<I>COLIAS PHILODICE</I>

Total Page:16

File Type:pdf, Size:1020Kb

<I>COLIAS PHILODICE</I> Evolution, 44(6), 1990, pp. 1637-1647 PREDICTING HOST RANGE EVOLUTION: COLONIZATION OF CORONILLA VARIA BY COLIAS PHILODICE (LEPIDOPTERA: PIERIDAE) DAVID N. KAROWE' Department ofBiology, The University ofMichigan, Ann Arbor, MI48109 USA Abstract.-Extensive sympatry is currently arising between the common sulfur butterfly, Colias philodice Latreille (Lepidoptera: Pieridae) and a potential leguminous host plant, Coronilla varia (L.). In laboratory trials, larval surviviorship and growth were higher on the primary host, Medicago sativa (L.), than on the nonhost C. varia. However, because females reared from C. varia were on average more fecund than females reared from M. sativa, fitness on C. varia (approximately as survivorship times fecundity) was commensurate with fitness on M. sativa. Thus, it is predicted that selection would favor oviposition on C. varia, if such behavior were to arise. In addition, significant among-family variation exists for several measures of larval performance on both C. varia and M. sativa, indicating that C. philodice can potentially respond to selection for increased performance on each species. Moreover, larval performance was sig­ nificantly positively correlated across these species, suggesting that selection for increased per­ formance on each species will facilitate, not constrain, evolution of increased performance on the other. It is concluded that behavioral rather than physiological barriers currently account for the absence ofC. philodice from C. varia and that, ifsuch barriers are overcome, C. philodice will expand its host plant range to include C. varia. Received January 17, 1989. Accepted December 15, 1989. The evolution of host plant range is of hosts, (2) the degree of within-population both theoretical and economic importance, genetic variation in fitness on potential and since present associations between insect existing hosts, and (3) the degree and sign herbivores and their host plants are largely ofgenetic correlation in fitness between po­ attributable to past host shifts and host tential and existing hosts. range expansions. Although the evolution­ Selection should favor host range expan­ ary lability ofhost plant range among her­ sion ifinitial fitness on the potential host is bivorous insects has long been recognized commensurate with fitness on existing hosts, (Dethier, 1954; Ehrlich and Raven, 1964), particularly if fitness is limited by the rate the study of host range evolution among at which suitable oviposition sites are en­ herbivorous insects remains essentially a countered (Levins and MacArthur, 1969; post hoc science. However, as argued by Jaenike, 1978; Courtney, 1984). If, on the Gould (1978, 1983), this need not be the other hand, fitness differs substantially be­ case. tween potential and existing hosts, then se­ For herbivorous insects with relatively lection shouldgenerally act to decrease pref­ immobile larvae, such as many Lepidop­ erence for, or to increase fitness on, the tera, colonization of a potential host plant poorer host (Futuyma, 1983a; see also Cas­ may be precluded by the failure offemales tillo-Chavez et al., 1988). If preference for to recognize the potential host as a suitable the better host evolves more rapidly than oviposition site. However, if at least some performance on the poorer host, then the females accept the potential host for ovi­ poorer host (whether potential or existing) position, and if such variation is heritable, should be eliminated from the herbivore's then the course oflocal host range evolution host plant range. might reasonably be anticipated from Genetic correlations in performance knowledge of (1) the initial relative fitness across hosts may strongly influence the rate of the herbivore on potential and existing at which performance on any single host evolves (Antonovics, 1976; Lande, 1980; Via and Lande, 1985). In particular, ifper­ 1 Present address: Department of Biology, Virginia Commonwealth University, Richmond, Virginia formance is negatively correlated across 23284. hosts, then selection for increased perfor- 1637 1638 DAVID N. KAROWE mance on the poorer host may be con­ MATERIALS AND METHODS strained by the associated "cost" ofreduced Study Organisms performance on the more suitable host Over approximately the last 200 years, (Rausher, 1983). Such circumstances are likely to inhibit the expansion ofhost plant Colias philodicehas incorporatednumerous introduced legumes into its host plant range range. On the other hand, ifperformance is (Klots, 1951; Tabashnik, 1983; Scott, 1986). positively correlated across diets, then se­ In Michigan, e. philodice feeds primarily lection for increased fitness on either host on the introduced European species M. sa­ will result in increased fitness on both, and tiva L. (alfalfa) and Trifolium pratense L. expansion ofthe herbivore's host plant range (red clover), and uses Melilotus alba L. is more likely. (white sweet clover) as a secondary host Throughout the eastern and midwestern (personal observation). United States, extensive sympatry is cur­ Coronilla varia L. (crown vetch) repre­ rently arising between the common sulfur sents a potential host plant for e. philodice. butterfly, Colias philodice Latreille (Lepi­ At present, e. philodice is not known to doptera: Pieridae) and a recently introduced occur on e. varia, though females do visit potential host plant, Coronilla varia L. (Fa­ this species for nectar (Karowe, 1988). In­ baceae). In southeastern Michigan, e. varia troduced into the eastern United States in often occurs in the same habitat as Medi­ 1890 (Henson, 1963), e. varia is a consid­ cago sativa, the primary host plant of e. erably more recent addition to the North philodice. The absence ofe. philodice from American flora than are M. sativa, T. pra­ e. varia in nature is apparently due to pre­ tense, and M. alba. Due to its attractiveness alighting discrimination by ovipositing fe­ as groundcover and forage (Reynolds et at, males (Karowe, 1988). The aim ofthis study 1969; Bums et at, 1969, 1972), and its abil­ is to determine whether physiological bar­ ity to escape cultivation, e. varia is becom­ riers to colonization also exist, and to use ing increasingly abundant throughout much this information to anticipate the likely ofthe eastern and midwestern United States. course of host range evolution should fe­ By 1974, nearly 30,000 acres of'C varia had males initiate oviposition on e. varia. Ac­ been planted along highway slopes in Penn­ cordingly, I ask: sylvania alone (Wheeler, 1974). Moreover, 1. How does present performance of e. with continued naturalization, sympatry philodice on e. varia compare to that on between e. varia and e. philodice is likely M. sativa? to increase since the typical habitats of e. 2. Can selection potentially act to improve varia, M. sativa, T. pratense, and M. alba performance on M. sativa and/or e. var­ (roadsides, waste places, and other dis­ ia, i.e., does e. philodice exhibit herita­ turbed areas) are very similar (Fernald, ble variation for performance on either 1950). species? 3. Will evolution ofincreased performance Parental Performance on one host facilitate or constrain evo­ To obtain a parental generation consist­ lution of increased performance on the ing of individuals whose relative perfor­ other, i.e., is fitness on varia corre­ e. mance on M. sativa and varia was known, lated, either positively or negatively, with e. 17 philodice females were caught in fitness on M. sativa? e. southern Montmorency County, Michigan, To answer these questions, I measured in July 1985 and their offspring were reared the performance of C. philodice larvae on to pupation on each plant species. Both M. M. sativa and e. varia during two succes­ sativa and e. varia grow in this habitat, but sive generations, determined whether the larvae occur only on M. sativa. sampled population contained genetic On each plant species, neonate larvae from variation for larval performance on these all 17 females were allowedto mix, andwere plant species, and determined the nature then divided randomly among ten 10-cm ofcorrelations in performance across plant plastic Petri dishes. Larvae were reared in species. an environmental chamberundera 16:8 L:D PREDICTING HOST RANGE EVOLUTION 1639 cycle and a corresponding 29: 19°C temper­ Offspring Performance ature cycle. Larvae were provided fresh food every second day or more often ifnecessary. Performance was measured for the off­ Within 2 hr after it pupated, each larva was spring of12 mated pairs from M. sativa and marked with a unique number. Ten pupae 12 (for survivorship) or 11 (for all other from each diet were sacrificed to establish measures) from C. varia. Parental pairs from a wet weight/dry weight ratio used to esti­ each diet were chosen to provide as wide a mate the dry weight ofall remaining pupae. range as possible ofpaternal, maternal, and The performance of43 larvae fed M. sativa mid-parent growth rates. and 92 fed C. varia was measured in terms Survivorship. - Fifty newly hatched off­ ofegg-to-pupa development time and pupal spring from each set ofparents were divided weight. Two-way analysis of variance was into two groups of25 and placed into plastic performedwith host and sex as main effects. Petri dishes containing fresh leaves ofeither To facilitate mating between fast- and M. sativa or C. varia. Larval density was 25 slow-growing individuals within each diet, per dish during the first instar and 5 per all pupae were refrigerated at approximately dish thereafter. Survivorship
Recommended publications
  • Papilio Glaucus, P. Marcellus, P. Philenor, Pieris Rapae, Colias Philo Dice, Antho­ Caris Genutia, Anaea Andria, Euptychia Gemma
    102 REMINGTON: 1952 Central Season Vol.7, nos.3·4 Papilio glaucus, P. marcellus, P. philenor, Pieris rapae, Colias philo dice, Antho­ caris genutia, Anaea andria, Euptychia gemma. One exception to the general scarcity was the large number of Erynnis brizo and E. juvenalis which were seen clustered around damp spots in a dry branch on April 9. MERRITT counted 67 Erynnis and 2 Papilio glaucus around one such spOt and 45 Erynnis around another. Only one specimen of Incisalia henrici was seen this spring. MERRITT was pleased to find Incisalia niphon still present in a small tract of pine although the area was swept by a ground fire in 1951. Vanessa cardui appeared sparingly from June 12 on, the first since 1947. In the late summer the season appeared normal. Eurema lisa, Nathalis iole, Lycaena thoe, and Hylephila phyleus were common. Junonia coenia was more abundant around Louisville than he has ever seen it. A rarity taken in Louisville this fall was Atlides halesus, the first seen since 1948. The latest seasonal record made by Merritt was a specimen of Colias eury­ theme flying south very fast on December 7. EDWARD WELLING sent a record of finding Lagoa crispata on June 27 at Covington. Contributors: F. R. ARNHOLD; E. G. BAILEY; RALPH BEEBE; S. M. COX; H. V. DALY; 1. W . GRIEWISCH; J. B. HAYES; R. W. HODGES; VONTA P. HYNES; R. LEUSCHNER; J. R. MERRITT; J. H. NEWMAN; M. C. NIEL­ SEN; 1. S. PHILLIPS; P. S. REMINGTON; WM. SIEKER; EDWARD VOSS; W. H . WAGNER, JR.; E. C.
    [Show full text]
  • Butterflies Seen in Tidewater
    Butterflies Most Likely to be Seen In Tidewater, VA and Their Host Plants Scientific Name Common Name Host Plant Asterocampa celtis Hackberry Emperor sugarberry, hackberry Asterocampa clyton Tawny Emperor sugarberry, hackberry Atalopedes campestris Sachem grasses - bermuda Atlides halesus Great Purple Hairstreak mistletoe Battus philenor Pipevine Swallowtail pipevine Calycopis cecrops Red-Banded Hairstreak fallen leaves - sumacs, wax myrtle, oak Cercyonis pegala Common (Lg.) Wood-Nymph purple top, other grasses Celastrina ladon argiolus Spring Azure flowering parts — dogwood, wild cherry Colias eurytheme Orange Sulphur legumes, clover, alfalfa Colias philodice Clouded Sulphur legumes, clover, alfalfa, vetch, lupine Danaus plexippus Monarch milkweeds Endoia portlandia Southern Pearly-eye giant cane, switch cane Endoia creola Creole Pearly Eye switch cane Epargyreus clarus Silver-spotted Skipper black locust, wisteria, legumes Erynnis horatius Horace’s Duskywing oaks Euptoieta claudia Variegated Fritillary violet, maypop, passionflower, pansies, plantain Eurema nicippe Sleepy Orange cassia Eurytides marcellus Zebra Swallowtail pawpaw Everes comyntas Eastern Tailed-Blue variety of herbaceous legumes Hylephila phyleus Fiery Skipper weedy grasses — crabgrass, bermuda Junonia coenia Common Buckeye snapdragon, toadflax, plantain, verbena Lerema accius Clouded Skipper grasses Libytheana bachmanii American Snout Butterfly hackberry, sugarberry Limenitis archippus Viceroy willow, poplar, aspen, apple, cherry, plum Limenitis astyanax Red-spotted
    [Show full text]
  • Orange Sulphur, Colias Eurytheme, on Boneset
    Orange Sulphur, Colias eurytheme, on Boneset, Eupatorium perfoliatum, In OMC flitrh Insect Survey of Waukegan Dunes, Summer 2002 Including Butterflies, Dragonflies & Beetles Prepared for the Waukegan Harbor Citizens' Advisory Group Jean B . Schreiber (Susie), Chair Principal Investigator : John A. Wagner, Ph . D . Associate, Department of Zoology - Insects Field Museum of Natural History 1400 South Lake Shore Drive Chicago, Illinois 60605 Telephone (708) 485 7358 home (312) 665 7016 museum Email jwdw440(q-), m indsprinq .co m > home wagner@,fmnh .orq> museum Abstract: From May 10, 2002 through September 13, 2002, eight field trips were made to the Harbor at Waukegan, Illinois to survey the beach - dunes and swales for Odonata [dragonfly], Lepidoptera [butterfly] and Coleoptera [beetles] faunas between Midwest Generation Plant on the North and the Outboard Marine Corporation ditch at the South . Eight species of Dragonflies, fourteen species of Butterflies, and eighteen species of beetles are identified . No threatened or endangered species were found in this survey during twenty-four hours of field observations . The area is undoubtedly home to many more species than those listed in this report. Of note, the endangered Karner Blue butterfly, Lycaeides melissa samuelis Nabakov was not seen even though it has been reported from Illinois Beach State Park, Lake County . The larval food plant, Lupinus perennis, for the blue was not observed at Waukegan. The limestone seeps habitat of the endangered Hines Emerald dragonfly, Somatochlora hineana, is not part of the ecology here . One surprise is the. breeding population of Buckeye butterflies, Junonia coenid (Hubner) which may be feeding on Purple Loosestrife . The specimens collected in this study are deposited in the insect collection at the Field Museum .
    [Show full text]
  • Insects of the Nebraska Mixedgrass Prairie
    Mixedgrass Prairie Region Insect Viewing Tips Two-Striped Grasshopper 1. Go to where the habitat is — visit Melanoplus bivittatus state parks and other public spaces. Size: L: 1.2 - 2.2 in. Description: Smooth yellow- 2. Do your homework — learn what brown with two distinct species live in the area. pale-yellow stripes. Diet: Plants 3. Think about timing — check what is Painted Lady, wings closed Habitat: Rural to urban Viewing: Summer, statewide active in the area this time of year. 4. Consult an expert — join in on a The mixedgrass prairie region is a transitional zone between the tallgrass guided insect hike to learn more. Insects Chinese Mantis 5. Leave no trace — leave wildlife in Tenodera sinensis prairie of the east and the shortgrass prairie Size: L: 3.12 - 4.1 in. of the west. As a result, the vegetation of this nature and nature the way you Description: Long, green-tan area varies, with a combination of tallgrass found it. body, thick, bent front legs, of the and oversized eyes atop a and shortgrass prairie plants. There are many triangular head. wetlands, rivers, and streams and wooded Diet: Insects, small animals zones surround almost every waterway. Habitat: Rural to urban Basic Insect Anatomy Nebraska Viewing: Summer-fall, most Precipitation is greater in the east, with common in eastern half about 28 inches annually, compared with 20 inches in the west. Antenna Assassin Bug Mixedgrass The land is primarily used for agriculture, Sinea diadema Head Size: L: 0.47 - 0.63 in. with around two-thirds converted to cropland Description: Dark brown or a and much of the remaining third used for dull red with narrow head with grazing livestock.
    [Show full text]
  • Butterflies of the Finger Lakes National Forest
    The Finger Lakes National Butterflies of "... the first precaution Forest comprises 16,000 acres of the of intelligent tinkering federally owned land between Cayuga and Seneca Lakes in Finger Lakes is to keep every cog and New York State. The Forest is wheel ... " managed for multiple uses to ~~Mut provide a variety of goods and ~Aldo Leopold services to a diverse public. Different programs include a This list compiled through the work of livestock grazing program, a Charles R. Smith, Ph.D. Department of Natural Resources small scale timber management Cornell University program, diverse habitats for And Donald Bright-Smith, Ph.D. wildlife and fish, and Department of Pathobiology recreational opportunities for TexasA&M multiple user groups. And made possible through the generosity New York State Chapter of the For more information about the Finger Lakes Wild Turkey Federation National Forest contact: Hector Ranger District 5218 State Route 414 United States Forest Eastern ~~1~ .. ~ Department of Service Region New York State Chapter Hector, NY 14841 Agriculture NWTF (607) 546-4470 Family Papilionidae: Swallowtails Family Hesperiidae: Skippers 0 Papilio polyxenes, Black Swallowtail 0 Epargyreus clarus, Silver-spotted 0 Pap ilia cresphontes, Giant Swallowtail Skipper 0 Papilio glaucus, Eastern Tiger Family Nymphalidae: Brushfoots 0 Erynnis ice/us, Dreamy Duskywing Swallowtail 0 Speyeria cybele, Great Spangled Fritillary D Erynnisjuvenalis, Juvenal's Duskywing 0 Pap ilia troilus, Spicebush Swallowtail 0 Boloria selene, Silver-bordered Fritillary
    [Show full text]
  • Evaluating Threats to the Rare Butterfly, Pieris Virginiensis
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2015 Evaluating Threats to the Rare Butterfly, Pieris Virginiensis Samantha Lynn Davis Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Environmental Sciences Commons Repository Citation Davis, Samantha Lynn, "Evaluating Threats to the Rare Butterfly, Pieris Virginiensis" (2015). Browse all Theses and Dissertations. 1433. https://corescholar.libraries.wright.edu/etd_all/1433 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Evaluating threats to the rare butterfly, Pieris virginiensis A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Samantha L. Davis B.S., Daemen College, 2010 2015 Wright State University Wright State University GRADUATE SCHOOL May 17, 2015 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY Samantha L. Davis ENTITLED Evaluating threats to the rare butterfly, Pieris virginiensis BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. Don Cipollini, Ph.D. Dissertation Director Don Cipollini, Ph.D. Director, Environmental Sciences Ph.D. Program Robert E.W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School Committee on Final Examination John Stireman, Ph.D. Jeff Peters, Ph.D. Thaddeus Tarpey, Ph.D. Francie Chew, Ph.D. ABSTRACT Davis, Samantha. Ph.D., Environmental Sciences Ph.D.
    [Show full text]
  • Superior National Forest
    Admirals & Relatives Subfamily Limenitidinae Skippers Family Hesperiidae £ Viceroy Limenitis archippus Spread-wing Skippers Subfamily Pyrginae £ Silver-spotted Skipper Epargyreus clarus £ Dreamy Duskywing Erynnis icelus £ Juvenal’s Duskywing Erynnis juvenalis £ Northern Cloudywing Thorybes pylades Butterflies of the £ White Admiral Limenitis arthemis arthemis Superior Satyrs Subfamily Satyrinae National Forest £ Common Wood-nymph Cercyonis pegala £ Common Ringlet Coenonympha tullia £ Northern Pearly-eye Enodia anthedon Skipperlings Subfamily Heteropterinae £ Arctic Skipper Carterocephalus palaemon £ Mancinus Alpine Erebia disa mancinus R9SS £ Red-disked Alpine Erebia discoidalis R9SS £ Little Wood-satyr Megisto cymela Grass-Skippers Subfamily Hesperiinae £ Pepper & Salt Skipper Amblyscirtes hegon £ Macoun’s Arctic Oeneis macounii £ Common Roadside-Skipper Amblyscirtes vialis £ Jutta Arctic Oeneis jutta (R9SS) £ Least Skipper Ancyloxypha numitor Northern Crescent £ Eyed Brown Satyrodes eurydice £ Dun Skipper Euphyes vestris Phyciodes selenis £ Common Branded Skipper Hesperia comma £ Indian Skipper Hesperia sassacus Monarchs Subfamily Danainae £ Hobomok Skipper Poanes hobomok £ Monarch Danaus plexippus £ Long Dash Polites mystic £ Peck’s Skipper Polites peckius £ Tawny-edged Skipper Polites themistocles £ European Skipper Thymelicus lineola LINKS: http://www.naba.org/ The U.S. Department of Agriculture (USDA) prohibits discrimination http://www.butterfliesandmoths.org/ in all its programs and activities on the basis of race, color, national
    [Show full text]
  • Appendix A: Common and Scientific Names for Fish and Wildlife Species Found in Idaho
    APPENDIX A: COMMON AND SCIENTIFIC NAMES FOR FISH AND WILDLIFE SPECIES FOUND IN IDAHO. How to Read the Lists. Within these lists, species are listed phylogenetically by class. In cases where phylogeny is incompletely understood, taxonomic units are arranged alphabetically. Listed below are definitions for interpreting NatureServe conservation status ranks (GRanks and SRanks). These ranks reflect an assessment of the condition of the species rangewide (GRank) and statewide (SRank). Rangewide ranks are assigned by NatureServe and statewide ranks are assigned by the Idaho Conservation Data Center. GX or SX Presumed extinct or extirpated: not located despite intensive searches and virtually no likelihood of rediscovery. GH or SH Possibly extinct or extirpated (historical): historically occurred, but may be rediscovered. Its presence may not have been verified in the past 20–40 years. A species could become SH without such a 20–40 year delay if the only known occurrences in the state were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences. G1 or S1 Critically imperiled: at high risk because of extreme rarity (often 5 or fewer occurrences), rapidly declining numbers, or other factors that make it particularly vulnerable to rangewide extinction or extirpation. G2 or S2 Imperiled: at risk because of restricted range, few populations (often 20 or fewer), rapidly declining numbers, or other factors that make it vulnerable to rangewide extinction or extirpation. G3 or S3 Vulnerable: at moderate risk because of restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors that make it vulnerable to rangewide extinction or extirpation.
    [Show full text]
  • Butterflies (Lepidoptera: Papilionoidea) in a Coastal Plain Area in the State of Paraná, Brazil
    62 TROP. LEPID. RES., 26(2): 62-67, 2016 LEVISKI ET AL.: Butterflies in Paraná Butterflies (Lepidoptera: Papilionoidea) in a coastal plain area in the state of Paraná, Brazil Gabriela Lourenço Leviski¹*, Luziany Queiroz-Santos¹, Ricardo Russo Siewert¹, Lucy Mila Garcia Salik¹, Mirna Martins Casagrande¹ and Olaf Hermann Hendrik Mielke¹ ¹ Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19.020, 81.531-980, Curitiba, Paraná, Brazil Corresponding author: E-mail: [email protected]٭ Abstract: The coastal plain environments of southern Brazil are neglected and poorly represented in Conservation Units. In view of the importance of sampling these areas, the present study conducted the first butterfly inventory of a coastal area in the state of Paraná. Samples were taken in the Floresta Estadual do Palmito, from February 2014 through January 2015, using insect nets and traps for fruit-feeding butterfly species. A total of 200 species were recorded, in the families Hesperiidae (77), Nymphalidae (73), Riodinidae (20), Lycaenidae (19), Pieridae (7) and Papilionidae (4). Particularly notable records included the rare and vulnerable Pseudotinea hemis (Schaus, 1927), representing the lowest elevation record for this species, and Temenis huebneri korallion Fruhstorfer, 1912, a new record for Paraná. These results reinforce the need to direct sampling efforts to poorly inventoried areas, to increase knowledge of the distribution and occurrence patterns of butterflies in Brazil. Key words: Atlantic Forest, Biodiversity, conservation, inventory, species richness. INTRODUCTION the importance of inventories to knowledge of the fauna and its conservation, the present study inventoried the species of Faunal inventories are important for providing knowledge butterflies of the Floresta Estadual do Palmito.
    [Show full text]
  • Papilio (New Series) #24 2016 Issn 2372-9449
    PAPILIO (NEW SERIES) #24 2016 ISSN 2372-9449 MEAD’S BUTTERFLIES IN COLORADO, 1871 by James A. Scott, Ph.D. in entomology, University of California Berkeley, 1972 (e-mail: [email protected]) Table of Contents Introduction………………………………………………………..……….……………….p. 1 Locations of Localities Mentioned Below…………………………………..……..……….p. 7 Summary of Butterflies Collected at Mead’s Major Localities………………….…..……..p. 8 Mead’s Butterflies, Sorted by Butterfly Species…………………………………………..p. 11 Diary of Mead’s Travels and Butterflies Collected……………………………….……….p. 43 Identity of Mead’s Field Names for Butterflies he Collected……………………….…….p. 64 Discussion and Conclusions………………………………………………….……………p. 66 Acknowledgments………………………………………………………….……………...p. 67 Literature Cited……………………………………………………………….………...….p. 67 Table 1………………………………………………………………………….………..….p. 6 Table 2……………………………………………………………………………………..p. 37 Introduction Theodore L. Mead (1852-1936) visited central Colorado from June to September 1871 to collect butterflies. Considerable effort has been spent trying to determine the identities of the butterflies he collected for his future father-in-law William Henry Edwards, and where he collected them. Brown (1956) tried to deduce his itinerary based on the specimens and the few letters etc. available to him then. Brown (1964-1987) designated lectotypes and neotypes for the names of the butterflies that William Henry Edwards described, including 24 based on Mead’s specimens. Brown & Brown (1996) published many later-discovered letters written by Mead describing his travels and collections. Calhoun (2013) purchased Mead’s journal and published Mead’s brief journal descriptions of his collecting efforts and his travels by stage and horseback and walking, and Calhoun commented on some of the butterflies he collected (especially lectotypes). Calhoun (2015a) published an abbreviated summary of Mead’s travels using those improved locations from the journal etc., and detailed the type localities of some of the butterflies named from Mead specimens.
    [Show full text]
  • Check List of Noctuid Moths (Lepidoptera: Noctuidae And
    Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately.
    [Show full text]
  • Study of Fluorescent Pigments in Lepidoptera by Means of Paper Partition Chromatography!
    1968 Journal of the Lepidopterists' Society 27 STUDY OF FLUORESCENT PIGMENTS IN LEPIDOPTERA BY MEANS OF PAPER PARTITION CHROMATOGRAPHY! GEORGE W. RAWSON2 10405 Amherst Ave., Silver Spring, Maryland Subsequent to the extensive study of organic pigments in Lepidoptera by Ford (1941-1955), very little has been done to advance our knowl­ edge of pigments in butterflies. There have been, however, some special­ ized investigations by a group of biochemists and geneticists interested in the chemical structure of pteridine compounds (Hadorn, 1962). Having been interested in butterflies during my youth and as an avocation for over half a century, I have devoted a number of years after retirement in an attempt to continue research on organic pigments in butterflies by employing the comparatively new yet popular technique of paper partition chromatography. Based on studies of fluorescent pig­ ments of many species, genera and families of butterflies on chromato­ grams, including the distribution of pigments in various parts of the body, I hope this paper will be of interest to fellow lepidopterists. Sufficient evidence has been obtained to show that the pigments in Lepidoptera and other orders of insects, particularly the fluorescent pteridines, are correlated to morphological taxonomy and that this prin­ ciple can be a valuable auxiliary aid in systematics. HISTORICAL REVIEW Apparently, the first person to study thc chemistry of pigments in butterflies was Hopkins (1891, 1895 a, b, c). He discovered two water soluble pigments, leucopterin and xanthopterin, in the wings of white and yellow pierid butterflies, respectively. The chemical structure of these compounds, however, was not known until they were re-examined by Wieland and SchopP They are regarded as purine compounds and are called pterins or pteridines, the name being derived from the Greek work for wing "ptcron." Thirty years after Hopkins' papers, Cockayne (1924) made a study of reactions of butterflies' wings when examined 1 Contribution No.
    [Show full text]