SPECIES INFORMATION SHEET Phoca Hispida Botnica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alaska Sea Lions and Seals
Alaska Sea Lions and Seals Blaire, Kate, Donovan, & Alex Biodiversity of Alaska 18 June 2017 https://www.stlzoo.org/files/3913/6260/5731/Sea-lion_RogerBrandt.jpg Similarities & Differences of Sea Lions and Seals Phocidae Family Otariidae Family cannot rotate back can rotate back flippers flippers; move like a marine under themselves to walk caterpillar on land mammals and run on land no external earflaps pinniped, “fin external earflaps footed” in use back flippers for Latin use front flippers for power when swimming power when swimming preyed upon by polar use front flippers for use back flippers for bears, orcas, steering when swimming steering when swimming and sharks food: krill, fish, lobster, food: squid, octopus, birds birds, and fish claws and fur on front no claws or hair on front flippers flippers Seals ("What’s the Difference “ 2017) Sea Lions Evolution • Both seals and sea lions are Pinnipeds • Descended from one ancestral line • Belong to order carnivora • Closest living relatives are bears and musteloids (diverged 50 million years ago) http://what-when-how.com/marine-mammals/pinniped-evolution- (Churchill 2015) marine-mammals/ http://www.chinadaily.com.cn/cndy/2009-04/24/content_7710231.htm Phylogenetics https://en.wikipedia.org/wiki/Pinniped Steller: Eumetopias jubatus http://www.arkive.org/stellers-sea-lion/eumetopias-jubatus/image-G62602.html Steller: Eumetopias jubatus • Classification (”Steller Sea Lion” 2017) Kingdom: Animalia Phylum: Chordata Class: Mamalia Order: Carnivora Family: Otarridae Genus: Eumetopias Species: -
Spotted Seals, Phoca Largha, in Alaska
Spotted Seals, Phoca largha, in Alaska Item Type article Authors Rugh, David J.; Shelden, Kim E. W.; Withrow, David E. Download date 09/10/2021 03:34:27 Link to Item http://hdl.handle.net/1834/26448 Spotted Seals, Phoca largha, in Alaska DAVID J. RUGH, KIM E. W. SHELDEN, and DAVID E. WITHROW Introduction mine the abundance, distribution, and lar), a 2-month difference in mating sea stock identification of marine mammals sons (effecting reproductive isolation), Under the reauthorization of the Ma that might have been impacted by com the whitish lanugo on newborn P largha rine Mammal Protection Act (MMPA) mercial fisheries in U.S. waters (Bra that is shed in utero in P vitulina, dif in 1988, and after a 5-year interim ex ham and DeMaster1). For spotted seals, ferences in the adult pelage of P largha emption period ending September 1995, Phoca largha, there were insufficient and P vitulina, and some differences in the incidental take of marine mammals data to determine incidental take lev cranial characteristics (Burns et aI., in commercial fisheries was authorized els. Accordingly, as a part of the MMAP, 1984). However, hybridization may if the affected populations were not ad the NMFS National Marine Mammal occur, based on evidence from morpho versely impacted. The Marine Mammal Laboratory (NMML) conducted a study logical intermediates and overlaps in Assessment Program (MMAP) of the of spotted seals in Alaska. The objec range (Bums et aI., 1984). As such, dif National Marine Fisheries Service tives of this study were to: I) provide a ferentiation of these two species in the (NMFS), NOAA, provided funding to review of literature pertaining to man field is very difficult. -
Monk Seals in Post-Classical History
Monk Seals in Post-Classical History The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century William M. Johnson Mededelingen No. 39 2004 NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Mededelingen No. 39 i NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Netherlands Commission for International Nature Protection Secretariaat: Dr. H.P. Nooteboom National Herbarium of the Netherlands Rijksuniversiteit Leiden Einsteinweg 2 Postbus 9514, 2300 RA Leiden Mededelingen No. 39, 2004 Editor: Dr. H.P. Nooteboom PDF edition 2008: Matthias Schnellmann Copyright © 2004 by William M. Johnson ii MONK SEALS IN POST-CLASSICAL HISTORY The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century by William M. Johnson Editor, The Monachus Guardian www.monachus-guardian.org email: [email protected] iii iv TABLE OF CONTENTS MONK SEALS IN POST-CLASSICAL HISTORY ......................................................III ABSTRACT ......................................................................................................................... VII ACKNOWLEDGEMENTS ........................................................................................................ VII MONK SEALS IN POST-CLASSICAL HISTORY ..............................................................................1 AN INTRODUCTION TO THE SPECIES ......................................................................1 -
Outcome of HELCOM MARITIME 17-2017
Baltic Marine Environment Protection Commission Maritime Working Group MARITIME 17-2017 St. Petersburg, Russia, 10-12 October 2017 OUTCOME OF THE 17TH MEETING OF THE MARITIME WORKING GROUP (MARITIME 17-2017) Table of Contents Introduction………………………………………………………………………………………………………………………………………………….2 Agenda Item 1 Adoption of the Agenda ................................................................................................ 2 Agenda Item 2 Matters arising from HELCOM meetings ....................................................................... 2 Agenda Item 3 Ballast water .................................................................................................................. 4 Agenda Item 4 Airborne emissions from ships and related measures .................................................. 5 Agenda Item 5 Sewage discharges from ships and port reception facilities ......................................... 7 Agenda Item 6 Other ship-generated wastes and port reception facilities (including marine litter) ... 8 Agenda Item 7 Anti-fouling systems .................................................................................................... 10 Agenda Item 8 Detection, investigation and prosecution of offenders of anti-pollution regulations 10 Agenda Item 9 Safety of navigation and related matters .................................................................... 10 Agenda Item 10 HELCOM publications, implementation and reporting ............................................... 11 Agenda Item 11 Activities within other -
Revised Palette of Measures for Reducing Phosphorus and Nitrogen Losses from Agriculture
Revised Palette of measures for reducing phosphorus and nitrogen losses from agriculture This document is a part of the 2013 HELCOM Ministerial Declaration and was endorsed by the 2013 HELCOM Ministerial Meeting Baltic Marine Environment Protection Commission REVISED LIST OF EXAMPLES (PALETTE) OF MEASURES FOR REDUCING PHOSPHORUS AND NITROGEN LOSSES FROM AGRICULTURE The document is based on the original “Examples of measures for reducing phosphorus and nitrogen losses from agriculture” adopted by the HELCOM Ministerial Meeting held in Krakow, Poland on 15 November 2007 and is updated with relevant regional and European experience and knowledge on application of agri-environmental measures the Baltic Sea catchment. It is intended to support implementation of part II Annex III of the 1992 Helsinki Convention Helsinki Convention “Criteria and measures concerning the prevention of pollution from land- based sources”. The Palette contains technical, managerial and legislative measures, based on best available knowledge and sought to help in implementation of the aforementioned provisions through e.g. review and further implementation of programmes for river basin management. Application of measures and their relative cost-efficiency is often case-specific and is subject to national considerations when selecting specific measures for application. The Palette will be reviewed by the expert community within HELCOM Baltic Agriculture and Environment Forum to reflect changes and development of those measures, including new knowledge when it becomes available. The Palette was compiled on the basis of the following main materials: 1. EU JRC Report on Pilot River Basins Network On Agricultural Issues (2008-2009): Sharing experiences and views 2. Comparative Study of Pressures and Measures in the Major River Basin Management Plans 3. -
Full Text in Pdf Format
Vol. 16: 149–163, 2012 ENDANGERED SPECIES RESEARCH Published online February 29 doi: 10.3354/esr00392 Endang Species Res Age estimation, growth and age-related mortality of Mediterranean monk seals Monachus monachus Sinéad Murphy1,*, Trevor R. Spradlin1,2, Beth Mackey1, Jill McVee3, Evgenia Androukaki4, Eleni Tounta4, Alexandros A. Karamanlidis4, Panagiotis Dendrinos4, Emily Joseph4, Christina Lockyer5, Jason Matthiopoulos1 1Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, UK 2NOAA Fisheries Service/Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East-West Highway, Silver Spring, Maryland 20910, USA 3Histology Department, Bute Medical School, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK 4MOm/Hellenic Society for the Study and Protection of the Monk Seal, 18 Solomou Street, 106 82 Athens, Greece 5Age Dynamics, Huldbergs Allé 42, Kongens Lyngby, 2800, Denmark ABSTRACT: Mediterranean monk seals Monachus monachus are classified as Critically Endan- gered on the IUCN Red List, with <600 individuals split into 3 isolated sub-populations, the largest in the eastern Mediterranean Sea. Canine teeth collected during the last 2 decades from 45 dead monk seals inhabiting Greek waters were processed for age estimation. Ages were best estimated by counting growth layer groups (GLGs) in the cementum adjacent to the root tip using un - processed longitudinal or transverse sections (360 µm thickness) observed under polarized light. Decalcified and stained thin sections (8 to 23 µm) of both cementum and dentine were inferior to unprocessed sections. From analysing patterns of deposition in the cementum of known age- maturity class individuals, one GLG was found to be deposited annually in M. -
Global Patterns in Marine Mammal Distributions
SUPPLEMENTARY INFORMATION I. TAXONOMIC DECISIONS In this work we followed Wilson and Reeder (2005) and Reeves, Stewart, and Clapham’s (2002) taxonomy. In the last 20 years several new species have been described such as Mesoplodon perrini (Dalebout 2002), Orcaella heinsohni (Beasley 2005), and the recognition of several species have been proposed for orcas (Perrin 1982, Pitman et al. 2007), Bryde's whales (Kanda et al. 2007), Blue whales (Garrigue et al. 2003, Ichihara 1996), Tucuxi dolphin (Cunha et al. 2005, Caballero et al. 2008), and other marine mammals. Since we used the conservation status of all species following IUCN (2011), this work is based on species recognized by this IUCN to keep a standardized baseline. II. SPECIES LIST List of the species included in this paper, indicating their conservation status according to IUCN (2010.4) and its range area. Order Family Species IUCN 2010 Freshwater Range area km2 Enhydra lutris EN A2abe 1,084,750,000,000 Mustelidae Lontra felina EN A3cd 996,197,000,000 Odobenidae Odobenus rosmarus DD 5,367,060,000,000 Arctocephalus australis LC 1,674,290,000,000 Arctocephalus forsteri LC 1,823,240,000,000 Arctocephalus galapagoensis EN A2a 167,512,000,000 Arctocephalus gazella LC 39,155,300,000,000 Arctocephalus philippii NT 163,932,000,000 Arctocephalus pusillus LC 1,705,430,000,000 Arctocephalus townsendi NT 1,045,950,000,000 Carnivora Otariidae Arctocephalus tropicalis LC 39,249,100,000,000 Callorhinus ursinus VU A2b 12,935,900,000,000 Eumetopias jubatus EN A2a 3,051,310,000,000 Neophoca cinerea -
Ecology of Ringed Seals (Phoca Hispida) in Western Hudson Bay, Canada
Ecology of ringed seals (Phoca hispida) in western Hudson Bay, Canada by Magaly Vincent-Chambellant A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Biological Sciences University of Manitoba Winnipeg Copyright © 2010 by Magaly Vincent-Chambellant Abstract Recently, Hudson Bay experienced unidirectional trends in temperature, sea-ice extent, time of break-up, and length of the open-water season. Predicted impacts on population dynamics of ice-associated species include habitat loss and shift in prey availability. The ringed seal (Phoca hispida) depends on a stable ice platform with sufficient snow depth and a productive open-water season for reproduction and survival. Evidence of ringed seal sensitivity to environmental variations has been reported, but mechanisms involved were poorly understood. In western Hudson Bay, density, life-history traits, and diet of ringed seals were monitored over two decades, providing an opportunity to understand the effects of climatic variations on the population dynamics of this long-lived carnivore. Ringed seal density was estimated through strip-transect analyses after aerial surveys were flown in western Hudson Bay in late spring during the annual moult in the 1990s and 2000s. During these periods, ringed seals were also sampled from Inuit subsistence fall harvests In Arviat, NU, and ages, reproductive status, percentage of pups in the harvest, body condition, and diet were assessed. Strong inter-annual variations in these parameters were observed, and a decadal cycle was suggested and related to variations in the sea-ice regime. -
Vol. 5 • No. 2 • 2011
Vol. 5 • No. 2 • 2011 Published by Umeå University & The Royal Skyttean Society Umeå 2011 The Journal of Northern Studies is published with support from The Royal Skyttean Society and Umeå University © The authors and Journal of Northern Studies ISSN 1654-5915 Cover picture Scandinavia Satellite and sensor: NOAA, AVHRR Level above earth: 840 km Image supplied by METRIA, a division of Lantmäteriet, Sweden. www.metria.se NOAA®. ©ESA/Eurimage 2001. ©Metria Satellus 2001 Design and layout Leena Hortéll, Ord & Co i Umeå AB Fonts: Berling Nova and Futura Paper: Invercote Creato 260 gr and Artic volume high white 115 gr Printed by Davidsons Tryckeri AB, Växjö Contents / Sommaire / Inhalt Editors & Editorial board . 5 Contributors. 7 Articles /Aufsätze Marianne Liliequist & Lena Karlsson, Elderly Sami as the “Other”. Discourses on the Elderly Care of the Sami, 1850–1930 . .9 Frank Möller, “Wild Weirdness?” “Gross Humbugs!” Memory-Images of the North and Finnish Photography . 29 Kjell Sjöberg, River Lamprey Lampetra fluviatilis (L.) Fishing in the Area around the Baltic Sea . 51 Sabira Ståhlberg & Ingvar Svanberg, Catching Basking Ide, Leuciscus idus (L.), in the Baltic Sea. Fishing and Local Knowledge in the Finnish and Swedish Archipelagos . 87 Reviews/Comptes rendus/Besprechungen Karen Langgård & Kirsten Thisted (eds.), From Oral Tradition to Rap. Literatures of the Polar North, Nuuk: Ilismatusarfik/Forlaget Atuagkat 2011 Anne( Heith) . 105 Håkan Rydving, Tracing Sami Traditions. In Search of the Indigenous Religion among the Western Sami during the 17th and 18th Centuries (Instituttet for sammenlignende kultur- forskning, Serie B, Skrifter 135), Oslo: The Institute for Comparative Research in Human Culture, Novus forlag 2010 (Olle Sundström). -
Novel Terrestrial Haul-Out Behaviour by Ringed Seals
POLAR RESEARCH, 2017 VOL. 36, 1374124 https://doi.org/10.1080/17518369.2017.1374124 RESEARCH ARTCLE Novel terrestrial haul-out behaviour by ringed seals (Pusa hispida)in Svalbard, in association with harbour seals (Phoca vitulina) Christian Lydersena, Jade Vaquie-Garciaa, Espen Lydersenb, Guttorm N. Christensenc & Kit M. Kovacsa aNorwegian Polar Institute, Tromsø, Norway; bUniversity College of Southeast Norway, Campus Bø, Norway; cAkvaplan-Niva, Tromsø, Norway ABSTRACT KEYWORDS Ringed seals (Pusa hispida) are the most ice-associated of all Arctic pinnipeds. In the Svalbard Arctic; behavioural plasticity; area, this species has always given birth, moulted and rested on sea ice. In addition, much of climate change; glacier their food has been comprised of ice-associated prey. Recently, ringed seals have been fronts; lagoons; sea ice reported to be using terrestrial substrates as a haul-out platform in some fjords on the west coast of Spitsbergen. In many cases the seals involved are harbour seals (Phoca vitulina), which are extending their distribution into new areas within the Svalbard Archipelago and which are being misclassified as ringed seals. However, this study reports that terrestrial haul- out by ringed seals is also now taking place on rocks exposed at low tide as well as on the coastline. Recent intrusions of warm Atlantic Water (with associated prey) have extended deep into the fjords of western Spitsbergen, resulting in deteriorated ice conditions for ringed seals and expanded habitat for harbour seals. Over the last decade, ringed seals have become more and more confined in coastal areas to narrow bands in front of tidal glacier fronts where Arctic conditions still prevail. -
Harbor Seal Species Profile Encyclopedia of Puget Sound June 9, 2014
(Photograph by G. E. Davis) Harbor seal species profile Encyclopedia of Puget Sound June 9, 2014 Jacqlynn C. Zier and Joseph K. Gaydos* SeaDoc Society / UC Davis’ Karen C. Drayer Wildlife Health Center Orcas Island Office 942 Deer Harbor Road, Eastsound, WA 98245 *Corresponding author [email protected] Table of Contents Introduction ............................................................................................................. 3 Distribution .............................................................................................................. 3 Global .............................................................................................................................................................................. 3 Local ................................................................................................................................................................................ 3 1 Populations .............................................................................................................. 4 Genetic diversity ........................................................................................................................................................ 4 Population size ........................................................................................................................................................... 5 Longevity and survival .......................................................................................................................................... -
First Version of the 'State of the Baltic Seaʼ Report
FIRST VERSION OF THE ‘sTATE OF THE BALTIC SEA’ REPORT – JUNE 2017 TO BE UPDATED IN 2018 HELCOM – BALTIC MARINE ENVIRONMENT PROTECTION COMMISSION The production of this report has been carried out through the HELCOM Project for the development of the second holistic assessment of the Baltic Sea (HOLAS II). The work has been financially supported through HELCOM, the EU co-financing of HELCOM coordinated projects BalticBOOST, TAPAS and SPICE as well as special contributions by Sweden, Finland, Germany (Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety) and Denmark. The basis for the assessment of status of the Baltic Sea are the HELCOM core indicators and associated threshold values. In this context the following has been agreed: Regarding threshold values “At this point in time, HOLAS II indicators and threshold values should not automatically be considered by the Contracting Parties that are EU Member States, as equivalent to criteria threshold values in the sense of Commission Decision (EU) 2017/848 laying down criteria and methodological standards on good environmental status, but can be used for the purposes of their Marine Strategy Framework Directive obligations by those Contracting Parties being EU Member States that wish to do so”. Regarding testing of indicators Note that some indicators and/or their associated threshold value are still being tested in some countries and may be further developed in HELCOM as a result of the outcome of the testing. In some cases the results may show that the indicator is not suitable for use in a specific sub-basin. These indicators are marked in the assessment report and the results should be considered as intermediate.