From Calculators to Computers - a Brief History by Rex Ungericht
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"Computers" Abacus—The First Calculator
Component 4: Introduction to Information and Computer Science Unit 1: Basic Computing Concepts, Including History Lecture 4 BMI540/640 Week 1 This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015. The First "Computers" • The word "computer" was first recorded in 1613 • Referred to a person who performed calculations • Evidence of counting is traced to at least 35,000 BC Ishango Bone Tally Stick: Science Museum of Brussels Component 4/Unit 1-4 Health IT Workforce Curriculum 2 Version 2.0/Spring 2011 Abacus—The First Calculator • Invented by Babylonians in 2400 BC — many subsequent versions • Used for counting before there were written numbers • Still used today The Chinese Lee Abacus http://www.ee.ryerson.ca/~elf/abacus/ Component 4/Unit 1-4 Health IT Workforce Curriculum 3 Version 2.0/Spring 2011 1 Slide Rules John Napier William Oughtred • By the Middle Ages, number systems were developed • John Napier discovered/developed logarithms at the turn of the 17 th century • William Oughtred used logarithms to invent the slide rude in 1621 in England • Used for multiplication, division, logarithms, roots, trigonometric functions • Used until early 70s when electronic calculators became available Component 4/Unit 1-4 Health IT Workforce Curriculum 4 Version 2.0/Spring 2011 Mechanical Computers • Use mechanical parts to automate calculations • Limited operations • First one was the ancient Antikythera computer from 150 BC Used gears to calculate position of sun and moon Fragment of Antikythera mechanism Component 4/Unit 1-4 Health IT Workforce Curriculum 5 Version 2.0/Spring 2011 Leonardo da Vinci 1452-1519, Italy Leonardo da Vinci • Two notebooks discovered in 1967 showed drawings for a mechanical calculator • A replica was built soon after Leonardo da Vinci's notes and the replica The Controversial Replica of Leonardo da Vinci's Adding Machine . -
History of Computing Prehistory – the World Before 1946
Social and Professional Issues in IT Prehistory - the world before 1946 History of Computing Prehistory – the world before 1946 The word “Computing” Originally, the word computing was synonymous with counting and calculating, and a computer was a person who computes. Since the advent of the electronic computer, it has come to also mean the operation and usage of these machines, the electrical processes carried out within the computer hardware itself, and the theoretical concepts governing them. Prehistory: Computing related events 750 BC - 1799 A.D. 750 B.C. The abacus was first used by the Babylonians as an aid to simple arithmetic at sometime around this date. 1492 Leonardo da Vinci produced drawings of a device consisting of interlocking cog wheels which could be interpreted as a mechanical calculator capable of addition and subtraction. A working model inspired by this plan was built in 1968 but it remains controversial whether Leonardo really had a calculator in mind 1588 Logarithms are discovered by Joost Buerghi 1614 Scotsman John Napier invents an ingenious system of moveable rods (referred to as Napier's Rods or Napier's bones). These were based on logarithms and allowed the operator to multiply, divide and calculate square and cube roots by moving the rods around and placing them in specially constructed boards. 1622 William Oughtred developed slide rules based on John Napier's logarithms 1623 Wilhelm Schickard of Tübingen, Württemberg (now in Germany), built the first discrete automatic calculator, and thus essentially started the computer era. His device was called the "Calculating Clock". This mechanical machine was capable of adding and subtracting up to 6 digit numbers, and warned of an overflow by ringing a bell. -
Blaise Pascal's Mechanical Calculator
machines Article Blaise Pascal’s Mechanical Calculator: Geometric Modelling and Virtual Reconstruction José Ignacio Rojas-Sola 1,* , Gloria del Río-Cidoncha 2 , Arturo Fernández-de la Puente Sarriá 3 and Verónica Galiano-Delgado 4 1 Department of Engineering Graphics, Design and Projects, University of Jaén, 23071 Jaén, Spain 2 Department of Engineering Graphics, University of Seville, 41092 Seville, Spain; [email protected] 3 Department of Design Engineering, University of Seville, 41011 Seville, Spain; [email protected] 4 University of Seville, 41092 Seville, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-9-5321-2452 Abstract: This article shows the three-dimensional (3D) modelling and virtual reconstruction of the first mechanical calculating machine used for accounting purposes designed by Blaise Pascal in 1642. To obtain the 3D CAD (computer-aided design) model and the geometric documentation of said invention, CATIA V5 R20 software has been used. The starting materials for this research, mainly the plans of this arithmetic machine, are collected in the volumes Oeuvres de Blaise Pascal published in 1779. Sketches of said machine are found therein that lack scale, are not dimensioned and certain details are absent; that is, they were not drawn with precision in terms of their measurements and proportions, but they do provide qualitative information on the shape and mechanism of the machine. Thanks to the three-dimensional modelling carried out; it has been possible to explain in detail both its operation and the final assembly of the invention, made from the assemblies of its different Citation: Rojas-Sola, J.I.; del subsets. In this way, the reader of the manuscript is brought closer to the perfect understanding of Río-Cidoncha, G.; Fernández-de la the workings of a machine that constituted a major milestone in the technological development of Puente Sarriá, A.; Galiano-Delgado, V. -
Copyrighted Material
◆ INVENTORS AND INVENTIONS ◆ Eli Whitney THE COTTON GIN The first patent of major importance to be issued by the U.S. government after it was formed was Eli Whitney’s patent for the cotton gin (“gin” is short for “engine”), which was issued on March 14, 1794. The patent description is in longhand, for reasons I cannot explain. Upon graduating Yale as an engineer in 1792, Whitney, like many college graduates of today, found himself in debt and in need of a job. He left his home in Massachusetts and took a job as a teacher in South Carolina. That job fell through, and Katherine Greene, the war widow of General Nathanial Greene, invited Whitney to stay at her Georgia cotton plantation in early 1793. He noticed that long‐staple cotton, which was readily separated from its seed, could only be grown along the coast. The inland‐ grown variety of cotton had sticky green seeds that were difficult to cull from the fluffy white cotton bolls,COPYRIGHTED and thus was less profitable to MATERIALgrow and harvest. It took 10 hours of hand labor to sift out a single point of cotton lint from its seeds. Whitney, after observing the manual process being used for separating the sticky seeds from the cotton bolls, built his first machine, which did not work. The bulk cotton was pushed against a wire mesh screen, which held back the seeds while wooden Intellectual Property Law for Engineers, Scientists, and Entrepreneurs, Second Edition. Howard B. Rockman. © 2020 by The Institute of Electrical and Electronics Engineers, Inc. -
Mechanical Calculator (Edited from Wikipedia)
Mechanical Calculator (Edited from Wikipedia) SUMMARY A mechanical calculator, or calculating machine, was a mechanical device used to automatically perform the basic operations of arithmetic. Most mechanical calculators were comparable in size to small desktop computers and have been rendered obsolete by the advent of the electronic calculator. Surviving notes from Wilhelm Schickard in 1623 report that he designed and had built the earliest of the modern attempts at mechanizing calculation. His machine was composed of two sets of technologies: first an abacus made of Napier's bones, to simplify multiplications and divisions. And for the mechanical part, it had a dialed pedometer to perform additions and subtractions. A study of the surviving notes shows a machine that would have jammed after a few entries on the same dial, and that it could be damaged if a carry had to be propagated over a few digits (like adding 1 to 999). Schickard abandoned his project in 1624 and never mentioned it again until his death eleven years later in 1635. Two decades after Schickard's failed attempt, in 1642, Blaise Pascal decisively solved these particular problems with his invention of the mechanical calculator. Helping his father as tax collector in France, Pascal designed the calculator to help in the large amount of tedious arithmetic required.; it was called Pascal's Calculator or Pascaline. Thomas' arithmometer, the first commercially successful machine, was manufactured two hundred years later in 1851; it was the first mechanical calculator strong enough and reliable enough to be used daily in an office environment. For forty years the arithmometer was the only type of mechanical calculator available for sale. -
Pioneercomputertimeline2.Pdf
Memory Size versus Computation Speed for various calculators and computers , IBM,ZQ90 . 11J A~len · W •• EDVAC lAS• ,---.. SEAC • Whirlwind ~ , • ENIAC SWAC /# / Harvard.' ~\ EDSAC Pilot• •• • ; Mc;rk I " • ACE I • •, ABC Manchester MKI • • ! • Z3 (fl. pt.) 1.000 , , .ENIAC •, Ier.n I i • • \ I •, BTL I (complexV • 100 ~ . # '-------" Comptometer • Ir.ne l ' with constants 10 0.1 1.0 10 100 lK 10K lOOK 1M GENERATIONS: II] = electronic-vacuum tube [!!!] = manual [1] = transistor Ime I = mechanical [1] = integrated circuit Iem I = electromechanical [I] = large scale integrated circuit CONTENTS THE COMPUTER MUSEUM BOARD OF DIRECTORS The Computer Museum is a non-profit. Kenneth H. Olsen. Chairman public. charitable foundation dedicated to Digital Equipment Corporation preserving and exhibiting an industry-wide. broad-based collection of the history of in Charles W Bachman formation processing. Computer history is Cullinane Database Systems A Compcmion to the Pioneer interpreted through exhibits. publications. Computer Timeline videotapes. lectures. educational programs. C. Gordon Bell and other programs. The Museum archives Digital Equipment Corporation I Introduction both artifacts and documentation and Gwen Bell makes the materials available for The Computer Museum 2 Bell Telephone Laboratories scholarly use. Harvey D. Cragon Modell Complex Calculator The Computer Museum is open to the public Texas Instruments Sunday through Friday from 1:00 to 6:00 pm. 3 Zuse Zl, Z3 There is no charge for admission. The Robert Everett 4 ABC. Atanasoff Berry Computer Museum's lecture hall and rece ption The Mitre Corporation facilities are available for rent on a mM ASCC (Harvard Mark I) prearranged basis. For information call C. -
Notes: 6 Per Page
Punch Card Based Machines • Different machines would use different forms of encoding. • The programmer would use a machine to punch the information for a program onto card or tape. The Mechanical Monsters • Typically the program would then be given to a computer operator so the program would be run. • After a delay the results would then be given back to the Physical computational devices from the programmer for analysis. early part of the 20th century Link to extra optional video: video of punch File images: James Tam cards and punch James Tam James Tam tape Video #1: The Use Of Computers During World Mechanical Monsters: Groups War II • Video link not available (original video could not be found) • The Zuse machines (Z1 – Z4) • Bell Relay Computers • The Harvard Machines • The IBM calculators James Tam James Tam The Zuse Machines Konrad Zuse (1910-1995) • Machines: • Born in Berlin he had childhood dreams of designing – Z1 rockets that would reach the moon or planning out – Z2 great cities. – Z3 • He trained as a civil engineer. – Z4 – As a student he became very aware of the labor needed in the calculations in his field. • Originally Zuse’s machine was called the V1 (Versuchsmodell- = (x * y) / (z +(a1 + b)) 1/Experimental model-1) • After the war it was changed to ‘Z’ (to avoid confusion with the weapons being developed by Wernher von Braun). Colourbox.com James Tam James Tam Image: http://www.konrad-zuse.net The Mechanical Monsters Konrad Zuse (1910-1995): 2 Zuse: Early Designs • Zuse was the first person “…to construct an • In order to automate the process of performing calculations automatically controlled calculating machine.” – “A Zuse envisioned a mechanical machine. -
Chapter Six: Relay Calculators
200 Chapter 6 Relay Calculators Introduction harles Babbage had planned to power his Analytical Engine Cwith a steam engine-steam being the only feasible prime mover available in the 1830s. In that same decade, however, others were making discoveries that led to the electric motor: a source of motive power more compact, cleaner, quieter, and most of all, much more flexible than steam. By the early twentieth century, calculators were just one of many machines that were powered by electricity. But electricity could do more than replace the steam engine or human arm as a source of power; it could also represent the numbers themselves that a calculator handles. Electric circuits could replace the cams, pins, gears, and levers that actually do the computation. Hollerith’s electric tabulators took advantage of this property, and we have already seen how the rival Powers system, developed after 1911 to compete with Hollerith, suffered in comparison because it used electricity only for motive power. By the 1930s, a number of inventors recognized that the ability (as well as the power) offered by electric circuits allowed one to build a machine that could not only do arithmetic, but also direct a complex -ce of calculations autom&@ly. Thime,had be& Babbage’s drezand bmatdreGhad come true. It came true by combining traditional mechanical calculator architecture with 201 FIXED ENDS F MIL OF WIRE’ IRON ,Ad (1 NO SIGNAL VOLTAGE ON d -COIL TERMINALS OPEN CIRCUIT - NO CURRENT ELECTROMAGNETIC RELAY la] DE- ENERGIZED ELECTROMAGNETIC RELAY lbl ENERGIZED Figure 6.1. (a) Typical relay used in telephone switching. -