool can Story Framework, consisting of 14 quality criteria that user perform with 100% recall and high precision, leaving thinking- stories should strive to conform to. Additionally, we introduce required work to human requirements engineers [6]. Addition- the conceptual model of a user story, which we rely on to ally, they should conform to what practitioners actually do, subsequently design the AQUSA tool. This conceptual piece of instead of what the published methods and processes advise software aids requirements engineers in turning raw user stories into higher quality ones by exposing defects and deviations from them to do [12]. User stories’ popularity among practitioners good practice in user stories. We evaluate our work by applying and simple yet strict structure make them ideal candidates. the framework and a prototype implementation to multiple case Throughout the remainder of this paper we make five studies. -
Agile Testing Practices
Agile Testing Practices Megan S. Sumrell Director of Transformation Services Valtech Introductions About us… Now about you… Your name Your company Your role Your experience with Agile or Scrum? Personal Expectations Agenda Introductions Agile Overview Traditional QA Teams Traditional Automation Approaches Role of an Agile Tester Testing Activities Refine Acceptance Criteria TDD Manual / Exploratory Testing Defect Management Documentation Performance Testing Regression Testing Agenda Continued Test Automation on Agile Teams Testing on a Greenfield Project Testing on a Legacy Application Estimation Sessions Sprint Planning Meetings Retrospectives Infrastructure Skills and Titles Closing Agile Overview Agile Manifesto "We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value: Individuals and interactions over processes and tools Working software over comprehensive documentation Customer collaboration over contract negotiation Responding to change over following a plan That is, while there is value in the items on the right, we value the items on the left more." Scrum Terms and Definitions User Story: high level requirements Product Backlog: list of prioritized user stories Sprint : one cycle or iteration (usually 2 or 4 weeks in length) Daily Stand-up: 15 minute meeting every day to review status Scrum Master: owns the Scrum process and removes impediments Product Owner: focused on ROI and owns priorities on the backlog Pigs and Chickens Traditional QA Teams How are you organized? When do you get involved in the project? What does your “test phase” look like? What testing challenges do you have? Traditional Test Automation Automation Challenges Cost of tools Hard to learn Can’t find time Maintenance UI dependent Only a few people can run them Traditional Test Pyramid UNIT TESTS Business Rules GUI TESTS Will these strategies work in an Agile environment? Food for Thought……. -
Chap 3. Test Models and Strategies 3.5 Test Integration and Automation 1
Chap 3. Test Models and Strategies 3.5 Test Integration and Automation 1. Introduction 2. Integration Testing 3. System Testing 4. Test Automation Appendix: JUnit Overview 1 1. Introduction -A system is composed of components. System of software components can be defined at any physical scope. Component System Typical intercomponent interfaces (locus of (Focus of Integration) (Scope of integration faults) Integration) Method Class Instance variables Intraclass messages Class Cluster Intraclass messages Cluster Subsystem Interclass messages Interpackage messages Subsystem System Inteprocess communication Remote procedure call ORB services, OS services -Integration test design is concerned with several primary questions: 1. Which components and interfaces should be exercised? 2. In what sequence will component interfaces be exercised? 2 3. Which test design technique should be used to exercise each interface? -Integration testing is a search for component faults that cause intercomponent failures. -System scope testing is a search for faults that lead to a failure to meet a system scope responsibility. ÷System scope testing cannot be done unless components interoperate sufficiently well to exercise system scope responsibilities. -Effective testing at system scope requires a concrete and testable system-level specification. ÷System test cases must be derived from some kind of functional specification. Traditionally, user documentation, product literature, line-item narrative requirements, and system scope models have been used. 3 2. Integration Testing -Unit testing focuses on individual components. Once faults in each component have been removed and the test cases do not reveal any new fault, components are ready to be integrated into larger subsystems. -Integration testing detects faults that have not been detected during unit testing, by focusing on small groups of components.