Wigksite, a New Mineral from Northeastern Yukon

Total Page:16

File Type:pdf, Size:1020Kb

Wigksite, a New Mineral from Northeastern Yukon Canadiun Mineralogist Vol. 19, pp. 377-380(1981) ,... WIGKSITE,A NEW MINERAL FROM NORTHEASTERNYUKON TERRITORY B. DARKO STURMAN Department of Mineralogy and Geology,Royal Ontario Museum, 100 Queen'sPark, Toronto, Ontario MSS 2C6 DONALD R. PEACOR Department of GeologicalSciences, University ol Michigan, Ann Arbor, Michigan48149, U.S.A. PETE J. DUNN Departrrlentol Mineral Sciences,Snrithsonian lnstitution, Washinsron,D.C. 20560,U.S.A. Ansrnecr (343,610). On trouve la wicksite en plaquettes bleues dans des nodules des formations ferrugineu- Wicksite NaCa2(Fe2+,Mn)aMgFes+(POo)u.2HrO ses et des shales stratifi6s le long de la rividre Big is orthorhombic, space group Pbca, with refined Fish (dans le Nord-Est du territoire du Yukon). cell parametersa 12.896(3),b l2.5ll(3), c 11.634 Cette espdce nouvelle est bleu fonc6 ou vert fonc6 (3) A; Z - 4. The strongest eight ljnes in the en sections minces, opaque en fragments 6pais. X-raydiffraction powder pattern [d in A G)&kl)l Duret| 4Vz-5, clivage {010} bon, densit6 3.54 (me- are 3.502(20)(230), 3.015(80)(411), 2.910(80) surde), 3.58 (calcul6e). Elle est biaxe positive, a (004), 2.868(30)(420), 2.837(30)(104), 2.753 1.713(3),p 1.718(3),t 1.728(3),2Y 660) fotte- (ro0)(412,042), 2.s71(40)(422) and 2.118(60) ment pl6ochroique, X bleu, Y bleu verditre, Z bttn - (343,610). Wicksite occurs as blue plates in nodules jaundtre pdle, absorption X Y > Z. Irs donn6es in bedded ironstone and shale along the Big Fish analytiques (microsonde, ADT-ATG, titration avec River in northeastern Yukon Territory, The new le dichromate de potassium) donnent AlrO3 0'51' mineral is dark blue or dark green in thin frag- Fe,Or 7.98, NazO 3.08, FeO 22.66, MgO 3.77, MnO ments; large fragments are opaque. It has a hard- 4.72, CaO 11.05, P2O5 41.64, HlO 3.70, total ness of 4Vz-5, good {010} cleavage and density 99.lIVo (en poids), d'oir la formule calcul6e Na + 3.54 g/cm3 (meas.), 3.58 g/cms (calc.). Wicksite is a.e6Ca7.ssFe2rz.saMnz.erMgs.TTFe&+ a.e1A\.rtP*.oOron.*, biaxial positive,a 1.713(3),P 1.718(3),.y 1.728(3), H16.a5.Espdce d6di6e au Dr Frederick John Wicks, 2V 66o. It is strongly pleochroic: X blue, Y conservateur de min6ralogie au Royal Ontario greenish blue and Z pale yellowish brown, with Museum. - absoiption X Y ) Z. Microprobe analysis, DTA- (Traduit par la R6daction) TGA and titration with potassium dichromate leld Alror 0.51, FerOe7.98, NazO 3.08, FeO 22.66, MgO Mots-cl(s: wicksite, phosphate, min6ral nouveau, 3.77, MnO 4.72, CaO 11.05,PrOs 41.64, H,rO 3.70, Yukon. sum 99,llVo, whence the calculated formula Na + + 1.e,,Ca7.65Fe212.6aMn2.65Mgs,7"Fe3 a.6.Aln.rrP-.*Oror.r, INTnoouctIoN Hro.s. The name honors Dr, Frederick John Wicks, Curator of Mineralogy at the Royal Ontario Since 1973, when the first specimensof Phos- Museum. phate minerals were brought to the Royal Onta- rio Museum for identification, five new minerals Keywords: wicksite, phosphate, new mineral, Yukon. have been described from an iron formation in northeastern Yukon Territory. Specimens with Sorvtraens large, well-developed crystals of phosphatemin- erals were collected in the area along Rapid La wicksite NaCas(Fes+,Mn)aMgFes+@On)u. Creek, whereas in the nearby area along the 2HrO est orthorhombique, groupe spatial Pbca, et Big Fish River, the phosphate minerals are possEde les paramdtre^s affin€s a 12.896Q), b I2.511(3),c 11.634(3)A pour Z - 4. Les hrrif raies developed mostly as aggregatesor as nodules. les plus intenses du clich6 de poudre [d en A (f) Two new minerals have been found in the speci- (hkl)] sont: 3.502(20)(230),3.015 (80)(411), mens from the Big Fish area: mariCite NaFePOa 2.e10(80)(004), 2.868(30)(420), 2.837(30)(104), (Sturman et al. 1977) and satterlyite (Fe,Mg)z 2.7s3 ( 100) (412,042\, 2.57| (40) (422) et 2.I I 8(60 ) PO4(OH) (Mandarino et al. 1978). The new 377 378 THE CANADIAN MINERALOGIST mineral wicksite was found as minute grains CnysrelLocneprrv during the study of the paragenesisof satterlyite, but detailed investigation was postponed until A single-crystal X-ray-diffraction study of a specimens containing larger grains were col- small cleavage plate of wicksite showed that it lected. is orthorhombic, space group Pbca with unit- We are pleasedto name this mineral in honor cell parameters 4 12.91\2), b 12.54(2), c of Dr. Frederick John Wicks, Curator of Min- 11 .64 (2) A. An X-ray-diffra'ctionpowder pattern eralogy at the Royal Ontario Museum, Toronto. was obtained with a Guinier-de Wolff camera His contribution to mineralogy, especially in and Cu Ka radiation. Intensities of the reflec- the field related to serpentineminerals, has been tions on precession and Weissenberg camera recognized by the Mineralogical Association of films were used as an aid in indexing the Canada. which awarded him and his coauthor powder pattern. Irast-squares refinement of the Dr. E.J. Whittaker the Hawley medal for the unit-cell parameters,based on 19 reflections in best paper published in The Canadian Mineral- the powder pattern (Table l), yielded the re- ogist in 1977 and again in 1978. fined unit-cell parameters a 12.896(3), b The mineral and the name were approved by tz.stt,3), c 11.634(3)A. the Commissionon New Minerals and Mineral NamesnI.M.A. The type specimen (grams) is preservedin the collections of the Royal Ontario Puvsrcel eNo Oprtcel Pnopenrrcs Museum, Toronto (M373U), and the frag- ments from this specimen are preserved in the Wicksite is dark blue, almost black, tending Smithsonian Institution, Washington, D.C. toward blue or green and transparent in thin (NMNH 145607) and the National Mineral fragments. The streak is green, and the lustre, Collection, Geological Survey of Canada, Otta- submetallic.Cleavage {010} is good. The hard- wa (61309). ness(Mohs) is 4Vz-5. Wicksite is platy parallel to {010}; somespecimens are massive.Striations parallel to the a axis are developed on many PARAGENESIS plates. No forms other than {0lO} were ob- Wicksite is found in ironstone and shale units served. of Cretaceous sediments along the Big Fish River in northeastern Yukon Territory. The geology of the area was described by Young (1977). The type specimenwas collectedat the TABLE1. X-MY POLIDER-DIFFMCTIONDATA FOR IIICKSIIE locality known as Big Bend, located on the west shore of the Big Fish River (latitude 68"28'3V' T *obs dcalc WL r dobs N and longitude 136"29'W). There, the phosphate minerals, including wicksite, are l0 6.47 6.448 200 q 2,085 found in nodules in shale beds. Many of i0 6.28 6.256 020 t0 2.04L 10 5.83 5.817 002 1,991 the nodules have an outline that suggests 10 4.50 4.500 220 L.962 5 4.33 4.319 202 I OnO formation by the replacement of fossil ammo- 5 4.19 4.189 221 1.893 I 4.05 4.045 LZz 1.852 nites. The major constituents of the nodules are I 3.556 3.560 l1? 1.834 wolfeite, satterlyite, mariCite and pyrite; some 3.554 222 L.776 20 3.50? 3.502 230 t0 1.748 nodules are composed of only one or two of 80 J. UI5 411 10 1.718 ?n 2.942 2.941 141 t.662 these minerals. Of several hundred nodules ex- 80 2.9t0 2.908 004 L,64-1 amined, only about ten contain wicksite, always JU 2,868 2.866 420 10 L.632 JU 2.837 2.837 104 I 1.604 as a minor constituent. 20 2,820 2.820 402 I 100 a. ta5 2.755 042 1 1.569 Wicksite is intimately associated with wol- 2.751 412 10 t0 2.736 2.735 24L , 1.534 feite, satterlyite and mariCite. These apparently 20 t ao1 2.694 t42 5 all formed contemporaneously.Wicksite is usual- 40 2.571 2.571 422 t 1.477 20 2.49r 2.497 4JI ly found along the edgesof nodules or interstiti- l0 2,467 2,469 t0 filling spaces radial l0 2.429 2.432 413 10 1.285 ally, the between the aggre- 2.332 2.333 .N gates of satterlyite, mariiite and wolfeite, or 1 2.252 2.252 II5 I 2.L46 2.750 r25 admixed with the minerals in these aggregates. 60 2.lt8 2.118 343 , tla Pyrite and quartz are also found in the nodules olu with wicksite: in some nodules all minerals are coated with a thin layer of ludlamite or vivia- Gulnlercmerat CuKaradiatlon; Intenslties esilmted vlsuallvi lndexedrlth orthorhmblc untt cell c"LZ.896, b-12,5u., o"it.-O5qf, nite. space group pr@. WICKSITE FROM THE YUKON 379 The density, measuredwith a Berman micro- TABLE 2. CHEI,IIICALCol'lPoSlTIoN 0F IiIICKSITS balance,is 3.54(2) g/cm8. It compareswell with the density (3.58 g/cms) calculated"from the 41203 Fe203 Na20 Feo fi90 l4n0 Cao Pz0s HzO Total ideal formula, the refined unit-cell parameters 0.51 7.98 3.0A 22,66 3,77 4.72 11.05 41.64 3.70 99.LrZ andZ=4. Hro detemlned by DTA-TGAiferrous lron by tltfatlon Blth potisslw Wicksite is biaxial positive; 2V" 66(2)" dichrcmte; other el@ents detemlned Hlth mlcroprcbe; total ircn (measured),72" (calculated).
Recommended publications
  • Vibrational Spectroscopic Characterization of the Phosphate Mineral Ludlamite
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 103 (2013) 143–150 Contents lists available at SciVerse ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa Vibrational spectroscopic characterization of the phosphate mineral ludlamite (Fe,Mn,Mg)3(PO4)2Á4H2O – A mineral found in lithium bearing pegmatites ⇑ Ray L. Frost a, , Yunfei Xi a, Ricardo Scholz b, Fernanda M. Belotti c a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil c Federal University of Itajubá, Campus Itabira, Itabira, MG 35903-087, Brazil highlights graphical abstract " We have analyzed the phosphate Raman spectrum of ludlamite in the phosphate stretching region. mineral ludlamite by EMP-WDS. " The mineral is a ferrous phosphate with some minor substitution of Mg and Mn. " Spectroscopic analysis shows the mineral is predominantly a phosphate with some minor hydrogen phosphate units. " The position of the OH bands shows that water is very strongly hydrogen bonded in the ludlamite structure. article info abstract Article history: The objective of this work is to analyze ludlamite (Fe,Mn,Mg)3(PO4)2Á4H2O from Boa Vista mine, Galiléia, Available online 16 November 2012 Brazil and to assess the molecular structure of the mineral. The phosphate mineral ludlamite has been characterized by EMP-WDS, Raman and infrared spectroscopic measurements. The mineral is shown to Keywords: be a ferrous phosphate with some minor substitution of Mg and Mn.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • High-Temperature Thermomagnetic Properties of Vivianite Nodules
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Clim. Past, 9, 433–446, 2013 Climate www.clim-past.net/9/433/2013/ Climate doi:10.5194/cp-9-433-2013 of the Past of the Past © Author(s) 2013. CC Attribution 3.0 License. Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions High-temperature thermomagnetic properties of Open Access Open Access vivianite nodules, Lake El’gygytgyn, Northeast RussiaGeoscientific Geoscientific Instrumentation Instrumentation P. S. Minyuk1, T. V. Subbotnikova1, L. L. Brown2, and K. J. Murdock2 Methods and Methods and 1North-East Interdisciplinary Scientific Research Institute, Far East Branch of the Russian AcademyData Systems of Sciences, Data Systems Magadan, Russia Discussions Open Access 2 Open Access Department of Geosciences, University of Massachusetts, Amherst, USA Geoscientific Geoscientific Correspondence to: P. S. Minyuk ([email protected]) Model Development Model Development Received: 7 September 2012 – Published in Clim. Past Discuss.: 9 October 2012 Discussions Revised: 15 January 2013 – Accepted: 15 January 2013 – Published: 19 February 2013 Open Access Open Access Hydrology and Hydrology and Abstract. Vivianite, a hydrated iron phosphate, is abun- 1 Introduction Earth System Earth System dant in sediments of Lake El’gygytgyn, located in the Anadyr Mountains of central Chukotka, northeastern Rus- Sciences Sciences sia (67◦300 N, 172◦050 E).
    [Show full text]
  • New Minerals: Doubtful Species Class: Phosphates' Etc
    44 THE AMENCAN MINERALOGIST NEW MINERALS: DOUBTFUL SPECIES CLASS: PHOSPHATES' ETC. Lehnerite F. Miillbauer: Die Phosphatpegmatite von Hagendorf i' Bayern' (The phos- (1925)' phate pegmatites of Hagendorf, Bavaria') Z eit' Kr y st.,61, 331, Naur: Named after the mineral collector Lehner- Cqnurclr. Pnoptnrnis: A hydrous basic phosphate of iron' Formula: TFeO' 2P2Ob.6HzO. Analysis: PzOt 34.20,FeO 46.35 ,MnO 2'95, MgO 2'43, IlzO 14'07' Sum 100. (Analysis after deduction of insoluble material and alumina') Cnvsrltrocneprrcer PnornnrrEs: Monoclinic, prismatic, with forms (001)' (110),(101), (109), (I05), (122),(432). a:b:c:0.8965:r:2'4939' B:110" 23" Pnvsrcar. eNo Oprrcar Pnoplnrres: Color apple green' Biaxial, positive' Plane of the optic axes is parallel to (010). Bxo makes about 28" with the normal to c. Cleavage parallel to the base, perfect. occunnnNcn: In small crystals or grains and veins between triploidite crystals, in apatite, or in cracks in triplite or triphylite at Hagendorf, Bavaria' DrscussroN: This mineral is very near to ludlamite in composition' The optical and crystallographic data, howevet, are not sufficiently detailed to determine with certainty the relation of this mineral to ludlamite. W'F'F' Wentzelite O?. Cit., p.333. N.tue ' Named in honor of Father Hieronymus Wenlzel', discoverer of the Ploystein phosphate locality. Cnnurcer. Couposnrow: A hydrous phosphate of mangbnese' Formula: 3MnO. PeOr. 5HzO. Analysis: PzOs 39.37, FeO, 6'01, MnO 21'13, MgO 6'83' HrO 23.66. (100), Cnvstelr.ocnePErcAr, PRoPERTTES: Monoclinic, prismatic' Forms (001),(110), (T01),(113). a:b:c:2.3239:l:2.8513.
    [Show full text]
  • WOLFEITE, XANTHOXENITE, and WHITLOCKITE from the PALERMO MINE, NEW HAMPSHIRE* Crunono Fronorr-,E Araard
    WOLFEITE, XANTHOXENITE, AND WHITLOCKITE FROM THE PALERMO MINE, NEW HAMPSHIRE* Crunono FRoNoRr-,E araard. LI nia er sity, Cambri d, ge, M assachus ett s. Assrnncr Xanthoxenite, hitherto known only from Rabenstein, Bavaria,on the basis of a partial description, occurs abundantly at the palermo mine. Composition: Ca2Fe///(pOtr(OH) 'l}HrO from the analysis: CaO 24.99,MgO 0.91, MnO 4.55, Fe2O327.6g,AlrO3 0.01, pros 37.62,H2o+9.13, Hro-0.86, insol.0.78; total 100.53.As crusts or massesof indistinct Wor,rBrrB This mineral was first noticed by professor C. W. Wolfe of Boston Uni- versity and was tentatively identified by him as triploidite. The mineral is a hydrothermal replacement of the triphylite and is associatedwith * Contribution from the Department of Mineralogy and petrography, Harvard Uni- versity, No. 306. 692 NEW HAMPSHIRE WOLFEITE, XANTHOXENITE, WHITLOCKITR 693 indistinct veinlets containing chlorite, sphalerite, pyrite and arsenopy- rite. Several months later further operations in the quarry exposed another large triphylite crystal that had been partly reworked hydro- thermally into a granular aggregate composed of residual triphylite, siderite, qu.attz,apatite, plagioclase,ludlamite and abundant columnar- fibrous massesof a dark clove-brown mineral. The latter mineral was f ound by the writer to afiord an n-ray powder pattern identical with that of triploidite, but with smaller cell dimensions, and the indices of refrac- tion proved to be considerably higher than those of the Branchville triploidite. These facts, together with the occurrence of the mineral as an alteration product of triphylite, rather than of lithiophilite as at Branchville, suggestedthat the material was the iron analogue of trip- loidite.
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Diamond Dan's Mineral Names Dictionary
    A Dictionary of Mineral Names By Darryl Powell Mineral Names What do they mean? Who created them? What can I learn from them? This mineral diction‐ ary is unique because it is illustrated, both with mineral drawings as well as pictures of people and places after which some minerals are named. The people pictured on this page have all made a con‐ tribution to what is formally called “mineral nomenclature.” Keep reading and you will discover who they are and what they did. In 1995, Diamond Dan Publications pub‐ lished its first full book, “A Mineral Collector’s Guide to Common Mineral Names: Their Ori‐ gins & Meanings.” Now it is twenty years later. What you will discover in this issue and in the March issue is a re‐ vised and improved version of this book. This Mineral Names Dictionary contains mineral names that the average mineral collector will encounter while collecting minerals, attending shows and visiting museum displays. In addition to the most common min‐ eral names, there are some unofficial names which you will still find on labels. Each mineral name has a story to tell or a lesson to teach. If you wanted to take the time, each name could become a topic to study. Armalcolite, for example, could quickly be‐ come a study of a mineral, first discovered on the moon, and brought back to earth by the astronauts Armstrong, Aldrin and Collins (do you see parts of their names in this mineral name?) This could lead you to a study of American astronauts landing on the moon, what it took to get there and what we discovered by landing on the moon.
    [Show full text]
  • The Crystal Structure of the Mineral Scholzite and a Study of the Crystal
    \ I 7'1,71 ¡1 :), THE CRYSTAL STRUCTURE OF THE MINERAL SCHOLZITE AND A STUDY OF THE CRYSTAL CHEMISTRY OF SOME RELATED PHOSPHATE AND ARSENATE MINERALS A thesis submitted for the Degree of Doctor of PhilosoPhY at the University of Adelaide in April, 1975 by R0DERICK JEFFREY HILL, B.Sc. (Hons.) Department of Geology and Mineralogy Au/¿tr¡'t ,,! /'/,".'','-'"' ' TABLE OF CONTENTS Page SUMMARY (i) STATEMENT OF ORIGINATITY (ii) ACKNOWLEDGEMENTS (iii) GENERAL INTRODUCTION I CHAPTER 1 TIIE GEOI.OGY AbID MINERALOGY OF REAPHOOK HILL, SOUTTI AUSTR.ALIA 2 1.1 ABSTR,ACT 2 r.2 INTRODUCTTON 2 1.3 GEOIÐGICAL SETTING 3 I.4 EXPERTMENTAI TECHNIQT ES 5 1.5 THE MAJOR PHOSPHATE MTNERALS 6 1.5.1 Tarbuttite - Znr(po4) (OH) 6 1.5.2 Parahopeite ZnrZn(pOn) - Z.4HZo 9 I.5.3 Scholzite CaZnU(pO4) - 2.2H2O 9 1.5.4 Zincian Collinsite Car(Mg,Zn) (pO4) - 2.2H2O 15 1.6 ASPECTS OF EHE CRYSTA¡ CHEMISTRY OF THE MAJOR PHOSPHATE MINERALS 19 L.7 PARAGENESIS 23 1.7.1 Major Minerals 23 L.7.2 Other lvlinerals 26 1.7.3 Conclusions 27 CHAPTER 2 TIIE CRYSTAI STRUCTURE OF SCHOLZITE 30 2.L ABSTRACT 30 2.2 INTRODUCTION 32 2.3 DATA COLLECTION AND ÐATA REDUCTION 32 2.4 DISCUSSION OF TITE INTENSITY DISTRIBUTION 35 2.4.L Subcell Structure and pseudosynunetry 35 2.4.2 Dete::mination of the True Syrnmetry 4L 2.4.3 Structural Disorder 4l 2.5 STRUqrURE SOLUTION AND REFINEMENT OF THE AVER.AGE ST'BCELL 52 2.6 DESCRIPTION AND DISCUSSION OF THE AVERAGE ST]BCELL STRUCTURE 60 2.6.I Topology 60 2.6.2 Disorder 65 2.6.3'iThermal" parameters 67 2.7 STRUCTURE SOLUTION AND REFTNEMENT OF TITE },IAIN CELL
    [Show full text]
  • The Phosphate Mineral Arrojadite-(Kfe) and Its Spectroscopic Characteri- Zation
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Xi, Yunfei, Scholz, Ricardo, & Horta, Laura (2013) The phosphate mineral arrojadite-(KFe) and its spectroscopic characteri- zation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 109, pp. 138-145. This file was downloaded from: https://eprints.qut.edu.au/58843/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2013.02.027 1 The phosphate mineral arrojadite-(KFe) and its spectroscopic characterization 2 3 Ray L.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 87, pages 1731–1735, 2002 New Mineral Names* JOHN L. JAMBOR1,† AND ANDREW C. ROBERTS2 1Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada BRODTKORBITE* The mineral occurs as blue crusts, to 5 mm thickness, and W.H. Paar, D. Topa, A.C. Roberts, A.J. Criddle, G. Amann, as coatings, globules, and fillings in thin fissures. The globules µ R.J. Sureda (2002) The new mineral species brodtkorbite, consist of pseudohexagonal platelets, up to 50 m across and <0.5 µm thick. Electron microprobe analysis gave Y2O3 42.2, Cu2HgSe2, and the associated selenide assemblage from Tuminico, Sierra de Cacho, La Rioja, Argentina. Can. Min- La2O3 0.3, Pr2O3 0.1, Nd2O3 1.3, Sm2O3 1.0, Gd2O3 4.8, Tb2O3 eral., 40, 225–237. 0.4, Dy2O3 3.7, Ho2O3 2.6, Er2O3 2.5, CaO 0.5, CuO 10.9, Cl 3.0, CO2 (CHN) 19.8, H2O (CHN) 10.8, O ≡ Cl 0.7, sum 103.2 Electron microprobe analyses gave Cu 26.2, Hg 40.7, Se wt%, corresponding to (Y3.08Gd0.22Dy0.16Ho0.11Er0.10 Nd0.06Sm0.05 Tb0.02La0.02Pr0.01Ca0.08)Σ3.91 Cu1.12(CO3)3.7Cl0.7(OH)5.79 ·2.4H2O, 32.9, sum 99.8 wt%, corresponding to Cu2.00Hg0.98Se2.02, ide- simplified as (Y,REE)4Cu(CO3)4Cl(OH)5·2H2O. Transparent, ally Cu2HgSe2. The mineral occurs as dark gray individual anhedral grains, up to 50 × 100 µm, and as aggregates to 150 × vitreous to pearly luster, pale blue streak, H = ~4, no cleavage 250 µm.
    [Show full text]
  • This File Was Downloaded From
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland University of Technology ePrints Archive This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Frost, Ray L., Xi, Yunfei, Scholz, Ricardo, & Belotti, Fernanda M. (2013) Vibrational spectroscopic characterization of the phosphate mineral lud- lamite (Fe,Mn,Mg)3(PO4)2·4H2O – a mineral found in lithium bearing peg- matites. Spectrochimica Acta Part A : Molecular and Biomolecular Spec- troscopy, 103, pp. 143-150. This file was downloaded from: http://eprints.qut.edu.au/58684/ c copyright 2012 Elsevier B.V. All rights reserved. This is the author’s version of a work that was accepted for publication in Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy. Changes resulting from the publishing process, such as peer review, edit- ing, corrections, structural formatting, and other quality control mecha- nisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive ver- sion was subsequently published in Spectrochimica Acta Part A : Molec- ular and Biomolecular Spectroscopy, [VOL 103, ISSUE -, (2013)] DOI: 10.1016/j.saa.2012.11.023 Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: http://dx.doi.org/10.1016/j.saa.2012.11.023 1 Vibrational spectroscopic characterization of the phosphate mineral ludlamite 2 (Fe,Mn,Mg)3(PO4)2·4H2O - a mineral found in lithium bearing pegmatites 3 4 Ray L.
    [Show full text]