Insects and Flowers: the Art of Maria Sibylla Merian Free Download

Total Page:16

File Type:pdf, Size:1020Kb

Insects and Flowers: the Art of Maria Sibylla Merian Free Download INSECTS AND FLOWERS: THE ART OF MARIA SIBYLLA MERIAN FREE DOWNLOAD David Brafman,Stephanie Schrader | 52 pages | 08 Sep 2008 | Getty Trust Publications | 9780892369294 | English | Santa Monica CA, United States Insects and Flowers: The Art of Maria Sibylla Merian I created the first classification for all the insects which had chrysalises, the daytime butterflies and the nighttime moths. Andy Meyer marked it as to-read Oct 11, Voraces Lectores added it Aug 12, Terrestrial Arthropod Reviews. Description David Brafman and Stephanie Schrader The artist and scientist Maria Sibylla Merian — was born in Frankfurt, Germany, into a middle-class family of publishers and artists. Maria Sibylla Merian was a naturalist and scientific illustrator who studied plants and insects and made detailed paintings about them. The flower painter Rachel Ruysch became Merian's pupil. Aside from painting flowers she made copperplate engravings. Views Read Edit View history. A Tessaratomidae bug has been named Insects and Flowers: The Art of Maria Sibylla Merian merianae. Pineapple and cockroaches Maria Sibylla Merian For instance, the Gulf fritillary is shown with a vanilla plant an orchid from Madagascar, cultivated in Surinamewhich is definitely not the host plant, and with the caterpillar of some other species. In general, only men received royal or government funding to travel in the colonies to find new species of plants and animals, make collections and work there, or settle. Scientific expeditions at this period of time were not common, and Merian's self- funded expedition raised many eyebrows. Inshe started to publish a three-volume series, each with 12 plates depicting flowers. Add your deal, information or promotional text. She also gave drawing lessons to unmarried daughters of wealthy families her "Jungferncompaney", i. Wikipedia article References Other women still-life painters, such as Insects and Flowers: The Art of Maria Sibylla Merian contemporary Margaretha de Heerincluded insects in their floral pictures, but did not breed or study them. Trivia About Insects and Flowe If you love art, then you may know that today is the birthday of one of the world's most talented scientific illustrators, Maria Sibylla Merian To ask other readers questions about Insects and Flowersplease sign up. Inthe city of Amsterdam granted Merian permission to travel to Suriname in South America, along with her younger daughter Dorothea Maria. Published September 8th by J. In that case, we can't In Insects and Flowers: The Art of Maria Sibylla Merian, Merian traveled with her mother, husband and children to Friesland where her half-brother Caspar Merian had lived since Nicolaes Maes c. Discovery of a rare and striking new pierid butterfly from Panama. In the last quarter of the 20th century, the work of Merian was re-evaluated, validated, and reprinted. The voyage afforded Merian a unique opportunity to explore new species of insects and plants. She used Native American names to refer to the plants, which became used in Europe:. As the word spread among scholars in Amsterdam visitors came to view her paintings of exotic insects and plants. While living there, Merian continued painting, working on parchment and linen, and creating designs for embroidery. I spent my time investigating insects. Wikimedia Commons has media related to Maria Sibylla Merian. Insects and Flowers: The Art of Maria Sibylla Merian joined Britannica Insects and Flowers: The Art of Maria Sibylla Merian and No trivia or quizzes yet. Escape the Present with These 24 Historical Romances. The Madagascan population of the African stonechat bird was given the name Saxicola torquatus sibilla. Official site: www. Books by Maria Sibylla Merian. Merian was the first European woman to independently go on a scientific expedition in South America. The renewed scientific and artistic interest in her work was triggered in part by a number of scholars who examined collections of her works, such as the one in Rosenborg CastleCopenhagen. Although she was one of the world's first entomologists, it's likely you have never heard of her: she certainly is not as well-known as she deserves to be — even among professional entomologists. Dorothea Maria subsequently was summoned to St. Original Title. As an artist, Merian's work had a strong influence upon scientific illustration. To see what your friends thought of this book, please sign up. Articles from Britannica Encyclopedias for elementary and high school students. Long before the camera was invented, she acted as the world's eyes by painting stunning and scientifically accurate pictures of flowers and later, of insects. Feb 02, Retta Ritchie rated it it was amazing. .
Recommended publications
  • Maria Sibylla Merian and Metamorphosis
    PUBLISHED: 21 FEBRUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0074 books & arts Maria Sibylla Merian and metamorphosis ANNIVERSARY Despite the fact that art is subjective and concerned with aesthetics, whereas science is an objective enterprise based on observation and experimentation, a combination of these dissimilar activities can yield surprising results. A small group of world-class biologists have also been gi"ed artists. #is group includes the German botanist Julius Sachs, founder of experimental plant physiology 1; the zoologist Ernst Haeckel; and, perhaps less known, the entomologist Maria Sibylla Merian (Fig. 1), the tricentenary of whose death falls this year. Merian made signi%cant contributions to the foundation of developmental biology and ecology, but has been neglected. Born in 1647 in Frankfurt (Main), Germany, Merian Figure 2 | Merian’s paintings. Left, watercolour image on the title page of Merian’s first scientific book developed her skill painting insects and Der Raupen Wunderbare Verwandelung und Sonderbare Blumen-nahrung (The Wonderful Metamorphosis plants under the guidance of her stepfather, of Caterpillars and Strange Flower Nourishment). Merian described the complete life cycles of numerous the artist Jacob Marrel. At the age of 13, she insect species, including their destructive feeding behaviour on host plants, and rejected the then was already an accomplished painter, with popular idea of an origin of insects via ‘spontaneous generation’. Image courtesy of U. Kutschera. Right, an overwhelming drive to study nature. Merian’s realistic documentation of the “struggle for existence” in a natural world that was, in her view, Merian started to collect insects and plants God’s creation.
    [Show full text]
  • Maria Sibylla Merian's Research Journey to Suriname
    Brigham Young University BYU ScholarsArchive Resources Supplementary Information August 2017 To See for Herself: Maria Sibylla Merian’s Research Journey to Suriname: 1699-1701 Catherine Grimm Follow this and additional works at: https://scholarsarchive.byu.edu/sophsupp_resources Part of the German Literature Commons BYU ScholarsArchive Citation Grimm, Catherine, "To See for Herself: Maria Sibylla Merian’s Research Journey to Suriname: 1699-1701" (2017). Resources. 6. https://scholarsarchive.byu.edu/sophsupp_resources/6 This Book is brought to you for free and open access by the Supplementary Information at BYU ScholarsArchive. It has been accepted for inclusion in Resources by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. To See for Herself: Maria Sibylla Merian’s Research Journey to Suriname: 1699-1701 By Catherine Grimm Maria Sibylla Merian was born on April, 2 1647 in Frankfurt am Main, one year before the signing of the Peace treaties of Westphalia and the end of the Thirty Years War. Her 55 year old father, the famous artist, engraver and publisher Matthäus Merian, died when she was three. About a year after his death, Maria’s mother, Johanna Sibylla, remarried the painter and art- dealer Jacob Marrel whose family had moved to Frankfurt from the town of Frankenthal when he was 10, and who also had lived for a number of years in Utrecht, before returning to Frankfurt in 1651. He had been a student of the well-known still life artist Geog Flegel as well as the Dutch painter Jan Davidzs de Heem.1 From an early age, Merian appears to have been surprisingly adept at pursuing her own interests, without arousing the disapproval of her immediate social environment.
    [Show full text]
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • Description of Two New Species of Pygoplatys Dallas, 1851, with a Key to the Species of the Genus (Hemiptera: Heteroptera: Tessaratomidae)
    Heteropterus Revista de Entomología 2011 Heteropterus Rev. Entomol. 11(2): 287-297 ISSN: 1579-0681 Description of two new species of Pygoplatys Dallas, 1851, with a key to the species of the genus (Hemiptera: Heteroptera: Tessaratomidae) PH. MAGNIEN Département Systématique et Évolution (Entomologie); Muséum National d’Histoire Naturelle; CP 50; 45 rue Buffon; F-75005 Paris; E-mail: [email protected] Abstract Two new species are described: Pygoplatys (s. str.) jordii n. sp. from Borneo, and P. (Odontoteuchus) berendi n. sp. from Sulawesi. The first key to the species of the genus Pygoplatys is given. A lectotype for P. bovillus Stål, 1871 is designated. Key words: Tessaratomidae,Tessaratominae, Pygoplatys, jordii n. sp., berendi n. sp., bovillus, key to species. Resumen Descripción de dos nuevas especies de Pygoplatys Dallas, 1851 y clave de las especies del género (Hemiptera: Heteroptera: Tessaratomidae) Se describen dos nuevas especies: Pygoplatys (s. str.) jordii n. sp., de Borneo, y P. (Odontoteuchus) berendi n. sp., de Célebes. Se presenta la primera clave de especies del género Pygoplatys. Se designa lectotipo de P. bovillus Stål, 1871. Palabras clave: Tessaratomidae,Tessaratominae, Pygoplatys, jordii n. sp., berendi n. sp., bovillus, clave de especies. Laburpena Pygoplatys Dallas, 1851 bi espezieren deskribapena eta generoaren espezie-klabe bat (Hemiptera: Heteroptera: Tessaratomidae) Bi espezie berri deskribatzen dira: Pygoplatys (s. str.) jordii n. sp., Borneokoa, eta P. (Odontoteuchus) berendi n. sp., Zele- besekoa. Pygoplatys generoko lehenengo espezie-klabea aurkezten da. Lektotipoa izendatzen da P. bovillus Stål, 1871 espezierako. Gako-hitzak: Tessaratomidae,Tessaratominae, Pygoplatys, jordii n. sp., berendi n. sp., bovillus, espezie-klabea. Introduction With twenty-nine described species, the genus Pygo- platys is the largest genus in the family Tessaratomidae.
    [Show full text]
  • The Isolation and Identification of Pathogenic Fungi from Tessaratoma Papillosa Drury (Hemiptera: Tessaratomidae)
    The isolation and identification of pathogenic fungi from Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae) Xiang Meng1, Junjie Hu2 and Gecheng Ouyang1 1 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China 2 College of Life Science, Guangzhou University, Guangzhou, Guangdong, China ABSTRACT Background. Litchi stink-bug, Tessaratoma papillosa Drury (Hemiptera: Tessarato- midae), is one of the most widespread and destructive pest species on Litchi chinensis Sonn and Dimocarpus longan Lour in Southern China. Inappropriate use of chemical pesticides has resulted in serious environmental problems and food pollution. Generating an improved Integrated Pest Management (IPM) strategy for litchi stink- bug in orchard farming requires development of an effective biological control agent. Entomopathogenic fungi are regarded as a vital ecological factor in the suppression of pest populations under field conditions. With few effective fungi and pathogenic strains available to control litchi stink-bug, exploration of natural resources for promising entomopathogenic fungi is warranted. Methods & Results. In this study, two pathogenic fungi were isolated from cadavers of adult T. papillosa. They were identified as Paecilomyces lilacinus and Beauveria bassiana by morphological identification and rDNA-ITS homogeneous analysis. Infection of T. papillosa with B. bassiana and P. lilacinus occurred initially from the antennae, metameres, and inter-segmental membranes. Biological tests showed that the two entomopathogenic fungi induced high mortality in 2nd and 5th instar nymphs of Submitted 1 March 2017 nd Accepted 13 September 2017 T. papillosa. B. bassiana was highly virulent on 2 instar nymphs of T.
    [Show full text]
  • The History and Influence of Maria Sibylla Merian's Bird-Eating Tarantula: Circulating Images and the Production of Natural Knowledge
    Biology Faculty Publications Biology 2016 The History and Influence of Maria Sibylla Merian's Bird-Eating Tarantula: Circulating Images and the Production of Natural Knowledge Kay Etheridge Gettysburg College Follow this and additional works at: https://cupola.gettysburg.edu/biofac Part of the Biology Commons, and the Illustration Commons Share feedback about the accessibility of this item. Recommended Citation Etheridge, K. "The History and Influence of Maria Sibylla Merian’s Bird-Eating Tarantula: Circulating Images and the Production of Natural Knowledge." Global Scientific Practice in the Age of Revolutions, 1750 – 1850. P. Manning and D. Rood, eds. (Pittsburgh, University of Pittsburgh Press. 2016). 54-70. This is the publisher's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/biofac/54 This open access book chapter is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact [email protected]. The History and Influence of Maria Sibylla Merian's Bird-Eating Tarantula: Circulating Images and the Production of Natural Knowledge Abstract Chapter Summary: A 2009 exhibition at the Fitzwilliam Museum on the confluence of science and the visual arts included a plate from a nineteenth-century encyclopedia owned by Charles Darwin showing a tarantula poised over a dead bird (figure 3.1).1 The genesis of this startling scene was a work by Maria Sibylla Merian (German, 1647–1717), and the history of this image says much about how knowledge of the New World was obtained, and how it was transmitted to the studies and private libraries of Europe, and from there into popular works like Darwin’s encyclopedia.
    [Show full text]
  • Chapter 12. Estimating the Host Range of the Tachinid Trichopoda Giacomellii, Introduced Into Australia for Biological Control of the Green Vegetable Bug
    __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 12. ESTIMATING THE HOST RANGE OF THE TACHINID TRICHOPODA GIACOMELLII, INTRODUCED INTO AUSTRALIA FOR BIOLOGICAL CONTROL OF THE GREEN VEGETABLE BUG M. Coombs CSIRO Entomology, 120 Meiers Road, Indooroopilly, Queensland, Australia 4068 [email protected] BACKGROUND DESCRIPTION OF PEST INVASION AND PROBLEM Nezara viridula (L.) is a cosmopolitan pest of fruit, vegetables, and field crops (Todd, 1989). The native geographic range of N. viridula is thought to include Ethiopia, southern Europe, and the Mediterranean region (Hokkanen, 1986; Jones, 1988). Other species in the genus occur in Africa and Asia (Freeman, 1940). First recorded in Australia in 1916, N. viridula soon be- came a widespread and serious pest of most legume crops, curcubits, potatoes, tomatoes, pas- sion fruit, sorghum, sunflower, tobacco, maize, crucifers, spinach, grapes, citrus, rice, and mac- adamia nuts (Hely et al., 1982; Waterhouse and Norris, 1987). In northern Victoria, central New South Wales, and southern Queensland, N. viridula is a serious pest of soybeans and pecans (Clarke, 1992; Coombs, 2000). Immature and adult bugs feed on vegetative buds, devel- oping and mature fruits, and seeds, causing reductions in crop quality and yield. The pest status of N. viridula in Australia is assumed to be partly due to the absence of parasitoids of the nymphs and adults. No native Australian tachinids have been found to parasitize N viridula effectively, although occasional oviposition and development of some species may occur (Cantrell, 1984; Coombs and Khan, 1997). Previous introductions of biological control agents to Australia for control of N. viridula include Trichopoda pennipes (Fabricius) and Trichopoda pilipes (Fabricius) (Diptera: Tachinidae), which are important parasitoids of N.
    [Show full text]
  • Download PDF (Inglês)
    Biota Neotropica 20(4): e20201045, 2020 www.scielo.br/bn ISSN 1676-0611 (online edition) Article Anatomy of male and female reproductive organs of stink bugs pests (Pentatomidae: Heteroptera) from soybean and rice crops Vinícius Albano Araújo1* , Tito Bacca2 & Lucimar Gomes Dias3,4 1Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade, Macaé, RJ, Brasil. 2Universidad del Tolima, Facultad de Ingeniería Agronómica, Ibagué, Tolima, Colombia. 3Universidad de Caldas, Caldas, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Biológicas, Colombia. 4Universidad de Caldas, Grupo de investigación Bionat, Caldas, Colombia. *Corresponding author: Vinícius Albano Araújo, e-mail: [email protected] ARAÚJO, V., BACCA, T., DIAS, L. Anatomy of male and female reproductive organs of stink bugs pests (Pentatomidae: Heteroptera) from soybean and rice crops. Biota Neotropica 20(4): e20201045. https://doi.org/10.1590/1676-0611-BN-2020-1045 Abstract: Pentatomidae comprises a diverse group of stink bugs widely distributed in the Neotropical region. Many species are phytophagous and cause injuries to plants, and can thus be defined as agricultural pests. In this study, the anatomy of the female and male reproductive tracts of three important agricultural pests in Colombia is described: Piezodorus guildinii Westwood, 1837 and Chinavia ubica Rolston 1983, found on soybeans, and Oebalus insularis Stål, 1872, found in rice crops. For that, light microscopy techniques were used. The anatomy of the reproductive tract of sexually mature males of the three species studied consisted of a pair of testes, vas deferens, seminal vesicles, ejaculatory bulb, an ejaculatory duct that opens into an aedeagus, and paired accessory glands.
    [Show full text]
  • Maternal Care in Pygoplatys Bugs (Heteroptera: Tessaratomidae)
    NOTE Eut. J. Entomol. 95: 311-315, 1998 ISSN 1210-5759 Maternal care inPygoplatys bugs (Heteroptera: Tessaratomidae) M atija GOGALA', Hoi-Sen YONG2 andC arsten BRÜHL3 1 1 Prirodoslovni muzej Slovenije, Presemova 20, P.O. Box 290, SI-1001 Ljubljana, Slovenia; e-mail: [email protected] departm ent of Zoology, University of Malaya, 50603 Kuala Lumpur, Malaysia 3Zoologie III, Theodor-Boveri-Biozentrum der Universität, Am Hubland, D-97074 Würzburg, Germany Tessaratomidae,Pygoplatys, maternal care, egg guarding Abstract.Cases of maternal care and egg guarding were observed and photographed in bugs of the family Tessaratomidae. Females of one still undescribed speciesPygoplatys of from Doi Inthanon, Thailand, and ofPygoplatys acutus from Borneo are carrying their young larvae on the venter. The egg guarding was also observed inPygoplatys acutus from Kepong, Peninsular Malaysia. It seems, that maternal care is a characteristic behavior in bugs of the genusPygoplatys. Introduction Parental care at various levels is present in many insect groups. The guarding of eggs and attendance of the early instars probably reduces the levels of mortality during these stages, even in subsocial species which lack any nesting behavior. The parental (and usually maternal) care is known in the orthopteroid orders and in many other groups, e.g. Embioptera, Psocoptera, Thysanoptera, Heteroptera, Homoptera, Coleóptera and Hymenoptera (Tallamy & Wood, 1986). In Heteroptera, cases of maternal egg guarding and early instar attendance have been reported for many terrestrial and some aquatic species (Melber & Schmidt, 1977; Schuh & Slater, 1995). In families Reduviidae and Belostomatidae, cases of paternal care of the young are known (Tallamy & Wood, 1986). Until now, however, the only report of parental care in family Tessaratomidae has been published by Tachikawa (1991, egg guarding in the Japanese species of Pygoplatys and Erga; after Tallamy & Schaefer, 1997).
    [Show full text]
  • Dinidoridae, Megarididae E Tessaratomidae
    | 403 Resumen DINIDORIDAE, MEGARIDIDAE Se presenta una revisión del conocimiento de la di- E TESSARATOMIDAE versidad de las Dinidoridae, Megarididae y Tessarato- midae en la Argentina. Estas familias están represen- tadas por sólo una especie en las familias Dinidoridae y Tessaratomidae y por dos en Megarididae, la cual es exclusivamente conocida de la región Neotropical. Se incluye información general sobre hábitat, comporta- miento, régimen alimenticio y distribución geográfica de las familias. Abstract A review of the knowledge of the diversity of the Dini- doridae, Megarididae, and Tessaratomidae in Argen- tina is presented. These families are represented by one species of Dinidoridae and Tessaratomidae each, and two of Megarididae, which is known only from the Neotropical region. General information about habi- tat, behavior, food habits and geographical distribu- tion of the families is included. Introdução A superfamília Pentatomoidea inclui na sua maioria percevejos fitófagos, reconhecidos pelo escutelo de- senvolvido, tricobótrios abdominais pareados e loca- lizados lateralmente à linha dos espiráculos, abertura *Cristiano F. SCHWERTNER da cápsula genital dos machos (= pigóforo) direcionada **Jocelia GRAZIA posteriormente, ovos geralmente em forma de barril (podendo ser ovóides ou esféricos) (Schuh & Slater, 1995; Grazia et al., 2008). Compreende cerca de 7000 *Departamento de Ciências Biológicas, Universida- espécies no mundo incluídas em 15 famílias (Grazia et de Federal de São Paulo, Campus Diadema, Rua al., 2008), das quais Acanthosomatidae, Canopidae, Prof. Artur Riedel 275, Diadema, SP, Brasil. Cydnidae, Dinidoridae, Megarididae, Pentatomidae [email protected] (incluíndo Cyrtocorinae), Phloeidae, Scutelleridae, Tessaratomidae e Thyreocoridae são encontradas na **Departamento de Zoologia, Universidade Federal região Neotropical (Grazia et al., 2012). Na Argentina, do Rio Grande do Sul (UFRGS), Av.
    [Show full text]
  • Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
    The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183
    [Show full text]
  • Comparison of Prediction Accuracy of Multiple Linear Regression, ARIMA and ARIMAX Model for Pest Incidence of Cotton with Weather Factors
    Madras Agric. J., 105 (7-9): 313-316, September 2018 Comparison of Prediction Accuracy of Multiple Linear Regression, ARIMA and ARIMAX Model for Pest Incidence of Cotton with Weather Factors V.S. Aswathi* and M.R. Duraisamy Department of Physical Science and Information Technology, Tamil Nadu Agricultural University, Coimbatore - 641 003. Identifying suitable statistical model for predicting pest incidence have important role in pest management programmes. For this study weekly data of aphid, thrips, jassid and whitefly incidence of cotton at the TNAU region, Coimbatore and the weather factors influencing these pests incidence were used for model development. Rainfall, maximum temperature, minimum temperature, morning humidity, eveningMaterial humidity and were Methods used as the independent variables and MLR, ARIMA, ARIMAX models built for each pests. Comparison of these three models was done and checked the model accuracy using root Standardmean square weekly error data value.for pest It wasincidence found (pests that perfor allthree leaves) were collected for pests ARIMAX model posses lowest RMSEcotton valuevariety compared DCH-32 tofrom ARIMA Cotton and MLR.Department, So ARIMAX TNAU, Coimbatore. The data model was selected as best fit model. corresponding to crop periods from September to January for four major cotton pests such as Cotton pests, Multiple linear regression, ARIMA, ARIMAX, Weather factors Key words: aphid, thrips, jassid and whitefly were selected for the study. The corresponding pest incidence data for aphids and thrips were recorded for the period of 2008-2012 while for Cotton (Gossypium spp.) is one among theJassids most and WhiteWeeklyfly were weather recorded data for for the Coimbatore period of 2008 (TNAU-2017 region) and 2008 -2015 respectively.
    [Show full text]