Spatial-Temporal Variability of the Fluctuation of Water Level in Poyang
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ecological Protection Research Based on the Cultural Landscape Space Construction in Jingdezhen
Available online at www.sciencedirect.com Procedia Environmental Sciences 10 ( 2011 ) 1829 – 1834 2011 3rd International Conference on Environmental Science and InformationConference Application Title Technology (ESIAT 2011) The Ecological Protection Research Based on the Cultural Landscape Space Construction in Jingdezhen Yu Bina*, Xiao Xuan aGraduate School of ceramic aesthetics, Jingdezhen ceramic institute, Jingdezhen, CHINA bGraduate School of ceramic aesthetics, Jingdezhen ceramic institute, Jingdezhen, CHINA [email protected] Abstract As a historical and cultural city, Jingdezhen is now faced with new challenges that exhausted porcelain clay resources restricted economic development. This paper will explore the rich cultural landscape resources from the viewpoint of the cultural landscape space, conclude that Jingdezhen is an active state diversity and animacy cultural landscape space which is composed of ceramics cultural landscape as the main part, and integrates with tea, local opera, natural ecology, architecture, folk custom, religion cultural landscape, and study how to build an mechanism of Jingdezhen ecological protection. © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Conference © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer] ESIAT2011 Organization Committee. Keywords: Jingdezhen, cultural landscape space, Poyang Lake area, ecological economy. ĉ. Introduction In 2009, Jingdezhen was one of the resource-exhausted cities listed -
Misgellanea Transport and Marketing in The
MISGELLANEA TRANSPORT AND MARKETING IN THE DEVELOPMENT OF THE JINGDEZHEN PORCELAIN INDUSTRY DURING THE MING AND QING DYNASTIES* 1. The pottery town of Jingezhen in Jiangxi province was one of the first great industrial centres in China and probably one of the earliest in the world. According to local traditions, pottery was made in the area around Jingdezhen-Fuliang xian-as an early as the Han dynasty. The imperial court of the Chen dynasty received pottery from Fuliang in AD 583 and during the Tang, kilns near the town which have since been excavated, supplied porcelain to the emperor on several occasions. Pottery and porcelain were made throughout the Song and Yuan periods, but the kilns and workshops remained scattered around Fuliang, and little, if any, was made in Jingdezhen itself, which functioned primarily as a market, and as a government control point for official orders. During the Ming dynasty, the industry and the town of Jingdezhen underwent radical changes. The quantity of porcelain produced increased dramatically and the quality greatly improved. Jingdezhen was transformed from a market into an industrial centre, so that by the end of the dynasty most kilns outside had closed down and production was concentrated in the town. Although this process of con- centration took place throughout the Ming dynasty, the period of most rapid change was during the sixteenth century in the reigns of the Jiajing (1522-66) and Wanli (1573-1620) emperors. A number of factors were involved in this transfor- mation. Among the most important were the interest of the imperial household in porcelain, the availability of raw materials, the technical expertise of the potters, supply of labour, appropriate management and finance and the great changes taking place in the Chinese economy as a whole in the sixteenth century. -
Four Decades of Wetland Changes of the Largest Freshwater Lake in China: Possible Linkage to the Three Gorges Dam?
Remote Sensing of Environment 176 (2016) 43–55 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Four decades of wetland changes of the largest freshwater lake in China: Possible linkage to the Three Gorges Dam? Lian Feng a, Xingxing Han a, Chuanmin Hu b, Xiaoling Chen a,⁎ a State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China b College of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, FL 33701, USA article info abstract Article history: Wetlands provide important ecosystem functions for water alteration and conservation of bio-diversity, yet they Received 17 March 2015 are vulnerable to both human activities and climate changes. Using four decades of Landsat and HJ-1A/1B satel- Received in revised form 10 December 2015 lites observations and recently developed classification algorithms, long-term wetland changes in Poyang Lake, Accepted 17 January 2016 the largest freshwater lake of China, have been investigated in this study. In dry seasons, while the transitions Available online xxxx from mudflat to vegetation and vice versa were comparable before 2001, vegetation area increased by 2 Keywords: 620.8 km (16.6% of the lake area) between 2001 and 2013. In wet seasons, although no obvious land cover Poyang Lake changes were observed between 1977 and 2003, ~30% of the Nanjishan Wetland National Nature Reserve Wetland (NWNNR) in the south lake changed from water to emerged plant during 2003 and 2014. The changing rate of Three Gorges Dam the Normalized Difference Vegetation Index (NDVI) in dry seasons showed that the vegetation in the lake center Wetland vegetation regions flourished, while the growth of vegetation in the off-water areas was stressed. -
World Bank Document
Document of The World Bank FOR OFFICIAL USE ONLY Public Disclosure Authorized Report No: 42 124-CN PROJECT APPRAISAL DOCUMENT ON A PROPOSED LOAN Public Disclosure Authorized IN THE AMOUNT OF US$lOO MILLION TO THE PEOPLE’S REPUBLIC OF CHINA FOR A JIANGXI SHIHUTANG NAVIGATION AND HYDROPOWER COMPLEX PROJECT Public Disclosure Authorized August 14,2008 China and Mongolia Sustainable Development Unit Sustainable Development Department East Asia and Pacific Region This document has a restricted distribution and may be used by recipients only in the performance of their official duties. Its contents may not otherwise be disclosed without World Bank authorization. Public Disclosure Authorized CURRENCY EQUIVALENTS (Exchange Rate Effective January 28,2008) CurrencyUnit = RMB RMB1 = US$O.1389 US$1 = RMB7.2 FISCAL YEAR January 1 - December 31 ABBREVIATIONS AND ACRONYMS cccc China Communications Construction Company CDM Clean Development Mechanism CFU Carbon Finance Unit CGC China Guodian Corporation CPS Country Partnership Strategy CQS Selection Based on Consultants’ Qualifications DA Designated Account DP Displaced Person DSP Dam Safety Panel DWTIdwt Deadweight Tons EA Environmental Assessment EIA Environmental Impact Assessment EIRR Economic Internal Rate of Return EMP Environment Management Plan ENPV Economic Net Present Value EPP Emergency Preparedness Plan FM Financial Management FMS Financial Management Specialist FS Feasibility Study FSL Fixed Spread Loan FSR Feasibility Study Report FYP Five-Year Plan GDP Gross Domestic Product GOC Government -
Responses of Water Level in China's Largest Freshwater Lake to the Meteorological Drought Index (SPEI) in the Past Five Decades
water Article Responses of Water Level in China’s Largest Freshwater Lake to the Meteorological Drought Index (SPEI) in the Past Five Decades Ruonan Wang 1,2, Wenqi Peng 1, Xiaobo Liu 1,*, Wenqiang Wu 1, Xuekai Chen 1 and Shijie Zhang 1 1 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China; [email protected] (R.W.); [email protected] (W.P.); [email protected] (W.W.); [email protected] (X.C.); [email protected] (S.Z.) 2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China * Correspondence: [email protected]; Tel.: +86-010-6878-1897 Received: 22 December 2017; Accepted: 25 January 2018; Published: 1 February 2018 Abstract: Poyang Lake, which is the largest freshwater lake in China, is an important regional water resource and iconic ecosystem that has experienced a period of continuous low water level in recent years. In this paper, the Standardized Precipitation Evapotranspiration Index (SPEI) was applied to analyze the temporal variability and spatial distribution characteristics of meteorological drought over the Poyang Lake Basin during 1961–2015. In addition, correlation analysis was used to investigate the response relationship between lake level and meteorological drought in the basin. The main results showed that: (1) The decline of water level in Poyang Lake since 2000 has been dramatic, especially in autumn, when the downward speed reached 11.26 cm/day. (2) The meteorological drought in the Poyang Lake Basin has obvious seasonal characteristics, and drying tendencies in spring and autumn were relatively obvious. -
Contingent Valuation of Yangtze Finless Porpoises in Poyang Lake, China Dong, Yanyan
Contingent Valuation of Yangtze Finless Porpoises in Poyang Lake, China An der Wirtschaftswissenschaftlichen Fakultät der Universität Leipzig eingereichte DISSERTATION zur Erlangung des akademischen Grades Doktor der Wirtschaftswissenschaft (Dr. rer. pol.) vorgelegt von Yanyan Dong Master der Ingenieurwissenschaft. Leipzig, im September 2010 Acknowledgements This study has been conducted during my stay at the Department of Economics at the Helmholtz Center for Environmental research from September 2007 to December 2010. I would like to take this opportunity to express my gratitude to the following people: First and foremost, I would like to express my sincere gratitude to Professor Dr. Bernd Hansjürgens for his supervision and guidance. With his kind help, I received the precious chance to do my PhD study in UFZ. Also I have been receiving his continuous support during the entire time of my research stay. He provides lots of thorough and constructive suggestions on my dissertation. Secondly, I would like to thank Professor Dr. -Ing. Rober Holländer for his willingness to supervise me and his continuous support so that I can deliver my thesis at the University of Leipzig. Thirdly, I am heartily thankful to Dr. Nele Lienhoop, who helped me a lot complete the writing of this dissertation. She was always there to meet and talk about my ideas and to ask me good questions to help me. Furthermore, there are lots of other people who I would like to thank: Ms. Sara Herkle provided the survey data collected in Leipzig and Halle, Germany. Without these data, my thesis could not have been completed. It is my great honor to thank Professor John B. -
Dis00277.Pdf
Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» На правах рукописи Гусева Наталья Владимировна МЕХАНИЗМЫ ФОРМИРОВАНИЯ ХИМИЧЕСКОГО СОСТАВА ПРИРОДНЫХ ВОД В РАЗЛИЧНЫХ ЛАНДШАФТНО-КЛИМАТИЧЕСКИХ ЗОНАХ ГОРНО-СКЛАДЧАТЫХ ОБЛАСТЕЙ ЦЕНТРАЛЬНОЙ ЕВРАЗИИ Специальность 25.00.07 – Гидрогеология Диссертация на соискание ученой степени доктора геолого-минералогических наук Томск – 2018 2 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ ............................................................................................................................................ 4 ГЛАВА 1. ПОСТАНОВКА ФУНДАМЕНТАЛЬНОЙ ПРОБЛЕМЫ ........................................ 10 ГЛАВА 2. МЕТОДИКА ИССЛЕДОВАНИЙ ................................................................................. 18 ГЛАВА 3. МЕХАНИЗМЫ ФОРМИРОВАНИЯ ХИМИЧЕСКОГО СОСТАВА ПРИРОДНЫХ ВОД РАЙОНОВ С ГУМИДНЫМ КЛИМАТОМ ............................................. 25 3.1 ГЕОХИМИЯ ПРИРОДНЫХ ВОД ВОДОСБОРНОЙ ТЕРРИТОРИИ ОЗЕРА ПОЯНХУ, КИТАЙ ................... 25 3.1.1 Природные условия района исследований ......................................................................... 25 3.1.2 Химический состав природных вод ................................................................................... 34 3.1.3 Равновесие природных вод с горными породами и геохимические типы вод ............... 56 3.2 ГЕОХИМИЯ ПРИРОДНЫХ ВОД ВОСТОЧНОГО СКЛОНА ПОЛЯРНОГО УРАЛА ................................... 62 3.2.1 Природные условия района исследований -
Of the Chinese Bronze
READ ONLY/NO DOWNLOAD Ar chaeolo gy of the Archaeology of the Chinese Bronze Age is a synthesis of recent Chinese archaeological work on the second millennium BCE—the period Ch associated with China’s first dynasties and East Asia’s first “states.” With a inese focus on early China’s great metropolitan centers in the Central Plains Archaeology and their hinterlands, this work attempts to contextualize them within Br their wider zones of interaction from the Yangtze to the edge of the onze of the Chinese Bronze Age Mongolian steppe, and from the Yellow Sea to the Tibetan plateau and the Gansu corridor. Analyzing the complexity of early Chinese culture Ag From Erlitou to Anyang history, and the variety and development of its urban formations, e Roderick Campbell explores East Asia’s divergent developmental paths and re-examines its deep past to contribute to a more nuanced understanding of China’s Early Bronze Age. Campbell On the front cover: Zun in the shape of a water buffalo, Huadong Tomb 54 ( image courtesy of the Chinese Academy of Social Sciences, Institute for Archaeology). MONOGRAPH 79 COTSEN INSTITUTE OF ARCHAEOLOGY PRESS Roderick B. Campbell READ ONLY/NO DOWNLOAD Archaeology of the Chinese Bronze Age From Erlitou to Anyang Roderick B. Campbell READ ONLY/NO DOWNLOAD Cotsen Institute of Archaeology Press Monographs Contributions in Field Research and Current Issues in Archaeological Method and Theory Monograph 78 Monograph 77 Monograph 76 Visions of Tiwanaku Advances in Titicaca Basin The Dead Tell Tales Alexei Vranich and Charles Archaeology–2 María Cecilia Lozada and Stanish (eds.) Alexei Vranich and Abigail R. -
The Ancient Site of Architectural Culture Origin
Advances in Social Science, Education and Humanities Research, volume 123 2nd International Conference on Education, Sports, Arts and Management Engineering (ICESAME 2017) The ancient site of architectural culture origin Zhihua Xu School of jingdezhen ceramic institute of design art jingdezhen 333403 China Keywords: The ancient, site, architectural, culture origin Abstract: Jingde town is located in huizhou junction, and adjacent to each other. In history, according to "the huizhou government record" records: "two years in yongtai and analysis of yixian county and rao states the float saddle (note, jingdezhen old once owned by the float saddle county jurisdiction) buy qimen", i.e. the float saddle and subordinate to jingdezhen had and parts belong to huizhou huizhou qimen county jurisdiction. The most important is the main river ChangJiang jingdezhen is originated in qimen county, anhui province, the poyang lake in the Yangtze river, their blood. Jingdezhen and ancient huizhou all belong to the foothills, urban and rural in a small basin surrounded by mountains, around the mountains ring, sceneries in jingdezhen ChangJiang; Compared with xin an river in huizhou. Jiangnan people are unique and exquisite, intelligent for the development and prosperity of the Chinese nation, wrote the magnificent words, part of the hui culture extensive and profound and world-famous jingdezhen ceramics. 1, the location decision Jingdezhen lifeline - ChangJiang, comes from anhui qimen, inject the Yangtze river flows through the poyang lake, jingdezhen is connected with a pulse of huizhou. According to the huizhou government record "records:" two years in yongtai and analysis of yixian county and rao states the float saddle JingDeSuo (tang dynasty to the float saddle county jurisdiction) buy qimen [Ding Tingjian (qing dynasty), Lou to fix the: "the huizhou government record", huangshan publishing house, 2010, pp. -
Ancient Stone Bridge Revealed After Chinese Lake Dries up 3 January 2014
Ancient stone bridge revealed after Chinese lake dries up 3 January 2014 By lowering the level of the Yangtze river, the vast Three Gorges dam project has also caused an increased outflow of water from both Poyang and Dongting, another lake in neighbouring Hunan province, experts told the Beijing News last year, decreasing the water levels of both bodies. In 2012, Chinese authorities air-dropped shrimps, millet and maize over Poyang lake to feed hundreds of thousands of birds at risk of hunger due to the drought. © 2014 AFP People walk on an ancient stone bridge on the dried up lakebed of Poyang lake in Jiujiang, east China's Jiangxi province, November 2, 2013 A stone bridge dating back to the Ming dynasty has been discovered after water levels plunged at China's largest freshwater lake, a Beijing newspaper reported Friday. The remains of the 2,930-metre-long bridge, made entirely of granite and dating back nearly 400 years, appeared at Poyang lake in the central province of Jiangxi, the Beijing News reported. The lake, which has been as large as 4,500 square kilometres in the past, has been drying up in recent years due to a combination of low rainfall and the impact of the Three Gorges Dam, experts say. State broadcaster China Central Television reported in November that drought had shrunk the lake to less than 1,500 square kilometres, threatening the plankton, fish and other organisms that inhabit it and the livelihoods of the nearly 70 percent of local residents who make a living by fishing. -
Did the Establishment of Poyang Lake Eco-Economic Zone Increase Agricultural Labor Productivity in Jiangxi Province, China?
Article Did the Establishment of Poyang Lake Eco-Economic Zone Increase Agricultural Labor Productivity in Jiangxi Province, China? Tao Wu 1 and Yuelong Wang 2,* Received: 10 December 2015; Accepted: 21 December 2015; Published: 24 December 2015 Academic Editor: Marc A. Rosen 1 School of Economics, Jiangxi University of Finance and Economics, 169 Shuanggang East Road, Nanchang 330013, China; [email protected] 2 Center for Regulation and Competition, Jiangxi University of Finance and Economics, 169 Shuanggang East Road, Nanchang 330013, China * Correspondence: [email protected]; Tel.: +86-0791-83816310 Abstract: In this paper, we take the establishment of Poyang Lake Eco-Economic Zone in 2009 as a quasi-natural experiment, to evaluate its influence on the agricultural labor productivity in Jiangxi Province, China. The estimation results of the DID method show that the establishment of the zone reduced agricultural labor productivity by 3.1%, lowering farmers’ net income by 2.5% and reducing the agricultural GDP by 3.6%. Furthermore, this negative effect has increased year after year since 2009. However, the heterogeneity analysis implies that the agricultural labor productivities of all cities in Jiangxi Province will ultimately converge. We find that the lack of agricultural R&D activities and the abuse of chemical fertilizers may be the main reasons behind the negative influence of the policy, by examining two possible transmission channels—the R&D investment and technological substitution. Corresponding policy implications are also provided. Keywords: Poyang Lake Eco-Economic Zone; agricultural labor productivity; DID method; R&D on agriculture 1. Introduction Poyang Lake, which is located in the northern part of Jiangxi Province and connects to the lower Yangtze River, is the largest freshwater lake in China. -
Global Map of Irrigation Areas CHINA
Global Map of Irrigation Areas CHINA Area equipped for irrigation (ha) Area actually irrigated Province total with groundwater with surface water (ha) Anhui 3 369 860 337 346 3 032 514 2 309 259 Beijing 367 870 204 428 163 442 352 387 Chongqing 618 090 30 618 060 432 520 Fujian 1 005 000 16 021 988 979 938 174 Gansu 1 355 480 180 090 1 175 390 1 153 139 Guangdong 2 230 740 28 106 2 202 634 2 042 344 Guangxi 1 532 220 13 156 1 519 064 1 208 323 Guizhou 711 920 2 009 709 911 515 049 Hainan 250 600 2 349 248 251 189 232 Hebei 4 885 720 4 143 367 742 353 4 475 046 Heilongjiang 2 400 060 1 599 131 800 929 2 003 129 Henan 4 941 210 3 422 622 1 518 588 3 862 567 Hong Kong 2 000 0 2 000 800 Hubei 2 457 630 51 049 2 406 581 2 082 525 Hunan 2 761 660 0 2 761 660 2 598 439 Inner Mongolia 3 332 520 2 150 064 1 182 456 2 842 223 Jiangsu 4 020 100 119 982 3 900 118 3 487 628 Jiangxi 1 883 720 14 688 1 869 032 1 818 684 Jilin 1 636 370 751 990 884 380 1 066 337 Liaoning 1 715 390 783 750 931 640 1 385 872 Ningxia 497 220 33 538 463 682 497 220 Qinghai 371 170 5 212 365 958 301 560 Shaanxi 1 443 620 488 895 954 725 1 211 648 Shandong 5 360 090 2 581 448 2 778 642 4 485 538 Shanghai 308 340 0 308 340 308 340 Shanxi 1 283 460 611 084 672 376 1 017 422 Sichuan 2 607 420 13 291 2 594 129 2 140 680 Tianjin 393 010 134 743 258 267 321 932 Tibet 306 980 7 055 299 925 289 908 Xinjiang 4 776 980 924 366 3 852 614 4 629 141 Yunnan 1 561 190 11 635 1 549 555 1 328 186 Zhejiang 1 512 300 27 297 1 485 003 1 463 653 China total 61 899 940 18 658 742 43 241 198 52