catalysts Review POM@MOF Hybrids: Synthesis and Applications Jiamin Sun 1, Sara Abednatanzi 1 , Pascal Van Der Voort 1,* , Ying-Ya Liu 2 and Karen Leus 1 1 COMOC—Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium;
[email protected] (J.S.);
[email protected] (S.A.);
[email protected] (K.L.) 2 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
[email protected] * Correspondence:
[email protected]; Tel.: +32-(0)9-264-44-42 Received: 4 May 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: The hybrid materials that are created by supporting or incorporating polyoxometalates (POMs) into/onto metal–organic frameworks (MOFs) have a unique set of properties. They combine the strong acidity, oxygen-rich surface, and redox capability of POMs, while overcoming their drawbacks, such as difficult handling, a low surface area, and a high solubility. MOFs are ideal hosts because of their high surface area, long-range ordered structure, and high tunability in terms of the pore size and channels. In some cases, MOFs add an extra dimension to the functionality of hybrids. This review summarizes the recent developments in the field of POM@MOF hybrids. The most common applied synthesis strategies are discussed, together with major applications, such as their use in catalysis (organocatalysis, electrocatalysis, and photocatalysis). The more than 100 papers on this topic have been systematically summarized in a handy table, which covers almost all of the work conducted in this field up to now.