Synthesis and Conductivity of Solid High-Proton Conductor

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Conductivity of Solid High-Proton Conductor http://www.paper.edu.cn Materials Research Bulletin 40 (2005) 405–410 www.elsevier.com/locate/matresbu Synthesis and conductivity of solid high-proton conductor H5GeW10MoVO40Á21H2O Qingyin Wu*, Xiaoguang Sang Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China Received 13 October 2003; received in revised form 8 March 2004; accepted 6 June 2004 Abstract A new solid high-proton conductor decatungstomolybdovanadogermanic heteropoly acid (HPA) H5GeW10- MoVO40Á21H2O has been synthesized for the first time by stepwise acidification and stepwise addition of solutions of the component elements. The product was characterized by chemical analysis, potentiometric titration, IR, UV, XRD and TG-DTA. The IR, UV and XRD indicate that H5GeW10MoVO40Á21H2O possesses the Keggin structure. The TG-DTA curve shows the sequence of water loss in the acid, the amount of the loss, as well as the thermostability. The results of AC impedance measurement show that its proton conductivity is 3.58 Â 10À4 ScmÀ1 at 18 8C and the activation energy for proton conduction is 31.82 kJ/mol. # 2004 Elsevier Ltd. All rights reserved. Keywords: A. Inorganic compounds; B. Chemical synthesis; C. Infrared spectroscopy; D. Ionic conductivity 1. Introduction Heteropoly acids (HPAs), are a fascinating class of inorganic metal-oxygen cluster compounds [1]. Their chemistry, dictated by remarkable structural and electronic properties, is the subject of an intense interdisciplinary research activity in some major scientific areas, namely catalysis (e.g., photochemical dehydrogenations of organic substrates), materials science (e.g., secondary batteries and charge-transfer materials) and medicine (e.g., anti-viral and anti-tumor drugs) [2–8]. An aspect of the research in materials science has been the conductivity of HPAs because HPAs and its salts have good electric * Corresponding author. Tel.: +86 571 8795 3258; fax: +86 571 8795 1895. E-mail address: [email protected] (Q. Wu). 0025-5408/$ – see front matter # 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.materresbull.2004.06.020 中国科技论文在线 http://www.paper.edu.cn 406 Q. Wu, X. Sang / Materials Research Bulletin 40 (2005) 405–410 conductivity either in solution or in the solid state [9]. Solid HPAs have also been shown to be good proton conductors. In recent years, a number of solid high-proton conductor HPAs have been reported, which show that this field continues to have a prominent place at the forefront of HPAs chemistry. For example, the conductivity of binary 12-tungstophosphoric heteropoly acid was reported [10,11] and the conductivity of a series of trinary heteropoly acids vanadotungstogermanic acid [12], molybdovanadophosphoric acid [13], undecatungstochromoferrous acid [14], and tungstovanadophosphoric acid [15] were also reported. To investigate the effect of component elements in HPA on conductivity, we report the synthesis of tetranary decatungstomolybdovanadogermanic heteropoly acid H5GeW10MoVO40Á21H2O by the step- wise acidification and stepwise addition of solutions of the component elements. We also report the results on the conductivity. 2. Experimental 2.1. Instrument and reagents IR spectrum was recorded on a P-E 1730 FT/IR spectrometer in the range 400–4000 cmÀ1 using KBr pellets. UV spectrum was measured on a Hitachi U-3400 UV spectrophotometer in the range 190– 400 nm. X-ray powder diffraction analysis was obtained on a D/Max-III A, X-ray diffractometer using a Cu tube operated at 40 kV and 30 mA in the range of 2u =5–408 at a rate of 0.58 minÀ1. TG-DTA was carried out on a TAS-100 thermal analyzer with a rate of temperature increase of 10 8C minÀ1. Impedance measurements were performed on M378 electrochemical impedance analyzer with copper electrodes over the frequency range from 0.01 Hz to 99.9 kHz. A Mettler DL-21titrimeter and an 8410 ICP spectrometer were also used. The purity of Cu is more than 99.8%. All other reagents are analysis grade. 2.2. Preparation of HPA Germanium dioxide (0.8 g) was dissolved in 20 ml of 5% sodium hydrate solution with stirring. An aqueous solution (20 ml) of sodium vanadate (1.2 g) was dropped into the above solution. After heating and boiling for 30 min with vigorous stirring, sodium molybdate (1.8 g) was added to reaction solution, pH was adjusted to 5.0 with sulfuric acid. After 70 min boiling an aqueous solution (100 ml) of sodium tungstate (25 g) was added, pH was adjusted to 1.5 and the stirred solution was continuously boiled for 5 h. The cooled solution was extracted with ether in a sulfuric acid medium. The etherate was dissolved with a little water and kept in a desiccator with sulfuric acid. The yield was above 80%. 2.3. Elemental analysis Tungsten was analyzed by 8-hydroxy-quinoline-tannin acid-methylviolet gravimetry; germanium, vanadium and molybdenum were analyzed by ICP; the amount of water was analyzed by thermo- gravimetry. Found: Ge, 2.30; W, 59.53; Mo, 3.04; V, 1.61; H2O, 12.28. Calc. for H5GeW10Mo- VO40Á21H2O: Ge, 2.36; W, 59.67; Mo, 3.11; V, 1.65; H2O, 12.27. 中国科技论文在线 http://www.paper.edu.cn Q. Wu, X. Sang / Materials Research Bulletin 40 (2005) 405–410 407 2.4. Measurement of conductivity At room temperature (18 8C), H5GeW10MoVO40Á21H2O was pressed into a tablet 15 mm in diameter and 3.88 mm in thickness under a pressure of 20 MPa. Two copper sheets were attached to two sides of the tablet. The proton conductivity was measured using a cell: copperjsamplejcopper. 3. Results and discussion 3.1. Determination of basicity The number of hydrogen in the HPA and the states of ionization can be determined by potentiometer titration [16]. The potentiometric titration curve (Fig. 1) shows that the five protons of H5GeW10Mo- VO40Á21H2O are equivalent and they are ionized in the same step. 3.2. IR and UV spectra The IR spectrum of HPA shows the jump between two vibration energy levels of the electron basic state. The vibrations of the oxygen bond reflect the change of mechanical and electronic properties, every change has its own characteristic frequency. The absorptive band of the HPA UV spectrum shows the charge-transfer between oxygen and a coordinate metal atom [17]. nÀ The [GeM12O40] structure (Keggin structure) consists of one GeO4 tetrahedron surrounded by four M3O13 sets formed by three edge-sharing octahedra. The M3O13 sets are linked together through oxygen nÀ atoms. Thus, there are four kinds of oxygen atoms in [GeM12O40] , four Ge–Oa in which one oxygen atom connects with heteroatom (Ge), 12 M–Ob–M oxygen-bridges (corner-sharing oxygen-bridge between different M3O13 sets), 12 M–Oc–M oxygen-bridges (edge-sharing oxygen-bridge within Fig. 1. The potentiometric titration curve of H5GeW10MoVO40Á21H2O. 中国科技论文在线 http://www.paper.edu.cn 408 Q. Wu, X. Sang / Materials Research Bulletin 40 (2005) 405–410 Fig. 2. IR spectrum of H5GeW10MoVO40Á21H2O. M3O13 sets) and 12 M–Od terminal oxygen atoms. In general, the symmetric and asymmetric stretching of the different kinds of M–O bonds are observed in the following spectral regions: M–Od bonds (1000– À1 À1 À1 900 cm ), M–Ob–M bridges (800–900 cm ), M–Oc–M bridges (700–800 cm ) [18]. In the IR spectrum of H5GeW10MoVO40Á21H2O(Fig. 2), there are five characteristic bands: À1 À1 À1 À1 978 cm , vas (M–Od); 877 cm , vas (M–Ob–M); 767 cm , vas (M–Oc–M); 816 cm , vas (Ge– À1 Oa); 458 cm , d(O–Ge–O), all of which correspond to the spectrum of the heteropoly complex of Keggin structure previously reported [19]. In the Keggin structure, intense absorption bands at 200 and 260 nm are caused by charge-transfer of the terminal oxygen and bridge-oxygen to metal atoms, respectively. In the UV spectrum, there are two characteristic bands: 197 nm, Od ! M; 265 nm Ob/Oc ! M [20]. 3.3. X-ray powder diffraction X-ray powder diffraction is widely used to study the structural features of HPA and explain their properties [21]. The data of X-ray powder diffraction are listed in Table 1. In each of the four ranges of 2u that are 7–108,16–228,25–308 and 33–388, there are characteristic peaks of HPA anions that have Keggin structure. Combined with IR and UV spectra, we are sure that H5GeW10MoVO40Á21H2O possesses Keggin structure. Table 1 Data of X-ray powder diffraction of H5GeW10MoVO40Á21H2O 2u(8) 7.80 8.59 9.61 16.10 18.05 19.90 23.80 d(nm) 1.133 1.030 0.920 0.551 0.491 0.446 0.374 I 100.0 47.2 11.0 12.2 11.6 6.8 8.6 2u(8) 27.41 28.34 29.85 30.63 31.90 33.17 38.05 d(nm) 0.325 0.315 0.299 0.292 0.281 0.270 0.236 I 22.4 20.8 12.4 6.8 10.0 17.8 8.0 中国科技论文在线 http://www.paper.edu.cn Q. Wu, X. Sang / Materials Research Bulletin 40 (2005) 405–410 409 Fig. 3. Thermogram of H5GeW10MoVO40Á21H2O. 3.4. Thermal analysis HPA consists of protons, HPA anions and hydration water. Fig. 3 is the thermogram of H5GeW10- MoVO40Á21H2O. The TG curve shows that the total percent of weight loss is 12.30%, which indicates that each HPA molecule has 21 molecules of water and there are three steps of weight loss. The first is the loss of 11 molecules of hydration water, the second is the loss of 10 molecules of protonized water and the third is the loss of 2.5 molecule of structural water. Thus, the accurate molecular formula of the product is + (H5O2 )5 GeW10MoVO40Á11H2O [22].
Recommended publications
  • Conversion of Synthesis Gas to Oxygenates by Using Keggin-Type Structure Heteropoly Compound-Based Catalyst Compositions
    (19) TZZ _T (11) EP 2 627 445 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: B01J 37/03 (2006.01) B01J 37/08 (2006.01) 07.01.2015 Bulletin 2015/02 B01J 37/02 (2006.01) B01J 27/188 (2006.01) C07C 29/158 (2006.01) C07C 29/157 (2006.01) (2006.01) (2006.01) (21) Application number: 11768222.9 C07C 29/16 C07C 31/04 C07C 31/08 (2006.01) C07C 31/10 (2006.01) (22) Date of filing: 26.09.2011 (86) International application number: PCT/US2011/053202 (87) International publication number: WO 2012/050806 (19.04.2012 Gazette 2012/16) (54) CONVERSION OF SYNTHESIS GAS TO OXYGENATES BY USING KEGGIN- TYPE STRUCTURE HETEROPOLY COMPOUND-BASED CATALYST COMPOSITIONS UMWANDLUNG VON SYNTHESEGAS IN OXYGENATE MITTELS VERWENDUNG VON KATALYSATOREN AUF DER BASIS VON HETEROPOLYVERBINDUNGEN MIT KEGGIN- STRUKTUR CONVERSION DE GAZ DE SYNTHÈSE EN OXYGÉNATS À L’AIDE DE COMPOSITIONS DE CATALYSEUR À BASE D’UN COMPOSÉ HÉTÉROPOLY À STRUCTURE DE TYPE KEGGIN (84) Designated Contracting States: • RAO, Sreenivasa AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Pune 411007 (IN) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • BARTON, David, G. PL PT RO RS SE SI SK SM TR Midland, MI 48642 (US) (30) Priority: 11.10.2010 US 391739 P (74) Representative: Beck Greener Fulwood House (43) Date of publication of application: 12 Fulwood Place 21.08.2013 Bulletin 2013/34 London WC1V 6HR (GB) (73) Proprietor: Dow Global Technologies LLC (56) References cited: Midland, MI 48674 (US) US-A- 4 210 597 US-A- 6 127 432 US-B1- 6 278 030 (72) Inventors: • MANIKANDAN, Palanichamy Pune 411014 (IN) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Equilibrium and Structure Studies of Aqueous Vanadophosphates and Molybdovanadophosphates
    Equilibrium and structure studies of aqueous vanadophosphates and molybdovanadophosphates by Anna Selling <5 °< c/> ■O • V AKADEMISK AVHANDLING som med tillstånd av rektorsämbetet vid Umeå Universitet för erhållande av filosofie doktorsexamen framlägges till offentlig granskning vid Kemiska instutitionen, Sal C, LuO, Naturvetarhuset, fredagen den 7 juni 1996, kl. 13.00. Fakultetsopponent: Dr. Atsushi Yagasaki, Kwansei Gakuin University, Japan. U m eå 1996 Title: Equilibrium and structure studies of aqueous vanadophosphates and molybdovanadophosphates. Author: Anna Selling Address: Department of Inorganic Chemistry, Umeå University, S -901 87 Umeå, Sweden. Abstract: This thesis comprises a summary and discussion of four papers, where heteropolyanions containing phosphorus as heteroatom and molybdenum and/or vanadium as addenda atoms have been studied. The ultimate goal was to study the equilibrium spéciation in the reduced molybdovanadophosphate system. The latter is a good catalyst in the selective oxidation of olefins to carbonyls. The studies were been performed in 0.6 M Na(Cl) medium at 25 °C. The main techniques employed included potentiometry, NMR- and ESR spectrometry, complemented with FTIR, X-ray diffraction and cyclic voltammetry. Experimental data were treated with the computer program LAKE, which is capable of simultaneously handling multimethod data. Before the reduced molybdovanadophosphate system could be studied, the subsystems needed to be known. Since the spéciation in most of the oxidised subsystems has been reported earlier in the same ionic medium, only the binary phosphate and the ternary vanadophosphate systems had to be studied. These are reported in this thesis. All three pXa values for the phosphate system have been determined with high precision. In the vanadophosphate system, equilibrium species with the formula [HzPVi40 42](9 z) and the trans-bicapped Keggin structure were formed.
    [Show full text]
  • Location of Protons in Anhydrous Keggin Heteropolyacids H3pmo12o40 and H3PW12O40 by 1H{31P}/31P{1H} REDOR NMR and DFT Quantum Ch
    Published on Web 06/11/2002 Location of Protons in Anhydrous Keggin Heteropolyacids 1 31 31 1 H3PMo12O40 and H3PW12O40 by H{ P}/ P{ H} REDOR NMR and DFT Quantum Chemical Calculations S. Ganapathy,†,‡ M. Fournier,§ J. F. Paul,§ L. Delevoye,⊥ M. Guelton,§ and J. P. Amoureux*,‡ Contribution from the National Chemical Laboratory, 411 008 Pune, India, LCPS, CNRS-8012, UniVersite´ de Lille1, 59655 VilleneuVe d’Ascq, France, Laboratoire de Catalyse, CNRS-8010, UniVersite´ de Lille1, 59655 VilleneuVe d’Ascq, France, and Bruker-France, 67166 Wissembourg, France Received December 21, 2001 Abstract: HeteroPolyAcids (HPA’s) are a class of solid acids that have broad applications in many fields of science and technology, including catalysis and chemical engineering. The proton locations within the thermally stable and commonly known Keggin unit, which is the primary structure building unit/block, has remained undetermined in anhydrous HPAs, despite numerous theoretical and experimental efforts. However, Rotational Echo DOuble Resonance (REDOR) NMR and Density Functional Theory (DFT) quantum chemical calculations offer a new opportunity to determine the exact locations of protons within the Keggin unit. The crucial experimental evidence is provided for the basic and very extensively studied n+ acidic form of H8-nX M12O40,X) Si, P and M ) Mo, W, belonging to the Keggin structure. While showing that the acidic protons are located in the bridging oxygen positions (RP-H ) 520 ( 20 pm) in H3PMo12O40 and in the terminal oxygen positions (RP-H ) 570 ( 20 pm) in H3PW12O40, REDOR measurements also provide for the first time the structural basis to consistently rank the acid strength for the important class of Keggin solid catalysts.
    [Show full text]
  • POM@MOF Hybrids: Synthesis and Applications
    catalysts Review POM@MOF Hybrids: Synthesis and Applications Jiamin Sun 1, Sara Abednatanzi 1 , Pascal Van Der Voort 1,* , Ying-Ya Liu 2 and Karen Leus 1 1 COMOC—Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium; [email protected] (J.S.); [email protected] (S.A.); [email protected] (K.L.) 2 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; [email protected] * Correspondence: [email protected]; Tel.: +32-(0)9-264-44-42 Received: 4 May 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: The hybrid materials that are created by supporting or incorporating polyoxometalates (POMs) into/onto metal–organic frameworks (MOFs) have a unique set of properties. They combine the strong acidity, oxygen-rich surface, and redox capability of POMs, while overcoming their drawbacks, such as difficult handling, a low surface area, and a high solubility. MOFs are ideal hosts because of their high surface area, long-range ordered structure, and high tunability in terms of the pore size and channels. In some cases, MOFs add an extra dimension to the functionality of hybrids. This review summarizes the recent developments in the field of POM@MOF hybrids. The most common applied synthesis strategies are discussed, together with major applications, such as their use in catalysis (organocatalysis, electrocatalysis, and photocatalysis). The more than 100 papers on this topic have been systematically summarized in a handy table, which covers almost all of the work conducted in this field up to now.
    [Show full text]
  • Ii ION-PAIR BEHAVIOR BETWEEN POLYOXOMETALATES ANION
    ION-PAIR BEHAVIOR BETWEEN POLYOXOMETALATES ANION AND ALKALI METAL CATION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirement for the Degree Master of Science Songtao Ye May 2018 ii ION-PAIR BEHAVIOR BETWEEN POLYOXOMETALATES ANION AND ALKALI METAL CATION Songtao Ye Thesis Approved Accepted: ______________________________ ____________________________ Advisor Dean of the College Dr. Tianbo Liu Dr. Eric Amis ______________________________ ____________________________ Committee Member Dean of the Graduate School Dr. Toshikazu Miyoshi Dr. Chand Midha ______________________________ ____________________________ Department Chair Date Dr. Colleen Pugh iii ABSTRACT Ion-pair behavior describes the partial association of oppositely charged ions in electrolyte solutions. Previous study mainly focused on the ion-pair behavior between simple ions, such as ion pairing in NaCl solution as well as ion-pair interactions in supramolecular complexes and biological associations. However, very few attentions have been placed on the solution system with particle sizes in between. Recently, a group of well-defined, huge anionic cluster named polyoxometalates (POMs) have been synthesized and well characterized. The size of POMs is around nanometer scale, which is exactly between simple ions and large colloids. The solution behavior for POMs is much different form simple electrolyte solutions or large colloids. As a result, it is interesting to study the ion-pair behavior for POMs in solution. Herein, ion-pairs between Lacunary Keggin type POMs and alkali metal cations are investigated. The result showed that ion-pairs are formed between alkali cations and the “pocket” area on the surface of Lacunary Keggin type POMs – K7PW11O39. Electrostatic interaction and the entropy gain during the solvation shell lost were considered major driving forces during the ion-pair formation.
    [Show full text]
  • The Effect of Cation Type and H+ on the Catalytic Activity of the Keggin Anion [Pmo12o40]3- in the Oxidative Dehydrogenation Of
    Journal of Catalysis 195, 360–375 (2000) doi:10.1006/jcat.2000.2987, available online at http://www.idealibrary.com on The Effect of Cation Type and H+ on the Catalytic Activity 3 of the Keggin Anion [PMo12O40] in the Oxidative Dehydrogenation of Isobutyraldehyde Ji Hu and Robert C. Burns1 School of Biological and Chemical Sciences, The University of Newcastle, Callaghan 2308, Australia Received March 23, 2000; revised July 4, 2000; accepted July 5, 2000 such as the oxidative dehydrogenation of isobutyric acid The oxidative dehydrogenation of isobutyraldehyde to metha- and the oxidation of methacrolein, both of which yield 3 crolein over [PMo12O40] -containing catalysts has been shown to methacrylic acid (1–5). Methacrylic acid is, in turn, reacted proceed through bulk catalysis-type II, which depends on the rates with methanol to yield methyl methacrylate, an extremely + of diffusion of the redox carriers (H and e ) into the catalyst bulk. important acrylic monomer, which is then polymerized to Variations in catalyst behaviour have been shown to change with give poly(methyl methacrylate). Heteropolyoxometalates the countercation and appear to be related to the polarizing abil- are also active acid catalysts, and processes based both on ity of the cation, which can be represented by the ionic potential their redox and acid–base properties have found commer- (charge/ionic radius). This, in turn, may indicate that the active 3 cial applications (3–5). site at the [PMo12O40] ion is close to an attendant countercation. For the alkali metal ions Li+,Na+,K+,Rb+, and Cs+ as well as the The study of heteropolyoxometalates as oxidation– (isoelectronic) ions of the series Cs+,Ba2+,La3+, and Ce4+, the stud- reduction catalysts has involved primarily Keggin-based 3 ies have shown that conversion generally decreases with increasing structures, principally [PMo12O40] , as well as substi- ionic potential, while selectivity to methacrolein is less affected by tuted species involving replacement of one or more changes in this property.
    [Show full text]
  • Thesis Final
    TRANSITION METAL CONTAINING SILICO- AND GERMANOTUNGSTATES BY BASSEM S. BASSIL A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Approved, Thesis Committee: Prof. Dr. Ulrich Kortz (chair, Jacobs University, Germany) Prof. Dr. Horst Elias (Technische Universität Darmstadt, Germany) Prof. Dr. Emmanuel Cadot (Université de Versailles, France) Dr. Michael H. Dickman (Jacobs University, Germany) Date of defense: 27 th of June 2008 School of Engineering and Science Abstract Polyoxotungstates (POTs) are anionic tungsten-oxide clusters with a wide structural variety and interesting properties. Thus, POTs exhibit potential applications in diverse areas such as catalysis, magnetism, bio- and nanotechnology, and materials science. POTs are usually synthesized via condensation reactions in aqueous, acidic solution. These reactions can be influenced by careful variation of the synthesis conditions, e.g. ratio and concentration of reagents, solvent, pH, counter cations, and temperature. Having identified the proper synthesis conditions, POTs usually form quickly in what is often described as a self- assembly process. This work focuses on the interaction of the versatile dilacunary silicotungstate [γ- 8- SiW 10 O36 ] with different metal cations leading to novel compounds interesting for magnetic and catalytic applications. Also this work reports two new lanthanide containing polytungstates, a sandwich type silicotungstate and a dimeric-pentameric germanotungstate. The 15-cobalt-substituted polyoxotungstate [Co 6(H 2O) 30 {Co 9Cl 2(OH) 3(H 2O) 9(β- 5- SiW 8O31 )3}] (1) has been characterized by single crystal XRD, elemental analysis, IR, electrochemistry, magnetic measurements and EPR. Single-crystal X-ray analysis was carried β out on Na 5[Co 6(H 2O) 30 {Co 9Cl 2(OH) 3(H 2O) 9( -SiW 8O31 )3}]·37H 2O, which crystallizes in the hexagonal system, space group P6 3/m , with a = 19.8754(17) Å, b = 19.8754(17) Å, c = 22.344(4) Å, α = 90 °, β = 90 °, γ = 120 °, and Z = 2.
    [Show full text]
  • Structure and Functional Properties of Heteropolyoxomolybdates Supported on Silica SBA-15
    Structure and functional properties of heteropolyoxomolybdates supported on silica SBA-15 vorgelegt von Dipl.-Chem. Rafael Zubrzycki geb. in Berent von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischem Grades Doktor der Naturwissenschaften -Dr. rer. nat.- genehmigte Dissertation Promotionsausschuss Vorsitzender: Prof. Dr. rer. nat Thomas Friedrich Berichter/Gutachter: Prof. Dr. rer. nat. Thorsten Ressler Berichter Gutachter: Prof. Dr. rer. nat. Malte Behrens Tag der wissenschaftlichen Aussprache: 20. März 2015 Berlin 2015 Abstract Heteropolyoxomolybdates with Keggin structure (HPOM) were supported on SBA-15 and introduced as model catalysts for investigating structure-property correlations during selective propene oxidation. The chemical composition of the HPOM was varied by substituting molybdenum with vanadium or tungsten. Subsequently, the various heteropolyoxomolybdates were supported on nanostructured silica SBA-15. Additionally, unsubstituted HPOM were deposited on SBA-15 with different pore radii. Unsupported and supported heteropolyoxomolybdates were characterized by ex situ techniques yielding a detailed knowledge about structure and chemical composition of the model catalysts. Afterwards, the unsupported and supported heteropolyoxomolybdates were characterized by in situ techniques and tested for their catalytic properties in the partial oxidation of propene. HPOM supported on SBA-15 were investigated to elucidate the influence of addenda atoms, the silanol groups of SBA-15, the pore radii of SBA-15, and the HPOM loading on the resulting structures forming during propene oxidation conditions. The initial Keggin structure was retained after supporting HPOM on SBA-15. The removal of adsorbed water and a following dehydroxylation of silanol groups of SBA-15 lead to a destabilizing effect on the Keggin ion during propene oxidation conditions.
    [Show full text]
  • Energetics of Heterometal Substitution in Ε-Keggin [Mo4al12(OH)24(OH2
    6/7/8+ 1 Energetics of heterometal substitution in -Keggin [MO4Al12(OH)24(OH2)12] ions 2 (Revision 2) 3 Dana Reusser1, William H. Casey2, and Alexandra Navrotsky1* 4 1Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, 5 Davis, California 95616, U.S.A. *E-mail: [email protected] 6 2Department of Chemistry, Department of Geology, University of California at Davis, Davis, 7 California 95616, U.S.A. 8 Abstract: Aluminum hydroxide ions in the -Keggin structure provide geochemical models for 9 how structure affects reactivity, and consequently, how aqueous ions evolve to bulk precipitates. 10 Here we report a systematic comparison of heterometal substitution into the MAl12 -Keggin 11 structure, where M = GaIII, AlIII, or GeIV. We use direct solution calorimetric techniques to 12 compare the energetics of these substituted structures and complement these measurements with 13 density functional theory, DFT, calculations to further examine this structure as a host to 14 alternative heterometals. The measured enthalpy of solution, ΔHsoln, at 28 °C in 5 N HCl for the 7+ 7+ 15 selenate salts of GaAl12 and AlAl12 , was measured as -869.71 ± 5.18 and -958.04 ± 2.79 -1 ° 16 kJ∙mol , respectively. The enthalpies of formation from the elements, ΔH f,el, for the selenate 7+ 7+ -1 17 salts of GaAl12 and AlAl12 , are -23334.18 ± 60.38 and -23075.02 ± 61.68 kJ∙mol , 18 respectively, supplanting previous values. We compare structural relationships to both 19 experimental and calculated energies to identify the driving forces that control these substitutions 20 and stability, and establish that tetrahedral M-O bond lengths are closely related to the strain and 21 stability of the structure.
    [Show full text]
  • Heteropolyacids As Effective Catalysts to Obtain Zero Sulfur Diesel*
    Pure Appl. Chem., Vol. 79, No. 11, pp. 1887–1894, 2007. doi:10.1351/pac200779111887 © 2007 IUPAC Heteropolyacids as effective catalysts to obtain zero sulfur diesel* Alberto de Angelis1,‡, Paolo Pollesel1, Daniele Molinari1, Wallace O’Neal Parker Jr.1, Alessandra Frattini2, Fabrizio Cavani2, Susie Martins3, and Carlo Perego1 1Eni, Refining and Marketing Division, via F. Maritano 26, San Donato Milanese, Italy; 2University of Bologna, viale Risorgimento 4, Bologna, Italy; 3UOP, 25 East Algonquin Road, Des Plaines, IL 60017, USA Abstract: This paper deals with the catalytic properties of different supported heteropolyacids (HPAs), both molybdenum- and tungsten-based, in the oxidative desulfurization process of diesel. We are jointly developing a new oxidative desulfurization process, aimed at reducing the sulfur content in diesel to less than 10 ppm (parts per million) using in situ produced per- oxides. In this new process, high-molecular-weight organosulfur compounds, such as 4,6-di- methyl-dibenzothiophene (DMDBT), difficult to be eliminated by conventional hydro- desulfurization, are oxidized to the corresponding sulfones and subsequently removed by adsorption. Molybdenum-based HPAs, with Keggin structure, proved to be the most active and selective catalysts for oxidizing DMDBT with on-stream lifetimes exceeding 1500 h time on stream (t.o.s.). Keywords: heteropolyacids; desulfurization; diesel; air pollution; molybdenum. INTRODUCTION The sulfur content in fuels is required, by regulations, to be progressively lowered. In diesel, it will have to be reduced to a value lower than 15 ppm (parts per million) in the United States, and to a value lower than 10 ppm in the European Union within the year 2009.
    [Show full text]
  • Isopoly and Heteropoly Acids and Salts
    CHAPTER 5 Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly Acids and Salts of Mo and W: Structures of Isopoly and Heteropoly Anions The term polymetalate acid or simply poly acid may be defined as the condensed or polymerized form of the weak acids of amphoteric metals like vanadium, niobium, tantalum (VB group metals) or chromium, molybdenum, and tungsten (VIB group metals) in the +5 and +6 oxidation states. The anions of these poly acids contain several molecules of the acid anhydride and the corresponding salts are called as polysalts. Furthermore, if these polymerized acids contain only one type of acid anhydride, they are called as isopoly acids. However, these anhydrides can also condense with some other acids like phosphoric or silicic acid to form heteropoly acids. In other words, isopoly acids contain only one metal along with hydrogen and oxygen while heteropoly acids contain two elements other than hydrogen and oxygen. The corresponding salts of isopoly and heteropoly acids are called as isopoly and heteropoly salts, respectively. Consider the polymerization of chromate ion to form different isopoly chromates anions. CrO3 2– dissolves in an alkali to give yellow colored CrO4 ions solution. At very high pH, above 8, the chromate ions, 2– CrO4 , exist as the discrete entities but as the pH is lowered down, the protonation and dimerization take place. For instance: 2H2CrO4 ⟶ H2Cr2O7 – H2O and 3H2CrO4 ⟶ H2Cr3O10 – 2H2O and 4H2CrO4 ⟶ H2Cr4O13 – 3H2O 2– 2– 2– The polymeric anions Cr2O7 , Cr3O10 and Cr4O13 produced by the polyacids H2Cr2O7, H2Cr3O10 and H2Cr4O13, can successfully be isolated from their aqueous as sodium or potassium polysalts like K2Cr2O7, 5+ 5+ 5+ 6+ 6+ 6+ K2Cr3O10 and K2Cr4O13, respectively.
    [Show full text]
  • The Structure of Molybdenum-Heteropoly-Acids Under Conditions of Gas Phase Selective Oxidation Catalysis: a Multi-Method in Situ Study
    Applied Catalysis A: General, 256 (2003) 1-2, 291-317 The Structure of Molybdenum-Heteropoly-Acids under Conditions of Gas Phase Selective Oxidation Catalysis: A Multi-Method in situ Study. F.C. Jentoft, S. Klokishner, J. Kröhnert, J. Melsheimer, T. Ressler, O. Timpe, J. Wienold, R. Schlögl* Department of Inorganic Chemistry, Fritz-Haber-Institute of the MPG, Faradayweg 4-6, 14195 Berlin, Germany * Corresponding author: e-mail [email protected], phone +49 30 8413 4400, fax +49 30 8413 4401 Recieved 11 February 2003; accepted 25 March 2003 Abstract The present study focuses on the evidence about the existence of Keggin ions under various reactive conditions. The stability of the hydrated parent heteropoly acid (HPA) phases is probed in water, by thermal methods in the gas phase, by in situ X-ray diffraction and in situ EXAFS. An extensive analysis of the in situ optical spectra as UV-Vis-NIR in diffuse reflectance yields detailed information about the activated species that are clearly different from Keggin ions but are also clearly no fragments of binary oxides in crystalline or amorphous form. Infrared spectroscopy with CO as probe molecule is used to investigate active sites for their acidity. Besides –OH groups evidence for electron-rich Lewis acid sites was found in activated HPA. All information fit into a picture of a metastable defective polyoxometallate anion that is oligomerised to prevent crystallisation of binary oxides as the true nature of the “active HPA” catalyst. The as-synthesized HPA crystal is thus a pre catalyst and the pre- cursor oxide mixture is the final deactivated state of the catalyst.
    [Show full text]