Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Supporting Information Tong et al. 10.1073/pnas.0904571106 SI Results Arrestin-Beta. The arrestin-beta gene sequence of E. scolopes predicted a protein longer than that of L. pealei. Both visual and Characteristics of the E. scolopes Sequences Characterized in nonvisual arrestins have been identified in both invertebrates this Study and vertebrates, but thus far, only the visual system-specific R-Opsin. Sequences in the eye and light organ were identical to arrestin has been identified in cephalopods (7). The derived each other and to the sequence for E. scolopes visual rhodopsin amino acid sequence of the E. scolopes light-organ arrestin that had already been reported (1), a finding demonstrating that contains the 5 fingerprint regions that are characteristic of these the same isoform of this protein probably occurs in both the eyes proteins; in these regions, the overall identity is 89%. In addition, and light organs of this squid species. Comparisons of the 5 polar core residues, which are present in the bovine and L. sequence with that of rhodopsins of other cephalopod species pealei visual arrestins, occur in the same positions in the E. confirmed the presence of conserved amino acids, e.g., a lysine scolopes protein. in the seventh transmembrane region, presumably the site of retinal binding, a glycosylation site in the N terminus, a rho- Squid Retinal-Binding Protein. The EST database had a clone that encoded the C-terminal portion of the squid retinal-binding dopsin kinase phosphorylation site, and proline-rich repeats in protein (RALBP), with 82% identity in the region of alignment. the C terminus. Similar to that portion of the RALBP of another squid species (8), the E. scolopes RALBP-like fragment is composed of highly Gq Alpha. We report 2 genes, both with high blast similarity (97% hydrophilic and acidic amino acid residues. identical) to published Loligo pealei proteins of the Gq class (2). In E. scolopes, 1 gene is expressed in the eye; the other is G Alpha i. The same isoform of G alpha i was expressed in both expressed in its light organ. In maximum likelihood phylogenetic the eye and the light organ of E. scolopes. The E. scolopes gene analyses, both these genes fall within a clade of cephalopod Gq reported here is most closely related (87% identical) to an proteins. Most genes closely related to the E. scolopes genes are octopus gene isolated from a hemisected eye (GenBank known to be expressed in retinas by study of eye-specific cDNA #BAA93636). (2). These studies did not address expression outside the eye. Visual G Protein Beta. Unlike mammals, which have 3 distinct PLC-Beta. The E. scolopes gene is related (Ϸ89% identical) to G-beta subunit types, cephalopods have a single type (9). This PLC genes that have been isolated from eyes of other cephalo- protein is a subunit of the phosphatidylinositol-specific phos- pods (e.g., L. pealei and Watasenia scintillans). Hallmarks of PLC pholipase C-directed GTP-binding protein of cephalopod pho- genes include a pleckstrin homology domain, EF-hand homology toreceptor cells. The beta subunit of the G protein is highly domain, bipartite catalytic domain, C2 homology domain, and P conserved in vertebrates and invertebrates, including E. scolopes box and G box, which are required for functional interaction with (a 1% change in the amino acid sequence approximately every Gq alpha (3). These domains are present in the inferred E. 40 million years). scolopes protein sequence. In L. pealei, PLC is stimulated by activated squid Gq alpha and is expressed ‘‘uniquely’’ in photo- Phosphodiesterase. The phosphodiesterase (PDE) sequence of E. receptors (4). These features provide strong evidence that the L. scolopes shares identity with sequences in mammalian PDE pealei gene is involved in phototransduction and, by the argu- families. For example, of 22 amino acids conserved among all ment of conserved function, from a common ancestor; the E. mammalian PDE1–8 families, 21 also are conserved in the E. scolopes gene(s) are also phototransduction genes. scolopes PDE sequence. The single change is a conservative Tyr to Phe at amino acid 24 of the catalytic domain (amino acid 89). Transient Receptor Potential-Canonical. Transient Receptor Potential- A 266-amino acid region near the C terminus of PDE in the E. Canonical (TRPC). TRP-like proteins have been identified in L. scolopes sequence is homologous to the catalytic region of the forbesi and have 3 conserved domains: the ankyrin repeat mammalian PDE, which shares 72.2% amino acid sequence identity with the human sequence in the catalytic domain. Also domain (amino acid residues 47–147), the TRP2 domain (amino conserved in the E. scolopes PDE sequence are 2 divalent acid residues 155–217), and the ion transport domain (amino cation-binding motifs thought to be critical to the catalytic acid residues 396–608) (5). The derived amino acid sequence for activity of PDEs (10). TRP-like proteins from E. scolopes obtained thus far matches the last 33 amino acids in the ion transport domain with 88% Cyclic Nucleotide-Gated Channels. Although thus far only 58 amino identity. acids of the E. scolopes CNG channel have been identified, the CNG fragment groups strongly (aLRT ϭ .99) with other CNG- Rhodopsin Kinase. In L. pealei, the cephalopod species for which beta genes, compared with the outgroup CNG-alpha genes. this protein has been described, squid rhodopsin kinase (SQRK) CNG proteins are the ion channels responsible for hyperpo- has 3 distinct modular domains, a regulator of G protein larization of ciliary photoreceptors, such as the primary eyes signaling (RGS) domain, a serine-threonine kinase catalytic of vertebrates. CNG genes are expressed outside eyes as well. (STKc) domain, and a pleckstrin homology (PH) domain (6). To our knowledge, the ion channel involved in protostome The fragment of the E. scolopes protein has 96% identity to the ciliary photoreceptors is unknown. However, because CNGs entire region of the L. forbesi sequence to which it aligns. It are used in hyperpolarizing vertebrate ciliary receptors, the E. contains the C-terminal half of the STKc domain (98% identity) scolopes CNG would be a prime candidate for protostome and the entire PH domain (98% identity). ciliary phototransduction. Tong et al. www.pnas.org/cgi/content/short/0904571106 1of16 1. Strugnell J, Norman M, Jackson J, Drummond AJ, Cooper A (2005) Molecular phylogeny 7. Mayeenuddin LH, Mitchell J (2003) Squid visual arrestin: cDNA cloning and calcium- of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach: The dependent phosphorylation by rhodopsin kinase (SQRK). J Neurochem 85:592–600. effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol 8. Ozaki K, et al. (1994) Molecular characterization and functional expression of squid Phylogenet Evol 37:426–441. retinal-binding protein. A novel species of hydrophobic ligand-binding protein. J Biol 2. Go L, Mitchell J (2003) Palmitoylation is required for membrane association of activated Chem 269:3838–3845. but not inactive invertebrate Gqalpha. Comp Biochem Physiol B Biochem Mol Biol 9. Ryba NJ, Pottinger JD, Keen JN, Findlay JB (1991) Sequence of the beta-subunit of the 135:601–609. phosphatidylinositol-specific phospholipase C-directed GTP-binding protein from 3. Zuker CS (1996) The biology of vision of Drosophila. Proc Natl Acad Sci USA 93:571–576. squid (Loligo forbesi) photoreceptors. Biochem J 273:225–228. 4. Mayeenuddin LH, Bamsey C, Mitchell J (2001) Retinal phospholipase C from squid is a 10. Liscovitch M, Chalifa-Caspi V (1996) Enzymology of mammalian phospholipase D: In regulator of Gq alpha GTPase activity. J Neurochem 78:1350–1358. vitro studies. Chem Phys Lipids 80:37–44. 5. Monk PD, et al. (1996) Isolation, cloning, and characterisation of a trp homologue from squid (Loligo forbesi) photoreceptor membranes. J Neurochem 67:2227–2235. 6. Mayeenuddin LH, Mitchell J (2001) cDNA cloning and characterization of a novel squid rhodopsin kinase encoding multiple modular domains. Visual Neuroscience 18:907– 915. Tong et al. www.pnas.org/cgi/content/short/0904571106 2of16 A. Opsin 0.986000 UniRef50 Q17A90 Opsin 3 Culicidae Proteins 0.987000 UniRef50 P08100 Rhodopsin 385 Vertebrata Protein 0.735000UniRef50 Q1L4C8 Parietopsin 4 Euteleostomi Prote UniRef50 O42266 Parapinopsin 10 Vertebrata Prote Ciliary 0.776000 UniRef50 UPI0000F1FB40 pred simto multiple ti 0.994000 Opsins 0.923000 UniRef50 Q4RRX8 7 SCAF15001 wgs 2 Eut 0.988000UniRef50 Q868G2 Opsin 1 Branchiostoma belcheri P UniRef50 Q868G1 Opsin 1 Branchiostoma belcheri P UniRef50 UPI0000660618 Homolog of Gallus gallus Pe 1.000000 Go 0.802000 UniRef50 O14718 Visual pigmentlike receptor perops UniRef50 Q868G4 Opsin 1 Branchiostoma belcheri P 0.914000 Opsins UniRef50 O15974 Rhodopsin G0coupled 1 Mizuhopecten UniRef50 Q0ZPT9 Opsin 2 Strongylocentrotus Prote UniRef50 UPI0000F20D29 PREDICTED hypothetical prot 0.384000 0.799000 0.999000 UniRef50 Q4T685 Chromosome undetermined SCAF8878 w 1.000000UniRef50 Q6U736 Opsin5 26 Tetrapoda Proteins UniRef50 Q4RF26 Chromosome 14 SCAF15120 wgs 12 E UniRef50 Q25158 Compound eye opsin BCRH2 3 Heter 0.811000 0.998000UniRef50 P35356 Rhodopsin 13 Eumalacostraca Prot 0.926000 UniRef50 P08099 Opsin Rh2 1339 root Proteins 0.997000 1.000000UniRef50 Q9VTU7 CG5638PA 1 Drosophila melanogast UniRef50 Q7QJJ6 ENSANGP00000010731 2 Culicidae P 0.891000 UniRef50 P04950 Opsin Rh3 44 Neoptera Proteins 0.993000 UniRef50 Q26495 Opsin2 22 Neoptera Proteins 0.991000 Rhabdomeric UniRef50 P91657 Opsin Rh5
Recommended publications
  • Studio Delle Vie Di Trasduzione Del Segnale Inositide-Dipendente Nelle Sindromi Mielodisplastiche
    UNIVERSITA' DEGLI STUDI DI BOLOGNA Scuola di Dottorato in Scienze Mediche e Chirurgiche Cliniche Dottorato di Ricerca in Scienze Morfologiche Umane e Molecolari Settore Disciplinare BIO/16 Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell’Apparato Locomotore STUDIO DELLE VIE DI TRASDUZIONE DEL SEGNALE INOSITIDE-DIPENDENTE NELLE SINDROMI MIELODISPLASTICHE Tesi di Dottorato Tutore: Presentata da: CHIAR.MO PROF. LUCIO COCCO DOTT.SSA MATILDE YUNG FOLLO XIX Ciclo Anno Accademico 2005/2006 INDICE Introduzione 3 1. Sindromi Mielodisplastiche (MDS) 4 1.1.Trattamento delle MDS: 5’-azacitidina 8 2. Signalling Inositide-Dipendente: Fosfolipasi cβ1 (PI-PLCβ1) 10 2.1 Struttura del Gene della PI-PLCβ1 11 2.2 Struttura Proteica della PI-PLCβ1 12 3. Asse di Attivazione Fosfoinositide-3-Chinasi (PI3K)/Akt 14 3.1 Isoforme di Akt 16 3.2. Ruolo di Akt nei Disordini Ematopoietici 18 3.3. Ruolo di Akt nei Meccanismi Apoptotici 19 3.4. Ruolo di Akt nella Progressione attraverso il Ciclo Cellulare 20 4. Target Molecolari a Valle di Akt: mTOR, 4E-BP1e p70S6K 21 Scopo della Ricerca 23 Materiali e Metodi 25 1. Colture Cellulari in vitro 26 2. Caratteristiche dei Pazienti 26 3. Separazione delle Cellule Mononucleate 26 4. Ibridazione Fluorescente in Situ (FISH) 27 5. Estrazione del DNA ed Analisi Mutazionale 28 6. Estrazione dell’RNA e Sintesi del cDNA 28 7. Real-Time PCR 28 8. Analisi Immunocitochimica 29 9. Separazione delle Cellule CD33 31 10. Analisi Citofluorimetrica per la Quantificazione dell’Apoptosi 31 11. Analisi Citofluorimetrica per l’Analisi del Fenotipo 32 12. Separazione delle Cellule CD34 33 13.
    [Show full text]
  • Cephalic Sensory Cell Types Provides Insight Into Joint Photo
    RESEARCH ARTICLE Characterization of cephalic and non- cephalic sensory cell types provides insight into joint photo- and mechanoreceptor evolution Roger Revilla-i-Domingo1,2,3, Vinoth Babu Veedin Rajan1,2, Monika Waldherr1,2, Gu¨ nther Prohaczka1,2, Hugo Musset1,2, Lukas Orel1,2, Elliot Gerrard4, Moritz Smolka1,2,5, Alexander Stockinger1,2,3, Matthias Farlik6,7, Robert J Lucas4, Florian Raible1,2,3*, Kristin Tessmar-Raible1,2* 1Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; 2Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Vienna, Austria; 3Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenter, Vienna, Austria; 4Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester, United Kingdom; 5Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria; 6CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; 7Department of Dermatology, Medical University of Vienna, Vienna, Austria Abstract Rhabdomeric opsins (r-opsins) are light sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct *For correspondence: features of cephalic and non-cephalic r-opsin1-expressing cells. Non-cephalic cells possess a full set [email protected] (FR); of phototransduction components, but also a mechanosensory signature. Prompted by the latter, [email protected] (KT-R) we investigated Platynereis putative mechanotransducer and found that nompc and pkd2.1 co- Competing interest: See expressed with r-opsin1 in TRE cells by HCR RNA-FISH.
    [Show full text]
  • Role of Endothelin-1 in the Gastrointestinal Tract of Horses In
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 Role of endothelin-1 in the gastrointestinal tract of horses in health and disease Ramaswamy Monickarasi Chidambaram Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Medicine Commons Recommended Citation Chidambaram, Ramaswamy Monickarasi, "Role of endothelin-1 in the gastrointestinal tract of horses in health and disease" (2003). LSU Doctoral Dissertations. 1717. https://digitalcommons.lsu.edu/gradschool_dissertations/1717 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ROLE OF ENDOTHELIN-1 IN THE GASTROINTESTINAL TRACT OF HORSES IN HEALTH AND DISEASE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy The Interdepartmental Program in Veterinary Medical Sciences through the Department of Comparative Biomedical Sciences By Ramaswamy M. Chidambaram BVSc, Madras Veterinary College, India, 1996 MSc, Atlantic Veterinary College, Canada, 2000 May, 2003 Dedicated to my parents, Dr. S. Chidambaram Pillai and Mrs. R. Monickarasi, and my siblings for their inspiration and support toward my pursuit of higher knowledge ii ACKNOWLEDGEMENTS I express my sincere thanks and heartfelt gratitude to my mentor Dr. Rustin Moore and Dr. Changaram Venugopal, for their involvement and personal help offered toward the completion of my dissertation.
    [Show full text]
  • On the Mechanism of Task Channel Inhibition by G-Protein Coupled Receptors
    Aus dem Institut für Physiologie und Pathophysiologie (Geschäftsführender Direktor: Prof. Dr. Dr. Jürgen Daut) des Fachbereichs Medizin der Philipps-Universität Marburg ON THE MECHANISM OF TASK CHANNEL INHIBITION BY G-PROTEIN COUPLED RECEPTORS Inaugural-Dissertation zur Erlangung des Doktorgrades der gesamten Humanmedizin, dem Fachbereich Medizin der Philipps-Universität Marburg vorgelegt von Moritz Lindner aus Witten Marburg, 2012 Angenommen vom Fachbereich Medizin der Philipps-Universität Marburg am: 13. Dezember 2012 Gedruckt mit Genehmigung des Fachbereichs. Dekan: Prof. Dr. Matthias Rothmund Referent: Prof. Dr. Dominik Oliver 1. Korreferent: Prof. Dr. Timothy David Plant To my dear parents Abbreviations AMP-PCP β,γ-Methyleneadenosine-5′-triphosphate ATP Adenosine-tri-phosphate BAPTA 2,2′-(Ethylenedioxy)dianiline-N,N,N′,N′-tetraacetic acid CF-Inp54 Fusion construct of a CFP with the FKBP domain from the FK506 binding protein and the yeast Inp54p Phosphatase CFP Cyan fluorescent protein CHO Chinese Hamster Ovary Ci-VSP Ciona intestinalis voltage-sensitive phosphatase DAG Diacylglycerol DNA Deoxyribonucleic acid EGTA Ethylenglycol-bis(aminoethylether)-N,N,N′N′-tetraacetic acid Et-1 Endothelin-1 Ex-0 Standard extracellular solution GFP Green-fluorescent protein GPCR G-protein coupled receptor GqPCR Gq-protein coupled receptor Gqα Q-type alpha-subunit of the G-protein GTP Guanosine-tri-phosphate HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid ICS Intracellular solution Ins(1,4,5)P3 Inositol-1,4,5-tris-phosphate K2P Two-pore-domain
    [Show full text]
  • Pharmacological Characterisation of the Fatty Acid Receptors GPR120
    Pharmacological characterisation of the fatty acid receptors GPR120 and FFA1 Sarah-Jane Watson, BSc. Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy NOVEMBER 2013 Abstract In recent years, two G protein coupled receptors have been de-orphanised which respond to long chain free fatty acids (FFAs), and so are able to mediate the signalling of these important nutrient molecules. FFA1 (GPR40) is predominantly expressed in pancreatic -cells, while the expression profile of GPR120 includes gut endocrine cells and adipose tissue. These distributions, together with the potential of both receptors to stimulate insulin and incretin hormone secretion, singled them out as potential drug targets for type 2 diabetes and obesity. The aim of this thesis was to evaluate the pharmacology of these receptors and their signalling properties, including the development of fluorescent FFA receptor ligands to evaluate agonist binding using imaging techniques. GPR120 has been identified to exist as two splice isoforms in humans, differing by a short insertion in the third intracellular loop, but no full isoform specific characterisation of receptor signalling and trafficking had been undertaken. This work therefore studied the GPR120S and GPR120L isoforms in terms of both G protein dependent and arrestin dependent signalling, and trafficking. It was found that the long GPR120L isoform exhibited reduced G protein signalling, but similar -arrestin recruitment and lysosomal intracellular trafficking profiles as GPR120S. Potentially, expression of the long GPR120 isoform provides a mechanism to direct signalling to the -arrestin pathway, for example to produce anti-inflammatory effects in macrophages. As the expression profile of GPR120 overlaps with that of FFA1, for example in i colonic endocrine cells, a series of constrained GPR120 homo-dimers and GPR120:FFA1 heterodimers were created using irreversible bimolecular fluorescence complementation, and the potential for novel pharmacology was investigated by monitoring dimer internalisation.
    [Show full text]
  • ERK1/2: an Integrator of Signals That Alters Cardiac Homeostasis and Growth
    biology Review ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth Christopher J. Gilbert †, Jacob Z. Longenecker † and Federica Accornero * Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; [email protected] (C.J.G.); [email protected] (J.Z.L.) * Correspondence: [email protected] † Equal contribution. Simple Summary: Understanding how cardiac cells respond to external stimuli is essential for devel- oping interventions that mitigate pathologies of the heart. Therefore, in this review, we summarize critical knowledge related to a key molecular pathway that mediates cellular responses. Abstract: Integration of cellular responses to extracellular cues is essential for cell survival and adaptation to stress. Extracellular signal-regulated kinase (ERK) 1 and 2 serve an evolutionarily conserved role for intracellular signal transduction that proved critical for cardiomyocyte homeostasis and cardiac stress responses. Considering the importance of ERK1/2 in the heart, understanding how these kinases operate in both normal and disease states is critical. Here, we review the complexity of upstream and downstream signals that govern ERK1/2-dependent regulation of cardiac structure and function. Particular emphasis is given to cardiomyocyte hypertrophy as an outcome of ERK1/2 activation regulation in the heart. Citation: Gilbert, C.J.; Longenecker, J.Z.; Accornero, F. ERK1/2: An Keywords: ERK; extracellular matrix; heart; cardiac hypertrophy Integrator of Signals That Alters Cardiac Homeostasis and Growth. Biology 2021, 10, 346. https:// doi.org/10.3390/biology10040346 1. Introduction Within the heart, cardiomyocytes represent the primary working cell responsible Academic Editor: for contraction.
    [Show full text]
  • Chemoreception: a Consideration of Olfactory Signalling Proteins in Non-Olfactory Systems
    Chemoreception: A Consideration of Olfactory Signalling Proteins in Non-Olfactory Systems Yuliya Makeyeva A thesis in fulfillment of the requirements for the degree of Doctor of Philosophy School of Women’s and Children’s Health Faculty of Medicine November 2018 Thesis/Dissertation Sheet Australia's Global UNSWSYDNEY University Surname/Family Name Makeyeva Given Name/s Yuliya Abbreviation for degree as given in the University calendar PhD Faculty Faculty of Medicine School School of Women's and Children's Health Thesis Title Chemoreception: A Consideration of Olfactory Signalling Proteins in Non­ Olfactory Systems Abstract 350 words maximum: Chemoreception is a biological process whereby cells and/or organisms are stimulated by chemicals in their environment. The detectibn of chemicals triggers a response that can be the attraction or aversion by a single II cell or a highly integrative process that initiates a complex behaviour. Olfactory receptors (ORs) are a multigene family of molecules used to monitor extracellular chemical cues. They were originally described in the olfactory system as mediators of the sense of smell but have since been observed in a number of non-olfactory tissues. OR-mediated chemoreception in the olfactory system involves a G protein (Gait), adenylyl cyclase Ill (AC3), and OMP. ORs are difficultto study so little is known about their functions and expression profiles in these tissues. I, Olfactory marker protein (OMP) is a highly expressed protein found in mature olfactory sensory neurons of all vertebrates, co-labels with individual ORs, and is involved in intracellular signal transduction. OMP expression may indicate OR-mediated chemoreception in non-olfactory systems.
    [Show full text]
  • Documento Completo Descargar Archivo
    UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS EXACTAS DEPARTAMENTO DE CIENCIAS BIOLÓGICAS Trabajo de Tesis Doctoral: “Estudio del efecto del receptor de ghre- lina (GHSR) sobre la densidad en membrana de canales de calcio operados por voltaje (CaV) y sobre las propiedades biofísicas del sub- tipo CaV3”. Tesista: Lic. Emilio Román Mustafá Directora: Dra. Jesica Raingo Año: 2019 Agradecimientos Mi tesis doctoral fue uno de los mejores períodos de mi vida profesional y personal, y eso se lo debo a muchas de las personas que transitaron conmigo esta etapa. En primer lugar quiero agradecerle a Jesica, mi directora en esta tesis y mentora en mi carrera profesional. Gracias por permitirme ser parte de tu grupo de laboratorio cuando aún no tenía claro lo que significaba hacer un doctorado. Gracias por motivarme a hacer ciencia buena y de calidad, y sobretodo ciencia rigurosa y reproducible. Gracias por darnos a tus becarios y becarias la libertad de probar nuestras hipótesis cuando las pudimos ge- nerar. Gracias por despertar en nosotros el cuestionamiento a nuestros resultados y ajenos. Gracias por tu paciencia infinita cuando mil veces te he dicho “no entiendo”, gracias por exponerme a nuevos desafíos, y gracias por incentivarme a trabajar en equipo y entender lo valioso de hacer ciencia colectiva. Jesica es una investigadora a la que admiro, y sobre todo a la que le agradezco por ponderar de la misma manera hacer ciencia y formar buenos recursos humanos. También me gustaría agradecer a otras personas importantes en el laboratorio de Electrofisiología. Una de esas personas es Silvia, fue la primera que me enseñó lo que es trabajar en la mesada de un laboratorio realmente, teniendo mucha paciencia conmigo y con cualquier nuevo integrante.
    [Show full text]
  • Role of Molecular Chaperones in G Protein B5-Regulator of G Protein Signaling Dimer Assembly and G Protein by Dimer Specificity
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2009-04-02 Role of molecular chaperones in G protein B5-Regulator of G protein signaling dimer assembly and G protein By dimer specificity Alyson Cerny Howlett Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biochemistry Commons, and the Chemistry Commons BYU ScholarsArchive Citation Howlett, Alyson Cerny, "Role of molecular chaperones in G protein B5-Regulator of G protein signaling dimer assembly and G protein By dimer specificity" (2009). Theses and Dissertations. 2065. https://scholarsarchive.byu.edu/etd/2065 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. ROLE OF MOLECULAR CHAPERONES IN G PROTEIN β5-REGULATOR OF G PROTEIN SIGNALING DIMER ASSEMBLY AND G PROTEIN βγ DIMER SPECIFICITY by Alyson Cerny Howlett A dissertation submitted to the faculty of Brigham Young University In partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry Brigham Young University August 2009 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a dissertation submitted by Alyson C. Howlett This dissertation has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. ____________________ __________________________________________ Date Barry M. Willardson, Chair ____________________ __________________________________________ Date Steven W. Graves ____________________ __________________________________________ Date Craig D. Thulin ____________________ __________________________________________ Date Allen R. Buskirk ____________________ __________________________________________ Date Laura C.
    [Show full text]
  • Regulation of Cardiac Hypertrophy and Metabolism by Regulator of G Protein Signalling 2 (RGS2)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-1-2017 10:45 AM Regulation of Cardiac Hypertrophy and Metabolism by Regulator of G Protein Signalling 2 (RGS2) Katherine N. Lee The University of Western Ontario Supervisor Dr. Peter Chidiac The University of Western Ontario Co-Supervisor Dr. Qingping Feng The University of Western Ontario Graduate Program in Pharmacology and Toxicology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Katherine N. Lee 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Recommended Citation Lee, Katherine N., "Regulation of Cardiac Hypertrophy and Metabolism by Regulator of G Protein Signalling 2 (RGS2)" (2017). Electronic Thesis and Dissertation Repository. 4929. https://ir.lib.uwo.ca/etd/4929 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Pathological left ventricular hypertrophy is a maladaptive cardiomyocyte growth response to various cardiovascular conditions such as hypertension, and is a major risk factor for heart failure and stroke. The majority of drugs used to treat cardiovascular diseases target G protein coupled receptors (GPCRs), which are regulated by regulator of G protein signalling (RGS) proteins. RGS2 is a GTPase activating protein which limits Gq- and Gs-mediated signalling, which are known to play major roles in the development of pathological cardiac hypertrophy. In addition to its G protein effects, we have previously shown that RGS2 can also inhibit protein synthesis and cultured cardiomyocyte growth via a region in its RGS domain, RGS2eb, which inhibits the rate-limiting eIF2B/eIF2 step of protein synthesis initiation.
    [Show full text]
  • Download from DRYAD: 1246
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.10.426124; this version posted January 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Characterization of cephalic and non-cephalic sensory cell types 2 provides insight into joint photo- and mechanoreceptor 3 evolution 4 5 Roger Revilla-i-Domingo1,2,3, Vinoth Babu Veedin Rajan1,2, Monika 6 Waldherr1,2, Günther Prohaczka1,2, Hugo Musset1,2, Lukas Orel1,2, Elliot 7 Gerrard4, Moritz Smolka1,2,5, Matthias Farlik6,7, Robert J. Lucas4, Florian 8 Raible1,2,3,@ and Kristin Tessmar-Raible1,2,@ 9 10 1 Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna 11 2 Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr- 12 Gasse 9/4, A-1030 Vienna 13 3 Research Platform “Single-Cell Regulation of Stem Cells”, University of Vienna, 14 Althanstraße 14, A-1090 Vienna 15 4 Division of Neuroscience & Experimental Psychology, University of Manchester, UK 16 5 Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and 17 Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria 18 6 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, 19 Vienna, Austria 20 7 Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 21 Vienna 22 23 24 @ Corresponding authors: 25 [email protected], 26 [email protected] 27 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.10.426124; this version posted January 12, 2021.
    [Show full text]
  • Molecular Evolution of Opsins, a Gene Responsible for Sensing Light, in Scallops (Bivalvia: Pectinidae) Anita J
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Molecular evolution of opsins, a gene responsible for sensing light, in scallops (Bivalvia: Pectinidae) Anita J. Porath-Krause Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Developmental Biology Commons, and the Evolution Commons Recommended Citation Porath-Krause, Anita J., "Molecular evolution of opsins, a gene responsible for sensing light, in scallops (Bivalvia: Pectinidae)" (2016). Graduate Theses and Dissertations. 16612. https://lib.dr.iastate.edu/etd/16612 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Molecular evolution of opsins, a gene responsible for sensing light, in scallops (Bivalvia: Pectinidae) by Anita J. Porath-Krause A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee: Jeanne M. Serb, Major Professor Maura A. McGrail Dean C. Adams Anne M. Bronikowski Stephan Q. Schneider Iowa State University Ames, Iowa 2016 ii DEDICATION For my son iii TABLE OF CONTENTS TABLE OF CONTENTS ..............................................................................................................
    [Show full text]