Flea News 52

Total Page:16

File Type:pdf, Size:1020Kb

Flea News 52 flea NEWS 52 Department of Entomology Iowa State University, Ames, Iowa 50011 outFleaNews.html> or through eith-er Gopher or anonymous FTP: Table of Contents <gopher.ent.iastate.edu> in the "Pub- Announcement...............................602 lications" directory. Electronic vers- ions are available for No. 46, July, Donors..............................................610 1993; No. 47, December, 1993; No. 48, Editorial...........................................596 July, 1994; No. 49, December, 1994; Literature........................................602 No 50, June, 1995; No. 51, December, 1995 and this number. Miscellanea.....................................599 The opinions and assertions New Species...................................602 contained herein are the private ones FLEA NEWS is a biannual newsletter of the author and are not to be con- devoted to matters involving insects strued as official or as reflecting the belonging to the order Siphonaptera views of the Department of Entomol- (fleas) and related subjects. It is com- ogy, Iowa State University or Sandoz piled and distributed free of charge by Animal Health. Robert E. Lewis ([email protected]) with the support of the Department of ❊❖❊❖❊❖❊ Entomology at Iowa State University, Ames, IA, and a grant in aid from Editorial Sandoz Animal Health, based in Des It has now been slightly over 22 years Plaines, IL. It is mainly bibliograph-ic since Flea News was conceived by Mr. in nature. Many of the sources are F.G.A.M. Smit, then Curator of fleas at abstracting journals and title pages the British Museum (Natural History. and not all citations have been check- Prior to 1972 the combined Rothschild ed for completeness or accuracy. Ad- and British Museum coll-ection of fleas ditional information will be provided resided in the small village of Tring, upon written or e-mail request. Fur- Hartfordshire, ~20 miles NW of ther, recipients are urged to contri-bute London. During collect-ion items of interest to the profess-ion for reorganization in 1972, the fleas were inclusion herein. transferred to the main muse-um This newsletter is now avail-able building on Cromwell Road, Sou-th in electronic format. The prefer-red Kensington, where they are cur-rently method of accessing the electron-ic housed. version is through the WorldWide Web From February of 1973 to June at the following Universal Res-ource of 1980, Smit produced 20 issues of Locator: <http://www.public. Flea News totalling 205 pages of text iastate.edu/~entomology/FleaNews/Ab JULY 1996 596 and bibliographic information pert- need of revision. One of the major aining to fleas and related matters on a families, the Ceratophyll-idae, has worldwide basis. In addition, in never been treated on a worldwide conjunction with his assistant he also basis except by Traub et al. (1983) and sent out A list of code numbers of Lewis (1990), neither of which went species and subspecies of Siphonapt-era beyond a superficial list-ing of the (1978a) and A catalogue of prim-ary extant taxa. Smit's key in Traub et al. type-specimens of Siphonaptera in the laid the basis for a taxon-omic revision British Museum (Natural History) of the family, but there are still many (1978b) which were distribut-ed as undescribed genera and species appendices to the newsletter. Since belonging to this family. Until these Smit's retirement in 1980, Flea News become a part of the liter-ature a has been continued, in some-what taxonomic revision of this im-portant modified form, from the Entom-ology family will not be possible. Following Department here at Iowa State are a few additional con-siderations University. involving the order that require study. In issue number 20 Smit indi- At the end of 1995 there were cated that during the years 1973 to 3011 named taxa in the literature at early 1980 he had listed 1605 titles, for the species or sub-species level. Of an average of 227 per annum. I have these, 2565 were considered valid and kept a tally of the numbers of papers 798, or 31% of these were treated as cited in Flea News since its inception subspecies. The remaining 446 nam-es and, as of this issue, the number are either junior synonyms or of stands at 5939, an average of 258 per questionable status I know of no oth-er annum Granted, this is not an accu- group of organisms, with the poss-ible rate figure since it does not take into exception of pocket gophers, whe-re consideration works that have been such a high percentage of subspec-ies overlooked during this period or the few has been erected. A dozen of the worst cases where papers have been cited in examples of subspecies infla-tion are more than one issue. How-ever, in this the following genera: type of endeavour there is no such Typhloceras 100% thing as completeness and the Pariodontis 80.0% numbers can only sugest a trend. A Thrassis 80.0% review of these citations indicates a Foxella 78.5% dimunition in taxonomic studies, with a Mesopsylla 76.4% few notable exceptions, and an increase Ophthalmopsylla 66.6% in experimental and applied works. Orchopeas 65.0% This is particularly the case with Leptopsylla 63.3% control measures such as insect Frontopsylla 57.5% growth regulators (IGRs) and syst- Ctenophthalmus 57.5% emics. Hystrichopsylla 56.2% Does this mean that taxonomic Peromyscopsylla 54.8% and systematic studies of the Siphon- There are many additional genera with aptera are nearing completion? Most 40% or higher. At a glance it would assuredly not! Of the landmark series appear that our knowledge of the order of catalogues published by the British is so advanced that popula-tion Museum from 1953 to 1987, only the analysis is possible in a very de-tailed last volume can be consider-ed current manner. This could explain how the and the earliest vol-umes are badly in Ctenophthalmus agyrtes complex could 597 contain 23 subspecies in what is and associating fleas as close relatives genarally treated as west-ern Europe, of the Diptera, or two winged flies. This or the Stenoponia tripect-inata arrangement may be sup-ported by complex could have 14 subspec-ies in recent studies of 18S and 28S rDNA northern Africa and the east-ern sequences, but the details are only now Mediterranean, or that Foxella ignota in the process of being pub-lished. At could contain 11 subspecies in roughly this point I know of no studies using the western half of North America. techniques such as the Polymerase While that is one interpre-tation, it is Chain Reaction (PCR), nuclear RNA really quite misleading. From a gene sequencing or mitochondrial DNA technical point of view, a sub-species is sequencing that have been developed a race of a species that is assigned its relatively rec-ently. Perhaps the time own Latin name in much the same way will come in the not-too-distant future that species are assigned names. when tech-niques such as these will be However, there are no clear rules for applied to the mystery of flea identifying subspec-ies except that phylogeny both within and beyond the they must be geogra-phically distinct ordinal level populations, not merely morphs, and On the fossil front, there are only that they must differ to some extent a few fossils that are unarguably fleas from other geo-graphic segments of the in the modern definition. So far these total popula-tion. Since they are all seem to be restricted to deposits of supposed to belong to the same species Baltic and Domincan amber. The two they shou-ld be able to interbreed and that have been described from Baltic produce hybrids where the populations amber belong to a recognizable modern im-pinge upon each other. There are genus, Palaeopsylla, assign-ed to the very few cases where this sort of hystrichopsylloid family evidence is available, and most sub- Ctenophthalmidae. Those in Domini- species are named with little regard for can amber, though as yet undescrib-ed, comparative data. In other words, appear to be rhopalopsyllids or pulicids. recognition and description of Though there is much to be learned subspecies is a rather arbitrary pro- from these fossils it is unlike-ly that cedure and may be driven by forces they will contribute much to other than scientific precision. Until phylogenetic theory within the order. these trinomials can be examined and Although the world fauna is validated by the scientific com-munity better known than might be expected, their legitimacy must remain a matter there are still large areas that should of speculation. be sampled. This is particularly true of On a more positive note, there Central and South America, but even are more tools available to taxonom- parts of western United States are still ists today to explore the ordinal and in need of intensive collect-ing. In fact, infraordinal relationships of organ-isms much collecting has been done but the than ever before. The ancestors of the records remain un-published and are order Siphonaptera are difficult to thus inaccessible to the scientific determine beyond speculation due to community. the high degree of morphological In summary, there are still modification imposed by an ectopara- many opportunities for researches into sitic life style. Most workers have be- fleas at many different levels and much en relatively comfortable in deriving alpha taxonomy remains to be done the order from some mecopteroid stock 598 before the world fauna is proper-ly submis-sion of paper titles. February understood and elucidated. 28th is the cut-off for hotel reservations and preregistration ($100 ❏❄❏❄❏❄❏ full, $50 student and $150 on-site). Titles and 250 word abstracts should MISCELLANEA be submitted to Dr.
Recommended publications
  • NEWS 84June 2019
    flea NEWS 84 June 2019 http://esanetworks.org/ FLEA NEWS is a twice-yearly newsletter about fleas (Siphonaptera). Recipients are urged to check any citations given here before including them in publications. Many of our sources are abstracting journals and current literature sources, and citations have not necessarily been checked for accuracy or consistent formatting. Recipients are urged to contribute items of interest to the profession for inclusion herein, including: Flea research citations from journals that are not indexed, Announcements and Requests for material, Contact information for a Directory of Siphonapterists (name, mailing address, email address, and areas of interest - Systematics, Ecology, Control, etc.), Abstracts of research planned or in progress, Book and Literature Reviews, Biography, Hypotheses, and Anecdotes. Send to: R. L. Bossard, Ph.D. Editor, Flea News [email protected] Organizers of the Flea News Network are Drs. R. L. Bossard and N. C. Hinkle. N. C. Hinkle, Ph.D. Dept. of Entomology Univ. of Georgia Athens GA 30602-2603 USA [email protected] (706) 583-8043 Assistant Editor J. R. Kucera, M.S. Contents Editorial Announcements Featured research Directory of Siphonapterists Editorial Dear Flea News Reader, The current Flea News is abbreviated so the Siphonaptera Literature list can appear in its entirety in the next Flea News. The change will consolidate all of 2019 citations in one Flea News. From The Lancet (Kneebone, 2019): "A collaboration with Erica McAlister, an entomologist at the Natural History Museum in London, UK, has revealed interesting parallels. As Senior Curator for Diptera and Siphonaptera, Erica is responsible for over a million two-winged insects in the museum's collection and she is a master at identification.
    [Show full text]
  • Fleas, Hosts and Habitat: What Can We Predict About the Spread of Vector-Borne Zoonotic Diseases?
    2010 Fleas, Hosts and Habitat: What can we predict about the spread of vector-borne zoonotic diseases? Ph.D. Dissertation Megan M. Friggens School of Forestry I I I \, l " FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? by Megan M. Friggens A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Forest Science Northern Arizona University May 2010 ?Jii@~-~-u-_- Robert R. Parmenter, Ph. D. ~",l(*~ l.~ Paulette L. Ford, Ph. D. --=z:r-J'l1jU~ David M. Wagner, Ph. D. ABSTRACT FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? MEGAN M. FRIGGENS Vector-borne diseases of humans and wildlife are experiencing resurgence across the globe. I examine the dynamics of flea borne diseases through a comparative analysis of flea literature and analyses of field data collected from three sites in New Mexico: The Sevilleta National Wildlife Refuge, the Sandia Mountains and the Valles Caldera National Preserve (VCNP). My objectives were to use these analyses to better predict and manage for the spread of diseases such as plague (Yersinia pestis). To assess the impact of anthropogenic disturbance on flea communities, I compiled and analyzed data from 63 published empirical studies. Anthropogenic disturbance is associated with conditions conducive to increased transmission of flea-borne diseases. Most measures of flea infestation increased with increasing disturbance or peaked at intermediate levels of disturbance. Future trends of habitat and climate change will probably favor the spread of flea-borne disease.
    [Show full text]
  • Distribution of Spiders in Coastal Grey Dunes
    kaft_def 7/8/04 11:22 AM Pagina 1 SPATIAL PATTERNS AND EVOLUTIONARY D ISTRIBUTION OF SPIDERS IN COASTAL GREY DUNES Distribution of spiders in coastal grey dunes SPATIAL PATTERNS AND EVOLUTIONARY- ECOLOGICAL IMPORTANCE OF DISPERSAL - ECOLOGICAL IMPORTANCE OF DISPERSAL Dries Bonte Dispersal is crucial in structuring species distribution, population structure and species ranges at large geographical scales or within local patchily distributed populations. The knowledge of dispersal evolution, motivation, its effect on metapopulation dynamics and species distribution at multiple scales is poorly understood and many questions remain unsolved or require empirical verification. In this thesis we contribute to the knowledge of dispersal, by studying both ecological and evolutionary aspects of spider dispersal in fragmented grey dunes. Studies were performed at the individual, population and assemblage level and indicate that behavioural traits narrowly linked to dispersal, con- siderably show [adaptive] variation in function of habitat quality and geometry. Dispersal also determines spider distribution patterns and metapopulation dynamics. Consequently, our results stress the need to integrate knowledge on behavioural ecology within the study of ecological landscapes. / Promotor: Prof. Dr. Eckhart Kuijken [Ghent University & Institute of Nature Dries Bonte Conservation] Co-promotor: Prf. Dr. Jean-Pierre Maelfait [Ghent University & Institute of Nature Conservation] and Prof. Dr. Luc lens [Ghent University] Date of public defence: 6 February 2004 [Ghent University] Universiteit Gent Faculteit Wetenschappen Academiejaar 2003-2004 Distribution of spiders in coastal grey dunes: spatial patterns and evolutionary-ecological importance of dispersal Verspreiding van spinnen in grijze kustduinen: ruimtelijke patronen en evolutionair-ecologisch belang van dispersie door Dries Bonte Thesis submitted in fulfilment of the requirements for the degree of Doctor [Ph.D.] in Sciences Proefschrift voorgedragen tot het bekomen van de graad van Doctor in de Wetenschappen Promotor: Prof.
    [Show full text]
  • Psyllid Host-Plants (Hemiptera: Psylloidea): Resolving a Semantic Problem
    242 Florida Entomologist 97(1) March 2014 PSYLLID HOST-PLANTS (HEMIPTERA: PSYLLOIDEA): RESOLVING A SEMANTIC PROBLEM 1,* 2 3 2 DANIEL BURCKHARDT , DAVID OUVRARD , DALVA QUEIROZ AND DIANA PERCY 1Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland 2Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 3Embrapa Florestas, Colombo/PR, Brazil *Corresponding author; E-mail: [email protected] ABSTRACT Evolutionary and biological patterns can be obscured by inadequate or ill-defined terminol- ogy. An example is the generally very specific relationship between the sap-feeding hemip- teran group, psyllids, and their breeding plants, commonly called host-plants. The literature is clogged with references to so called ‘hosts’, which are often merely plants on which psyllids were found accidentally, and no immature development was detected. Recently the term host has also been applied by some authors to any plant on which immature or adults feed. Here we propose a terminology to clarify associated plant definitions, and we suggest restricting the use of the term host-plant to plants on which a psyllid species completes its immature to adult life cycle. For the other plant associations we suggest the terms overwintering or shel- ter plant (plants on which adult psyllids overwinter and on which they may feed), food plant (plants on which adult psyllids feed, but do not breed and do not spend an extended period of time) and casual plant (plants on which adult psyllids land but do not feed). Key Words: jumping plant-lice, psyllids, host-plant, terminology RESUMEN Patrones evolutivos y biológicos pueden ser oscurecidas por la terminología inadecuada o mal definida.
    [Show full text]
  • The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance
    RESEARCH ARTICLE The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance Naseh Maleki-Ravasan1, Samaneh Solhjouy-Fard2,3, Jean-Claude Beaucournu4, Anne Laudisoit5,6,7, Ehsan Mostafavi2,3* 1 Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran, 2 Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran, 3 Department of Epidemiology and Biostatistics, Pasteur institute of Iran, Tehran, Iran, 4 University of Rennes, France Faculty of Medicine, and Western Insitute of Parasitology, Rennes, France, 5 Evolutionary Biology group, University of Antwerp, Antwerp, Belgium, 6 School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom, 7 CIFOR, Jalan Cifor, Situ Gede, Sindang Barang, Bogor Bar., Jawa Barat, Indonesia * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Background Flea-borne diseases have a wide distribution in the world. Studies on the identity, abun- dance, distribution and seasonality of the potential vectors of pathogenic agents (e.g. Yersi- OPEN ACCESS nia pestis, Francisella tularensis, and Rickettsia felis) are necessary tools for controlling Citation: Maleki-Ravasan N, Solhjouy-Fard S, and preventing such diseases outbreaks. The improvements of diagnostic tools are partly Beaucournu J-C, Laudisoit A, Mostafavi E (2017) The Fleas (Siphonaptera) in Iran: Diversity, Host responsible for an easier detection of otherwise unnoticed agents in the ectoparasitic fauna Range, and Medical Importance. PLoS Negl Trop and as such a good taxonomical knowledge of the potential vectors is crucial. The aims of Dis 11(1): e0005260. doi:10.1371/journal. this study were to make an exhaustive inventory of the literature on the fleas (Siphonaptera) pntd.0005260 and range of associated hosts in Iran, present their known distribution, and discuss their Editor: Pamela L.
    [Show full text]
  • Managing Floral Resources in Apple Orchards for Pest Control: Ideas, Experiences and Future Directions
    insects Review Managing Floral Resources in Apple Orchards for Pest Control: Ideas, Experiences and Future Directions Annette Herz 1,*, Fabian Cahenzli 2, Servane Penvern 3, Lukas Pfiffner 2, Marco Tasin 4 and Lene Sigsgaard 5 1 Julius Kühn-Institut, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany 2 Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland 3 INRA, Centre de Recherche PACA, UR Ecodeveloppement, 84914 Avignon, France 4 Department of Plant Protection Biology—Unit of Integrated Plant Protection, Swedish University of Agricultural Science, P.O. Box 102, SE-230 53 Alnarp, Sweden 5 Department of Plant and Environmental Sciences, University of Copenhagen (UCPH), Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark * Correspondence: [email protected] Received: 31 May 2019; Accepted: 6 August 2019; Published: 11 August 2019 Abstract: Functional biodiversity is of fundamental importance for pest control. Many natural enemies rely on floral resources to complete their life cycle. Farmers need to ensure the availability of suitable and sufficient floral biodiversity. This review summarizes 66 studies on the management of floral biodiversity in apple orchards, published since 1986. Approaches followed different degrees of intervention: short-term practices (mowing regime and weed maintenance, cover crops), establishment of durable ecological infrastructures (perennial flower strips, hedgerows) and re-design of the crop system (intercropping, agroforestry). Although short-term practices did not always target the nutrition of natural enemies by flowering plants, living conditions for them (alternative prey, provision of habitat) were often improved. Perennial flower strips reliably enhanced natural enemies and techniques for their introduction continuously developed.
    [Show full text]
  • Fleas (Siphonaptera) Are Cretaceous, and Evolved with Theria
    bioRxiv preprint doi: https://doi.org/10.1101/014308; this version posted January 24, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Fleas (Siphonaptera) are Cretaceous, and Evolved with Theria Qiyun Zhu1, Michael Hastriter2, Michael Whiting2, 3, Katharina Dittmar1, 4* Jan. 23, 2015 Abstract: Fleas (order Siphonaptera) are highly-specialized, diverse blood-feeding ectoparasites of mammals and birds with an enigmatic evolutionary history and obscure origin. We here present a molecular phylogenetic study based on a compre- hensive taxon sampling of 259 flea taxa, representing 16 of the 18 extant families of this order. A Bayesian phylogenetic tree with strong nodal support was recovered, consisting of seven sequentially derived lineages with Macropsyllidae at the base and Stephanocircidae as the second basal group. Divergence times of flea lineages were estimated based on fossil records and host specific associations to bats (Chiroptera), showing that the common ancestor of extant Siphonaptera split from its clos- est mecopteran sister group in the Early Cretaceous and basal lineages diversified during the Late Cretaceous. However, most of the intraordinal divergence into families took place after the K-Pg boundary. Ancestral states of host association and bioge- ographical distribution were reconstructed, suggesting with high likelihood that fleas originated in the southern continents (Gondwana) and migrated from South America to their extant distributions in a relatively short time frame. Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupials occupying a more important role than previously assumed.
    [Show full text]
  • Full Volume 50 Nos. 1&2
    The Great Lakes Entomologist Volume 50 Numbers 1 & 2 -- Spring/Summer 2017 Article 12 Numbers 1 & 2 -- Spring/Summer 2017 September 2017 Full Volume 50 Nos. 1&2 Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation 2017. "Full Volume 50 Nos. 1&2," The Great Lakes Entomologist, vol 50 (1) Available at: https://scholar.valpo.edu/tgle/vol50/iss1/12 This Full Issue is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. et al.: Full Volume 50 Nos. 1&2 Vol. 50, Nos. 1 & 2 Spring/Summer 2017 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN ENTOMOLOGICAL SOCIETY Published by ValpoScholar, 2017 1 The Great Lakes Entomologist, Vol. 50, No. 1 [2017], Art. 12 THE MICHIGAN ENTOMOLOGICAL SOCIETY 2016–17 OFFICERS President Robert Haack President Elect Matthew Douglas Immediate Pate President Angie Pytel Secretary Adrienne O’Brien Treasurer Angie Pytel Member-at-Large (2016-2018) John Douglass Member-at-Large (2016-2018) Martin Andree Member-at-Large (2015-2018) Bernice DeMarco Member-at-Large (2014-2017) Mark VanderWerp Lead Journal Scientific Editor Kristi Bugajski Lead Journal Production Editor Alicia Bray Associate Journal Editor Anthony Cognato Associate Journal Editor Julie Craves Associate Journal Editor David Houghton Associate Journal Editor William Ruesink Associate Journal Editor William Scharf Associate Journal Editor Daniel Swanson Newsletter Editor Matthew Douglas and Daniel Swanson Webmaster Mark O’Brien The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to “.
    [Show full text]
  • Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla
    insects Article Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla picta Helps Understanding Its Feeding Behavior Dana Barthel 1,*, Hannes Schuler 2,3 , Jonas Galli 4, Luigimaria Borruso 2 , Jacob Geier 5, Katrin Heer 6 , Daniel Burckhardt 7 and Katrin Janik 1,* 1 Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), Italy 2 Faculty of Science and Technology, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy; [email protected] (H.S.); [email protected] (L.B.) 3 Competence Centre Plant Health, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy 4 Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria; [email protected] 5 Department of Botany, Leopold-Franzens-Universität Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; [email protected] 6 Faculty of Biology—Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch-Straße 8, D-35043 Marburg, Germany; [email protected] 7 Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland; [email protected] * Correspondence: [email protected] (D.B.); [email protected] (K.J.) Received: 10 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 Simple Summary: Cacopsylla picta is an insect vector of apple proliferation phytoplasma, the causative bacterial agent of apple proliferation disease. In this study, we provide an answer to the open question of whether adult Cacopsylla picta feed from other plants than their known host, the apple plant. We collected Cacopsylla picta specimens from apple trees and analyzed the composition of plant DNA ingested by these insects.
    [Show full text]
  • Effect of Tree Fertilization on Numbers and Development of Pear Psylla (Homoptera: Psyllidae) and on Fruit Damagel
    Effect of Tree Fertilization on Numbers and Development of Pear Psylla (Homoptera: Psyllidae) and on Fruit Damagel D. G. PFEIFFER2 AND E. C. BURTS Washington State University, Tree Fruit Research Center, Wenatchee, Washington 98801 Environ. Entomol. 12: 895-901 (1983) ABSTRACT Pear psylla, Psylla pyricola Foerster, egg and nymph density increased at a faster rate and reached higher levels on orchard pear, Pyrus communis L., trees receiving higher nitrogen appli- cation. This was probably due to psyllids ovipositing preferentially on foliage with higher nitrogen content. This perference was indicated in a choice chamber experiment using young and mature pear leaves. Differences in psylla densities on orchard trees due to nitrogen application rates were largely limited to the first half of the growing season. Nitrogen application rate had greater effect on psylla numbers than time of application (dormant vs. late summer). There was more russet damage to fruit from psylla on trees with a higher fertilization rate. Early-season nymphal populations were responsible for the differences in russet, highlighting the need for early-season controL Within certain ranges of foliar percent N, psylla developmental rate increased with plant nitrogen content. At very low levels of foliar N, however, psylla developmental rate also increased. Pear psylla, Psylla pyricola Foerster, feeds on the supplied to the tree on pear psylla. It is the purpose of phloem sap of pear, Pyrus spp. Most commercial pear this study to examine the effects of varying rates and cultivars grown in North America are derived from P. seasons of fertilizer application on pear psylla numbers, communis L., the favored host.
    [Show full text]
  • Fleas Are Parasitic Scorpionflies
    Palaeoentomology 003 (6): 641–653 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2020 Magnolia Press Article ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.3.6.16 http://zoobank.org/urn:lsid:zoobank.org:pub:9B7B23CF-5A1E-44EB-A1D4-59DDBF321938 Fleas are parasitic scorpionflies ERIK TIHELKA1, MATTIA GIACOMELLI1, 2, DI-YING HUANG3, DAVIDE PISANI1, 2, PHILIP C. J. DONOGHUE1 & CHEN-YANG CAI3, 1, * 1School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK 2School of Life Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK 3State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China [email protected]; https://orcid.org/0000-0002-5048-5355 [email protected]; https://orcid.org/0000-0002-0554-3704 [email protected]; https://orcid.org/0000-0002-5637-4867 [email protected]; https://orcid.org/0000-0003-0949-6682 [email protected]; https://orcid.org/0000-0003-3116-7463 [email protected]; https://orcid.org/0000-0002-9283-8323 *Corresponding author Abstract bizarre bodyplans and modes of life among insects (Lewis, 1998). Flea monophyly is strongly supported by siphonate Fleas (Siphonaptera) are medically important blood-feeding mouthparts formed from the laciniae and labrum, strongly insects responsible for spreading pathogens such as plague, murine typhus, and myxomatosis. The peculiar morphology reduced eyes, laterally compressed wingless body, of fleas resulting from their specialised ectoparasitic and hind legs adapted for jumping (Beutel et al., 2013; lifestyle has meant that the phylogenetic position of this Medvedev, 2017).
    [Show full text]
  • Siphonaptera of Canada 455 Doi: 10.3897/Zookeys.819.25458 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 819: 455–462 (2019) Siphonaptera of Canada 455 doi: 10.3897/zookeys.819.25458 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Siphonaptera of Canada Terry D. Galloway1 1 Department of Entomology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Corresponding author: Terry D. Galloway ([email protected]) Academic editor: D. Langor | Received 3 April 2018 | Accepted 29 May 2018 | Published 24 January 2019 http://zoobank.org/BB6CFC67-D44F-45D7-924B-E317BA5778BF Citation: Galloway TD (2019) Siphonaptera of Canada In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 455–462.https://doi.org/10.3897/ zookeys.819.25458 Abstract There are currently 154 species of fleas recorded in Canada, in four superfamilies and seven families. Only two species have been added to the list since the previous summary by Holland (1979), one of which is unlikely to be established in Canada. There have been a number of significant nomenclatural changes since then, most notable of which is the split of the Hystrichopsyllidae into two families, Hystrichopsyllidae and Ctenophthalmidae. An additional 23 species may eventually be recorded based on presence of suitable hosts and proximity to known distributions. Six species are introduced and one species is adventive. Al- though total diversity is reasonably well known, there are numerous gaps in distribution of fleas through- out the country. Barcode Index Numbers are available for only 22 species of fleas collected in Canada. Keywords biodiversity assessment, Biota of Canada, fleas, Siphonaptera Fleas are a relatively small group, with more than 2200 species known worldwide.
    [Show full text]