Seastars of Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Seastars of Alaska Seastars of Alaska Poster 1 of 3 Leather Star Purple Orange Star Mottled Star Giant Star Western Star Arctic Star Dermasterias imbricata Asterias amurensis Evasterias trochelli Evasterias echinosoma Evasterias retifera Leptasterias arctica Aleutian Star Rough Skirted Star Greenland Star Scarlet Six-Rayed Star Kamchatka six-rayed star Enigmatic six-rayed star Leptasterias hylodes Leptasterias stolocantha Leptasterias groenlandica Leptastarias leptodoma Leptasterias camtschatica Leptasterias sp. A Lady Katherine’s six-rayed Star Coe’s Six-Rayed Star Polar Six-Rayed star Giant Aleutian Six-Rayed Star Odd Rayed Star Sunflower Star Leptasterias katharinae Leptasterias coei Leptasterias polaris Leptasterias truculenta Stephanasterias albula Pycnopodia helianthoides Rainbow Star Giant Pink Star Black spined star Fish eating star Alaskan Star Mariana’s Is. Star Orthasterias koehleri Pisaster brevispinus Lethasterias nanimensis Stylasterias forreri Tarsaster alaskanus Ampheraster marianus Deep Sea Sun Flower Star Bat Star Arctic Sand Star Pacific Sand Star Pentagonal Sand Star Northern Sand Star Rathbunaster californicus Asterina miniata Leptychaster arcticus Leptychaster pacificus Leptychaster anomalus Dipsacaster borealis Extraordinary Sand Star Aleutian Fragile Star Needle-Spined Fragile Star Variable Fragile Star Pedicillate Fragile Star Brisingid Dipsacaster eximius Cheiraster sp. A Nearchaster aciculosus Nearchaster variabilis Nearchaster pedicellaris Brisingidae Mud Star Sand Star Fisher’s Myxasterid Soft Orange Star Evermann’s Star Giant Slimy Star Ctenodiscus crispatus Luidia foliolata Asthenactis fisheri Pedicellaster magister Zoroaster evermani Myxoderma sacculatum U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service PHOTOS COURTESY OF ROGER CLARK. Alaska Fisheries Science Center, Seattle, Washington Additional funding provided by the North Pacific Research Board. Seastars of Alaska Poster 2 of 3 Arctic Cookie Star Orange Cookie Star Stellate Cookie Star Red Cookie Star Deep-Sea Cookie Star Grainy White Cookie Star Ceramaster arcticus Ceramaster patagonicus Ceramaster stellatus Ceramaster japonicus Ceramaster clarkii Cladaster alascanus Southern Spiny Star California Spiny Star Armored Spiny Star kurile Spiny Star Aleutian Spiny Star Heath’s Spiny Star Hippasteria spinosa Hippasteria californica Hippasteria armata Hippasteria kurilensis Hippasteria aleutica Hippasteria heathi Southeast Alaskan Spiny Star Pale Spiny Star Commander Spiny Star Pebbly Star Swift’s Star Delicate Star Hippasteria sp. E Hippasteria sp. B Hippasteria sp. D Cryptopeltaster lepidonotus Gephyreaster swifti Mediaster tenellus Aleutian Scarlet Star Northern ScarletStar Giant Brown Pseudarchaster Vermillion Star Tesselated Slime Star Northern Slime Star Pseudarchaster alascensis Pseudarchaster parelli Pseudarchaster dissonus Mediaster aequalis Pteraster tesselatus Pteraster sp. A Obscure Cushion Star Eight-Rayed Cushion Star Wrinkled Cushion Star Jordan’s Cushion Star Prickly Cushion Star Bering Deep-Sea Pteraster Pteraster obscurus Pteraster octaster Pteraster militaris Pteraster jordani Pteraster marsippus Pteraster sp. Wills’ Cushion Star Orange Cushion Star Rough Cushion Star Spiny Orange Cushion Star Orange Sided Cushion Star Zeus’ Shield Star Pteraster willis Pteraster pulvillus Pteraster temnochiton Pteraster sp. E Pteraster sp. B Pteraster sp. D Pincushion Star Pancake Star Fuzzy Star White Star Sea Star Unident Sea Star Unident Diplopteraster multipes Hymenaster sp. Peribolaster biserialis Anteliaster nannodes Unknown Family/Genus Unknown Family/Genus U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service PHOTOS COURTESY OF ROGER CLARK. Alaska Fisheries Science Center, Seattle, Washington Additional funding provided by the North Pacific Research Board. Seastars of Alaska Poster 3 of 3 Morning Sun Star Striped Sun Star Northern Sun Star White Sun Star Remarkable Sun Star Bering Sun Star Solaster dawsoni Solaster stimpsoni Solaster endeca Solaster hypothrissus Solaster sp. A Solaster sp. F Kessler’s Sun Star Beautiful Sun Star Serpent Sun Star Brooding Sun Star Ocher Sun Star Canonball Sun Star Solaster sp. E Solaster spectabilis Solaster sp. D Solaster hexactis Solaster sp. G Heterozonias alternatus Deep Sea Sun Star Common Rose Star White Rose Star Pink Rose Star Pink Crested Star Crested Star Crossaster borealis Crossaster papposus Crossaster sp. A Crossaster sp. B Lophaster furcilliger Lophaster vexator Slender Crested Star Vesteraalen’s Star Sandpaper Henricia Weak-Meshed Henricia Blood Star Spiny Henricia Lophaster sp. A Lophaster sp. B Henricia aspera Henricia asthenactis Henricia sp. Henricia multispina Feder’s Henricia Fat Henricia Lined Blood Star Mottled Henricia Bering Henricia Fuzzy Henricia Aleutihenricia federi Henricia tumida Henricia sp. A Henricia sp. C or B Henricia beringiania Henricia sp. D Short-Spined Henricia White Henricia Slender Pale Henricia Long-Spined Henricia Aleutian Long-Spined Henricia Fisher’s Toothed Henricia Henricia dyscrita Aleutihenricia derjugini Henricia sp. E Henricia longispina Henricia longispina aleutica Odontohenricia fisheri Violet Toothed Henricia Pale toothed Henricia Golden Toothed Henricia Purple Toothed Henricia Giant Toothed Henricia Thorny Star Odontohenricia sp. A Odontohenricia ahearnae Odontohenricia sp. C Odontohenricia violacea Odontohenricia sp. E Poraniopsis inflata U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service PHOTOS COURTESY OF ROGER CLARK. Alaska Fisheries Science Center, Seattle, Washington Additional funding provided by the North Pacific Research Board..
Recommended publications
  • Moons Phases and Tides
    Moon’s Phases and Tides Moon Phases Half of the Moon is always lit up by the sun. As the Moon orbits the Earth, we see different parts of the lighted area. From Earth, the lit portion we see of the moon waxes (grows) and wanes (shrinks). The revolution of the Moon around the Earth makes the Moon look as if it is changing shape in the sky The Moon passes through four major shapes during a cycle that repeats itself every 29.5 days. The phases always follow one another in the same order: New moon Waxing Crescent First quarter Waxing Gibbous Full moon Waning Gibbous Third (last) Quarter Waning Crescent • IF LIT FROM THE RIGHT, IT IS WAXING OR GROWING • IF DARKENING FROM THE RIGHT, IT IS WANING (SHRINKING) Tides • The Moon's gravitational pull on the Earth cause the seas and oceans to rise and fall in an endless cycle of low and high tides. • Much of the Earth's shoreline life depends on the tides. – Crabs, starfish, mussels, barnacles, etc. – Tides caused by the Moon • The Earth's tides are caused by the gravitational pull of the Moon. • The Earth bulges slightly both toward and away from the Moon. -As the Earth rotates daily, the bulges move across the Earth. • The moon pulls strongly on the water on the side of Earth closest to the moon, causing the water to bulge. • It also pulls less strongly on Earth and on the water on the far side of Earth, which results in tides. What causes tides? • Tides are the rise and fall of ocean water.
    [Show full text]
  • College of Arts and Sciences
    College of Arts and Sciences ANNUAL REPORT 2004·05 awards won · books published · research findings announced programs implemented · research · teaching · learning new collaborations · development of promising initiatives preparation · dedication · vision ultimate success 1 Message from the Dean . 3 Arts and Sciences By the Numbers . 6 Highlights Education . 8 Research . 12 Public Events . 15 Faculty Achievements . 17 Grants . 20 Financial Resources . 22 Appendices . 23 Editor: Catherine Varga Printing: Lake Erie Graphics 2 MESSAGE FROM THE DEAN I have two stories to tell. The first story is a record of tangible accomplishments: awards won, books published, research findings announced, programs implemented. I trust that you will be as impressed as I am by the array of excellence—on the part of both students and faculty—on display in these pages. The second story is about achievements in the making. I mean by this the ongoing activity of research, teaching, and learning; the forging of new collaborations; and the development of promising initiatives. This is a story of preparation, dedication, and vision, all of which are essential to bringing about our ultimate success. 3 As I look back on 2004-05, several examples of achievement and visionary planning emerge with particular clarity: Faculty and Student Recruitment. The College undertook a record number of faculty searches in 2004-05. By tapping the superb networking capabili- ties developed under the leadership of chief informa- SAGES. Under the College’s leadership, SAGES com- tion officer Thomas Knab, our departments were pleted its third year as a pilot program and prepared able to extend these searches throughout the world, for full implementation in fall 2005.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Download Complete Work
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Birkeland, Charles, P. K. Dayton and N. A. Engstrom, 1982. Papers from the Echinoderm Conference. 11. A stable system of predation on a holothurian by four asteroids and their top predator. Australian Museum Memoir 16: 175–189, ISBN 0-7305-5743-6. [31 December 1982]. doi:10.3853/j.0067-1967.16.1982.365 ISSN 0067-1967 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia THE AUSTRALIAN MUSEUM, SYDNEY MEMOIR 16 Papers from the Echinoderm Conference THE AUSTRALIAN MUSEUM SYDNEY, 1978 Edited by FRANCIS W. E. ROWE The Australian Museum, Sydney Published by order of the Trustees of The Australian Museum Sydney, New South Wales, Australia 1982 Manuscripts accepted lelr publication 27 March 1980 ORGANISER FRANCIS W. E. ROWE The Australian Museum, Sydney, New South Wales, Australia CHAIRMEN OF SESSIONS AILSA M. CLARK British Museum (Natural History), London, England. MICHEL J ANGOUX Universite Libre de Bruxelles, Bruxelles, Belgium. PORTER KIER Smithsonian Institution, Washington, D.C., 20560, U.S.A. JOHN LUCAS James Cook University, Townsville, Queensland, Australia. LOISETTE M. MARSH Western Australian Museum, Perth, Western Australia. DAVID NICHOLS Exeter University, Exeter, Devon, England. DAVID L. PAWSON Smithsonian Institution, Washington, D.e. 20560, U.S.A. FRANCIS W. E. ROWE The Australian Museum, Sydney, New South Wales, Australia. CONTRIBUTIONS BIRKELAND, Charles, University of Guam, U.S.A. 96910. (p. 175). BRUCE, A.
    [Show full text]
  • Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
    Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement.
    [Show full text]
  • Biodiversity and the Future of the Gulf of Maine Area Lewis Incze and Peter Lawton Genes
    Biodiversity and the Future of the Gulf of Maine Area Lewis Incze and Peter Lawton Genes Biodiversity is the diversity of life at all levels of organization, from genes to species, communities and ecosystems. Species Nearshore Offshore Bank Basin Slope GoMA: Ecosystem Field Project Habitats and Seamount Communities Abyssal Plain From microbes to whales, and from fundamental biodiversity to EBM GoMA Areas of Work: Species in the Gulf of Maine Area Ecology: past and present Technology Synthesizing Knowledge Linkages to EBM Outreach Today’s Agenda: 08:45-09:45 Presentation: The Global Census and GoMA: What did we do? What did we learn? 09:45-10:00 Q&A 10:00-10:20 BREAK 10:20-11:00 Presentation: Pathways to EBM 11:00-11:45 Discussion Programs of the Census of Marine Life ArCoD Arctic CMarZ Zooplankton CAML Antarctic Creefs Coral Reefs CenSeam Seamounts GoMA Gulf of Maine Area CheSS Chemosynthetic Systems ICOMM Microbes COMARGE Continental margins MAR-ECO Mid-Ocean Ridges CeDAMAR Abyssal Plains NaGISA Intertidal/Shallow Subtidal CenSeam Seamounts TOPP Top Predators HMAP History of Marine Animal Populations FMAP Future of “ “ “ OBIS Ocean Biogeographic Information System Collaborators/Affiliated programs Great Barrier Reef Gulf of Mexico BarCode of Life Encyclopedia of Life Oceans film 10 years (2000-2010) 80 countries, 2700 scientists 17 projects, 14 field projects + OBIS, HMAP Xxx cruises, xxxx days at sea, and FMAP ~ $77m leveraged ~ $767 m --need to 5 affiliated projects (field and technology) check 9 national and regional committees >2,500 scientific papers (many covers) books special journal volumes ~1,200 new species identified >1,500 species in waiting Collection in PLoS-ONE, 2010, incl.
    [Show full text]
  • Rev 06/2018 ASTRONOMY EXAM CONTENT OUTLINE the Following
    ASTRONOMY EXAM INFORMATION CREDIT RECOMMENDATIONS This exam was developed to enable schools to award The American Council on Education’s College credit to students for knowledge equivalent to that learned Credit Recommendation Service (ACE CREDIT) by students taking the course. This examination includes has evaluated the DSST test development history of the Science of Astronomy, Astrophysics, process and content of this exam. It has made the Celestial Systems, the Science of Light, Planetary following recommendations: Systems, Nature and Evolution of the Sun and Stars, Galaxies and the Universe. Area or Course Equivalent: Astronomy Level: 3 Lower Level Baccalaureate The exam contains 100 questions to be answered in 2 Amount of Credit: 3 Semester Hours hours. Some of these are pretest questions that will not Minimum Score: 400 be scored. Source: www.acenet.edu Form Codes: SQ500, SR500 EXAM CONTENT OUTLINE The following is an outline of the content areas covered in the examination. The approximate percentage of the examination devoted to each content area is also noted. I. Introduction to the Science of Astronomy – 5% a. Nature and methods of science b. Applications of scientific thinking c. History of early astronomy II. Astrophysics - 15% a. Kepler’s laws and orbits b. Newtonian physics and gravity c. Relativity III. Celestial Systems – 10% a. Celestial motions b. Earth and the Moon c. Seasons, calendar and time keeping IV. The Science of Light – 15% a. The electromagnetic spectrum b. Telescopes and the measurement of light c. Spectroscopy d. Blackbody radiation V. Planetary Systems: Our Solar System and Others– 20% a. Contents of our solar system b.
    [Show full text]
  • The Formation of Brown Dwarfs 459
    Whitworth et al.: The Formation of Brown Dwarfs 459 The Formation of Brown Dwarfs: Theory Anthony Whitworth Cardiff University Matthew R. Bate University of Exeter Åke Nordlund University of Copenhagen Bo Reipurth University of Hawaii Hans Zinnecker Astrophysikalisches Institut, Potsdam We review five mechanisms for forming brown dwarfs: (1) turbulent fragmentation of molec- ular clouds, producing very-low-mass prestellar cores by shock compression; (2) collapse and fragmentation of more massive prestellar cores; (3) disk fragmentation; (4) premature ejection of protostellar embryos from their natal cores; and (5) photoerosion of pre-existing cores over- run by HII regions. These mechanisms are not mutually exclusive. Their relative importance probably depends on environment, and should be judged by their ability to reproduce the brown dwarf IMF, the distribution and kinematics of newly formed brown dwarfs, the binary statis- tics of brown dwarfs, the ability of brown dwarfs to retain disks, and hence their ability to sustain accretion and outflows. This will require more sophisticated numerical modeling than is presently possible, in particular more realistic initial conditions and more realistic treatments of radiation transport, angular momentum transport, and magnetic fields. We discuss the mini- mum mass for brown dwarfs, and how brown dwarfs should be distinguished from planets. 1. INTRODUCTION form a smooth continuum with those of low-mass H-burn- ing stars. Understanding how brown dwarfs form is there- The existence of brown dwarfs was first proposed on the- fore the key to understanding what determines the minimum oretical grounds by Kumar (1963) and Hayashi and Nakano mass for star formation. In section 3 we review the basic (1963).
    [Show full text]
  • Planetarian Index
    Planetarian Cumulative Index 1972 – 2008 Vol. 1, #1 through Vol. 37, #3 John Mosley [email protected] The PLANETARIAN (ISSN 0090-3213) is published quarterly by the International Planetarium Society under the auspices of the Publications Committee. ©International Planetarium Society, Inc. From the Compiler I compiled the first edition of this index 25 years ago after a frustrating search to find an article that I knew existed and that I really needed. It was a long search without even annual indices to help. By the time I found it, I had run across a dozen other articles that I’d forgotten about but was glad to see again. It was clear that there are a lot of good articles buried in back issues, but that without some sort of index they’d stay lost. I had recently bought an Apple II computer and was receptive to projects that would let me become more familiar with its word processing program. A cumulative index seemed a reasonable project that would be instructive while not consuming too much time. Hah! I did learn some useful solutions to word-processing problems I hadn’t previously known exist, but it certainly did consume more time than I’d imagined by a factor of a dozen or so. You too have probably reached the point where you’ve invested so much time in a project that it’s psychologically easier to finish it than admit defeat. That’s how the first index came to be, and that’s why I’ve kept it up to date.
    [Show full text]
  • Elements of Astronomy and Cosmology Outline 1
    ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the
    [Show full text]
  • The Role of Body Size in Complex Food Webs: a Cold Case
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Ecological Research, Vol. 45 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs: A Cold Case. In Andrea Belgrano and Julia Reiss, editors: Advances in Ecological Research, Vol. 45, Amsterdam, The Netherlands, 2011, pp. 181-223. ISBN: 978-0-12-386475-8 © Copyright 2011 Elsevier Ltd. Academic press. Author's personal copy The Role of Body Size in Complex Food Webs: A Cold Case UTE JACOB,1,* AARON THIERRY,2,3 ULRICH BROSE,4 WOLF E. ARNTZ,5 SOFIA BERG,6 THOMAS BREY,5 INGO FETZER,7 TOMAS JONSSON,6 KATJA MINTENBECK,5 CHRISTIAN MO¨ LLMANN,1 OWEN L.
    [Show full text]
  • Pisaster Ochraceus (Ochre Star)
    Benjamin Miner INFECTIOUSNESS OF SEA STAR Western Washington WASTING DISEASE University Shannon Point Marine Center FUNDING AND COLLABORATORS NSF . co-PI Ian Hewson WA SeaGrant . Co-PI Melissa Miner Western Washington University SEA STAR WASTING SYNDROME General description for a set of symptoms that are found in sea stars Typically, lesions appear in the ectoderm followed by decay of tissue surrounding the lesions, leading to eventual fragmentation of the body and death GEOGRAPHIC EXTENT Data from MARINe Locations of die-offs . Vancouver area BC (fall 2013) . Seattle area WA (fall 2013) . Monterey Bay area, CA (fall 2013) . Southern CA (winter & spring 2014) . Oregon coast (spring 2014) . Salish sea (late spring 2014) . Sitka AK & Northern Vancouver Island (fall 2014) . BC, CA SPECIES AFFECTED Evidence of disease . Pycnopodia helianthoides (sunflower star) . Evasterias trochelii (mottled star) . Pisaster ochraceus (ochre star) . Pisaster brevispinus (giant pink star) . Solaster dawsoni (morning sun star) . Patiria miniata (bat star) . Solaster stimpsoni (striped sun star) . Orthasterias koehleri (rainbow star) . Pisaster giganteus (giant star) . Dermasterias imbricata (leather star) . Leptasterias spp (six-armed star) . Mediaster aequalis (vermilion star) . Henricia spp. Linkia columbiae (fragile star) . Astropecten spp. (sand star) . Crossaster papposus (rose star) . Stylasterias forreri (velcro star) . Astrometis sertulifera (fragile rainbow star) Appears unaffected . Pteraster spp. CAUSE OF THE DISEASE Evidence suggests that it is a virus. There is also evidence that environmental factors are involved. Star probably die of a secondary bacterial infection. QUESTIONS QUESTIONS Can individuals with signs of the disease affect “healthy” conspecifics? .Is the viral load of the densovirus associated with wasting disease higher in “sick” individuals? Does temperature affect the progression of the disease? INFECTIOUSNESS EXPERIMENT DESIGN PYCNOPODIA HELIANTHOIDES Collection sites .
    [Show full text]