Complete Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Complete Dissertation VU Research Portal Information Transfer in a Complex and Noisy World Velilla Perdomo, E. 2020 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Velilla Perdomo, E. (2020). Information Transfer in a Complex and Noisy World: A study through the lens of organisms using vibrational signals and cues. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 04. Oct. 2021 Information Transfer in a Complex & Noisy World A study through the lens of organisms using vibrational signals & cues Estefania Velilla 1 Information Transfer in a Complex and Noisy World A study through the lens of organisms using vibrational signals and cues 2 This thesis should be cited as: Velilla, E. (2020) Information Transfer in a Complex and Noisy World: A study through the lens of organisms using vibrational signals and cues. PhD thesis, Vrije Universiteit Amsterdam, The Netherlands. ISBN: 978-94-6416-078-9 Cover and layout: Studio Migle, www.studiomigle.com Illustrations: Studio Migle (p. 20, 36, 60, 72, 88) Printed by: Ridderprint BV, www.ridderprint.nl Copyright © 2020 by E. Velilla ([email protected]) 3 VRIJE UNIVERSITEIT Information Transfer in a Complex and Noisy World A study through the lens of organisms using vibrational signals and cues ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. V. Subramaniam, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de Faculteit der Bètawetenschappen op donderdag 15 oktober 2020 om 9.45uur in de aula van de universiteit, De Boelelaan 1105 door Estefania Velilla Perdomo geboren te Bogotá, Colombia 4 promotor: prof.dr. J. Ellers copromotor: dr. W. Halfwerk 5 Contents glossary 7 chapter 1 General Introduction 9 chapter 2 Gone with the wind: is signal timing in a 18 Neotropical katydid an adaptive response to variation in wind-induced vibratory noise? chapter 3 Variation in plant leaf traits affects 34 transmission and possibly detectability of herbivore vibrational cues chapter 4 The effect of vibrational noise on a 58 parasitoid-host interaction chapter 5 Vibrational noise from wind energy-turbines 70 negatively impacts earthworm abundance chapter 6 Effect of anthropogenic vibratory noise on 86 plant development and herbivory chapter 7 Summary and general discussion 101 References 113 Authors affiliation and addresses 141 List of publications 145 Summary (en) 147 Samenvatting (nl) 150 Acknowledgements 154 6 Glossary Bioacoustics Cross-disciplinary science that combines biology and acoustics. Usually refers to the investigation of sound production, transmission and perception in organisms Biotremology The study of production, transmission and perception of mechanical vibrations by organisms, and their effect on behavior Cross-modal The process in which stimuli from one sensory modal- interference ity can affect the detection and processing of stimuli of another sensory modality Cue A phenotypic trait that can be detected by a perceptual system, but has not been selected to induce a behavioral or physiological change in a receiver Distraction A perceptual process during which noise reduces the detectability and discriminability of a signal or cue via an overload of an animal’s cognitive processing capacity Information Knowledge obtained from biotic or abiotic stimuli Masking A perceptual process during which noise reduces the detectability and discriminability of a signal or cue via a reduction in signal-to-noise ratio 7 glossary Noise Environmental stimuli that interfere with the detection and processing of signals and cues Signal A phenotypic trait that can be detected by a perceptual system and has specifically evolved to induce a behavioral or physiological change in a receiver Signal-to-noise ratio Difference in intensity of a signal or cue relative to the background noise Tremulatory signal Type of vibrational signal. It can be described as a trem- bling, shaking, sometimes jerking body motion that intro- duces substrate-borne vibrations into the plants on which the animals are perched 8 chapter 1 General Introduction The environment is teeming with valuable information on which animals rely to make box 1.1 important decisions such as, where to find a The information transfer chain mate, or a prey, or when to avoid a predator (Dominoni et al. 2020). The reproductive The information transfer chain refers success and survival of animals, therefore to the process involving the produc- depends to a great extent on their ability tion of a stimulus that serves as infor- to extract relevant information from their mation (e.g. a pheromone mating environment (McNamara and Dall 2009; signal or vibrations in a plant induced Dominoni et al. 2020). Environments vary by herbivores chewing), its transmis- in their habitat complexity and in back- sion through a medium and, finally ground noise levels, of which both can affect its perception by a receiver. There are, the different stages of the information trans- thus, three stages in the information fer chain (Brumm and Slabbekoorn 2005, transfer chain: the production, trans- Box 1.1, Fig. 1.1). While there has been mission and perception of informa- extensive research on the effects of noise tion (Bradbury and Vehrencamp and environmental variation on information 1998). transfer for the acoustic domain, much less is known about these effects in the vibrational modality. 9 chapter 1 FACTORS AFFECTING THE INFORMATION TRANSFER CHAIN CONSEQUENCES Noise Reproductive Production Transmission Perception Survival success Environmental Fitness variation fig. 1.1 Factors affecting the production, transmission and perception of signals and cues and its conse- quences. Noise can affect both the production and the perception of information, and environmental variation can affect its transmission. Failure to perceive (extract) the relevant information can lead to lower reproductive success and survival, which can ultimately affect fitness. Depending on the context (e.g. mating versus predator-prey interactions), fitness can be negatively or positively impacted, as indicated by the red and green arrow in the fitness box, under consequences. The cases of increased fitness refer to predators/parasitoids whose cues are less easily perceived by their prey/hosts, increasing their chances of predation/parasitism. In those cases, the producer’s fitness increases and the receiver’s fitness decreases (Dominoni et al. 2020). box 1.2 Sound versus vibrations Sound (acoustic waves) propagates gate perpendicular to the direction longitudinally in the form of compres- or surface of the substrate through sion waves through a medium like which they are traveling (Hill 2014). air or water, or as transverse waves In contrast to airborne sounds, in in solids. In a longitudinal wave, the which all frequency components particle displacement is parallel to the travel with the same velocity, in bend- direction of wave propagation, and ing waves, high frequencies propa- in a transverse wave, the oscillations gate faster than low frequencies. As are perpendicular to the direction of a result, vibrational (bending) waves the wave. Substrate-borne vibrations, can change shape and duration when on the other hand, are mostly either they travel. Therefore, the strategies Rayleigh waves (through the earth) or used by animals relying on acoustic bending waves (in plants) (Hill 2014). versus vibrational information will Both of these types of waves propa- differ (Michelsen 2014). 10 chapter 1 The vibrational modality information across a wide range of contexts, including mating (e.g. Morris et al. 1994; Vibrational and acoustic communication Rodriguez 1999; Čokl et al. 2007; Bagwell were once considered part of the same et al. 2008; Mazzoni et al. 2009; Rodrí- scientific discipline, ‘bioacoustics’ (Hill et guez et al. 2015; Xiao et al. 2015), group al. 2019). However, vibrational and acous- communication (e.g. Faeth 1989; Cocroft tic waves have important mechanical and 1999, 2001; O’Connell-Rodwell et al. 2001; propagation differences (Box 1.2) that have Fletcher 2007), predator-prey dynamics (e.g. eventually led to the establishment of a new Warkentin 2005; Catania 2008; Halfwerk field dedicated solely to study of vibrational et al. 2014) and parasitoid-host interactions information, ‘biotremology’. In this section (e.g. Casas et al. 1998; Meyhofer and Casas I provide an introduction to the vibrational 1999; Broad and Quicke 2000; Djemai et modality. al. 2001). ‘Vibrational signal’ is often used as an The use of vibrational signals and cues umbrella term to refer to different kinds of is most prominent in animals living
Recommended publications
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • GIS-Based Modelling Reveals the Fate of Antlion Habitats in the Deliblato Sands Danijel Ivajnšič1,2 & Dušan Devetak1
    www.nature.com/scientificreports OPEN GIS-based modelling reveals the fate of antlion habitats in the Deliblato Sands Danijel Ivajnšič1,2 & Dušan Devetak1 The Deliblato Sands Special Nature Reserve (DSSNR; Vojvodina, Serbia) is facing a fast successional process. Open sand steppe habitats, considered as regional biodiversity hotspots, have drastically decreased over the last 25 years. This study combines multi-temporal and –spectral remotely sensed data, in-situ sampling techniques and geospatial modelling procedures to estimate and predict the potential development of open habitats and their biota from the perspective of antlions (Neuroptera, Myrmeleontidae). It was confrmed that vegetation density increased in all parts of the study area between 1992 and 2017. Climate change, manifested in the mean annual precipitation amount, signifcantly contributes to the speed of succession that could be completed within a 50-year period. Open grassland habitats could reach an alarming fragmentation rate by 2075 (covering 50 times less area than today), according to selected global climate models and emission scenarios (RCP4.5 and RCP8.5). However, M. trigrammus could probably survive in the DSSNR until the frst half of the century, but its subsequent fate is very uncertain. The information provided in this study can serve for efective management of sand steppes, and antlions should be considered important indicators for conservation monitoring and planning. Palaearctic grasslands are among the most threatened biomes on Earth, with one of them – the sand steppe - being the most endangered1,2. In Europe, sand steppes and dry grasslands have declined drastically in quality and extent, owing to agricultural intensifcation, aforestation and abandonment3–6.
    [Show full text]
  • ACTA BIANCO 1 2014.Qxp
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Acta Entomologica Slovenica Jahr/Year: 2018 Band/Volume: 26 Autor(en)/Author(s): Kunz Gernot, Holzinger Werner E. Artikel/Article: Remarkable records of nine rare Auchenorrhyncha Species from Austria (Hemiptera) 173-180 ©Slovenian Entomological Society, download unter www.zobodat.at ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2018 Vol. 26, øt. 2: 173–180 REMARKABLE RECORDS OF NINE RARE AUCHENORRHYNCHA SPECIES FROM AUSTRIA (HEMIPTERA) Gernot Kunz1 & Werner E. HolzinGEr1, 2 1 Karl-Franzens-university Graz, institute for Biology, universitätsplatz 2, 8010 Graz, Austria. E-mail: [email protected], [email protected] 2 oekoteam - institute for Animal Ecology and landscape Planning, Bergmanngasse 22, 8010 Graz, Austria. E-mail: [email protected], [email protected] Abstract - We present records of nine very rare and poorly known true hopper species from Austria and a record of Myndus musivus from Croatia. Glossocratus foveolatus and Calamotettix taeniatus are reported from Austria for the first time. new records of Trigonocranus emmeae, Criomorphus williamsi, Euides alpina and Dorycephalus baeri are presented. new discovered habitats of Pseudodelphacodes flaviceps at floodplains of the inn river are strongly influenced by hydropower uti- lization. Two different “ecotypes” of Ommatidiotus dissimilis are reported; they might represent different “cryptic species”. KEy Words: Austria, Biogeography, new records, planthoppers, leafhoppers, true hoppers, Cicadina, Fulgoromorpha, Cicadomorpha, Cixiidae, Cicadellidae, delphaci- dae, Caliscelidae Izvleček – izJEMnE nAJdBE dEVETiH rEdKiH VrsT ŠKrŽATKoV (AuCHEnorrHynCHA) V AVsTriJi (HEMiPTErA) Predstavljava podatke o devetih zelo redkih in slabo poznanih vrstah škržatkov iz Avstrije in najdbo vrste Myndus musivus na Hrvaškem.
    [Show full text]
  • Bergmann's Rule in Larval Ant Lions
    Ecological Entomology (2003) 28, 645–650 Bergmann’s rule in larval ant lions: testing the starvation resistance hypothesis AMY E. ARNETT andNICHOLAS J. GOTELLI Department of Biology, University of Vermont, U.S.A. Abstract. 1. Body size of the ant lion Myrmeleon immaculatus follows Bergmann’s rule – an increase in body size towards higher latitudes. The hypothesis that ant lion body size is larger in the north as an adaptation for starvation resistance was tested. 2. In a laboratory experiment testing starvation resistance, survivorship curves differed among 10 ant lion populations for both a starved and a fed treatment. 3. The average number of months survived by each population was correlated positively with latitude for both treatments. Across both treatments and all populations, large individuals survived longer than small individuals; however individuals from high latitudes had higher survivorship, even after factoring out variation due to initial body size. 4. These results suggest that starvation resistance may be an adaptation for coping with reduced prey availability in high latitudes. Starvation resistance may contribute to latitudinal gradients in body size of ant lions and other ectotherms. Key words. Ant lion, Bergmann’s rule, body size, latitudinal gradients, Myrmeleon immaculatus, starvation resistance. Introduction body size (Cushman et al., 1993). If food availability decreases at high latitudes, starvation resistance may be Bergmann’s rule – an increase in body size with latitude – is genetically based and promote large body size at high lati- a common geographic pattern that has been described for tudes. Size-dependent resistance to starvation is supported many taxa including birds (James, 1970; Graves, 1991), by many studies of both endotherms and ectotherms mammals (Boyce, 1978; Sand et al., 1995; Sharples et al., (Brodie, 1975; Kondoh, 1977; Boyce, 1978; Lindstedt & 1996), fish (L’Abe´e-Lund et al., 1989; Taylor & Gotelli, Boyce, 1985; Murphy, 1985; Cushman et al., 1993).
    [Show full text]
  • ZGRUPOWANIA PIEWIKÓW (HEMIPTERA: FULGOROMORPHA ET CICADOMORPHA) WYBRANYCH ZBIOROWISK ROŚLINNYCH BABIOGÓRSKIEGO PARKU NARODOWEGO Monografia
    ZGRUPOWANIA PIEWIKÓW (HEMIPTERA: FULGOROMORPHA ET CICADOMORPHA) WYBRANYCH ZBIOROWISK ROŚLINNYCH BABIOGÓRSKIEGO PARKU NARODOWEGO Monografia LEAFHOPPER COMMUNITIES (HEMIPTERA: FULGOROMORPHA ET CICADOMORPHA) SELECTED PLANT COMMUNITIES OF THE BABIA GÓRA NATIONAL PARK The Monograph ROCZNIK MUZEUM GÓRNOŚLĄSKIEGO W BYTOMIU PRZYRODA NR 21 SEBASTIAN PILARCZYK, MARCIN WALCZAK, JOANNA TRELA, JACEK GORCZYCA ZGRUPOWANIA PIEWIKÓW (HEMIPTERA: FULGOROMORPHA ET CICADOMORPHA) WYBRANYCH ZBIOROWISK ROŚLINNYCH BABIOGÓRSKIEGO PARKU NARODOWEGO Monografia Bytom 2014 ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM NATURAL HISTORY NO. 21 SEBASTIAN PILARCZYK, MARCIN WALCZAK, JOANNA TRELA, JACEK GORCZYCA LEAFHOPPER COMMUNITIES (HEMIPTERA: FULGOROMORPHA ET CICADOMORPHA) SELECTED PLANT COMMUNITIES OF THE BABIA GÓRA NATIONAL PARK The Monograph Bytom 2014 Published by the Upper Silesian Museum in Bytom Upper Silesian Museum in Bytom Plac Jana III Sobieskiego 2 41–902 Bytom, Poland tel./fax +48 32 281 34 01 Editorial Board of Natural History Series: Jacek Betleja, Piotr Cempulik, Roland Dobosz (Head Editor), Katarzyna Kobiela (Layout), Adam Larysz (Layout), Jacek Szwedo, Dagmara Żyła (Layout) International Advisory Board: Levente Ábrahám (Somogy County Museum, Kaposvar, Hungary) Horst Aspöck (University of Vienna, Austria) Dariusz Iwan (Museum and Institute of Zoology PAS, Warszawa, Poland) John Oswald (Texas A&M University, USA) Alexi Popov (National Museum of Natural History, Sofia, Bulgaria) Ryszard Szadziewski (University of Gdańsk, Gdynia, Poland) Marek Wanat (Museum
    [Show full text]
  • Exploiting Entomopathogenic Nematode Neurobiology to Improve Bioinsecticide Formulations
    DOCTOR OF PHILOSOPHY Exploiting Entomopathogenic Nematode Neurobiology to Improve Bioinsecticide Formulations Morris, Rob Award date: 2020 Awarding institution: Queen's University Belfast Link to publication Terms of use All those accessing thesis content in Queen’s University Belfast Research Portal are subject to the following terms and conditions of use • Copyright is subject to the Copyright, Designs and Patent Act 1988, or as modified by any successor legislation • Copyright and moral rights for thesis content are retained by the author and/or other copyright owners • A copy of a thesis may be downloaded for personal non-commercial research/study without the need for permission or charge • Distribution or reproduction of thesis content in any format is not permitted without the permission of the copyright holder • When citing this work, full bibliographic details should be supplied, including the author, title, awarding institution and date of thesis Take down policy A thesis can be removed from the Research Portal if there has been a breach of copyright, or a similarly robust reason. If you believe this document breaches copyright, or there is sufficient cause to take down, please contact us, citing details. Email: [email protected] Supplementary materials Where possible, we endeavour to provide supplementary materials to theses. This may include video, audio and other types of files. We endeavour to capture all content and upload as part of the Pure record for each thesis. Note, it may not be possible in all instances to convert analogue formats to usable digital formats for some supplementary materials. We exercise best efforts on our behalf and, in such instances, encourage the individual to consult the physical thesis for further information.
    [Show full text]
  • Downloaded from T 7.26 - 13.78 3.69 NCBI for Alignment C 7.26 25.64 - 3.69 G 9.57 7.88 4.24 - S.NO Name Accession Number Country 1
    International Journal of Entomology Research International Journal of Entomology Research ISSN: 2455-4758; Impact Factor: RJIF 5.24 Received: 23-03-2020; Accepted: 12-04-2020; Published: 18-04-2020 www.entomologyjournals.com Volume 5; Issue 2; 2020; Page No. 116-119 Analysis of the mitochondrial COI gene fragment and its informative potential for phylogenetic analysis in family pentatomidae (hemiptera: hetroptera) Ramneet Kaur1*, Devinder Singh2 1, 2 Department of Zoology, Punjabi University, Patiala, Punjab, India Abstract Pentatomidae is a widely diverse family represented by 4,722 species belonging to 896 genera. It is considered as one of the largest family within suborder Heteroptera. In the present study, partial mitochondrial COI gene fragment of approximately 600bp from seven species of family Pentatomidae collected from different localities of Northern India has been analysed. The data divulged an A+T content of 65.8% and an R value of 1.39. The COI sequences were added directly to Genbank NCBI. The database analysis shows mean K2P divergence of 0.7% at intraspecific level and 13.5% at interspecific level, indicating a hierarchal increase in K2P mean divergence across different taxonomic levels. Keywords: pentatomidae, mitochondrial gene, COI Introduction Punjabi University, Patiala. DNA was extracted from legs of Family Pentatomidae, chosen for the present study, is one of the specimens following the method of Kambhampati and the largest families within suborder Hetroptera (Rider 2006- Rai (1991) [5] with minor modifications. A region of COI 2017) [8]. Most species in this family are economically gene was amplified using primers LCO1490 and HCO2198 important as agricultural pests, whereas some are used as (Folmer et al., 1994) [3].
    [Show full text]
  • Cletus Trigonus
    BIOSYSTEMATICS OF THE TRUE BUGS (HETEROPTERA) OF DISTRICT SWAT PAKISTAN SANA ULLAH DEPARTMENT OF ZOOLOGY HAZARA UNIVERSITY MANSEHRA 2018 HAZARA UNIVERSITY MANSEHRA DEPARTMENT OF ZOOLOGY BIOSYSTEMATICS OF THE TRUE BUGS (HETEROPTERA) OF DISTRICT SWAT PAKISTAN By SANA ULLAH 34894 13-PhD-Zol-F-HU-1 This research study has been conducted and reported as partial fulfillment of the requirements for the Degree of Doctor of Philisophy in Zoology awarded by Hazara University Mansehra, Pakistan Mansehra, The Friday 22, February 2019 BIOSYSTEMATICS OF THE TRUE BUGS (HETEROPTERA) OF DISTRICT SWAT PAKISTAN Submitted by Sana Ullah Ph.D Scholar Research Supervisor Prof. Dr. Habib Ahmad Department of Genetics Hazara University, Mansehra Co-Supervisor Prof. Dr. Muhammad Ather Rafi Principal Scientific Officer, National Agricultural Research Center, Islamabad DEPARTMENT OF ZOOLOGY HAZARA UNIVERSITY MANSEHRA 2018 Dedication Dedicated to my Parents and Siblings ACKNOWLEDGEMENTS All praises are due to Almighty Allah, the most Powerful Who is the Lord of every creature of the universe and all the tributes to the Holy prophet Hazrat Muhammad (SAW) who had spread the light of learning in the world. I wish to express my deepest gratitude and appreciation to my supervisor Prof. Dr. Habib Ahmad (TI), Vice Chancellor, Islamia College University, Peshawar, for his enormous support, inspiring guidance from time to time with utmost patience and providing the necessary facilities to carry out this work. He is a source of great motivation and encouragement for me. I respect him from the core of my heart due to his integrity, attitude towards students, and eagerness towards research. I am equally grateful to my Co Supervisor Prof.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • Preference of Antlion and Wormlion Larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for Substrates According to Substrate Particle Sizes
    Eur. J. Entomol. 112(3): 000–000, 2015 doi: 10.14411/eje.2015.052 ISSN 1210-5759 (print), 1802-8829 (online) Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes Dušan DEVETAK 1 and AMY E. ARNETT 2 1 Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; e-mail: [email protected] 2 Center for Biodiversity, Unity College, 90 Quaker Hill Road, Unity, ME 04915, U.S.A.; e-mail: [email protected] Key words. Neuroptera, Myrmeleontidae, Diptera, Vermileonidae, antlions, wormlions, substrate particle size, substrate selection, pit-builder, non-pit-builder, habitat selection Abstract. Sand-dwelling wormlion and antlion larvae are predators with a highly specialized hunting strategy, which either construct efficient pitfall traps or bury themselves in the sand ambushing prey on the surface. We studied the role substrate particle size plays in these specialized predators. Working with thirteen species of antlions and one species of wormlion, we quantified the substrate particle size in which the species were naturally found. Based on these particle sizes, four substrate types were established: fine substrates, fine to medium substrates, medium substrates, and coarse substrates. Larvae preferring the fine substrates were the wormlion Lampromyia and the antlion Myrmeleon hyalinus originating from desert habitats. Larvae preferring fine to medium and medium substrates belonged to antlion genera Cueta, Euroleon, Myrmeleon, Nophis and Synclisis and antlion larvae preferring coarse substrates were in the genera Distoleon and Neuroleon. In addition to analyzing naturally-occurring substrate, we hypothesized that these insect larvae will prefer the substrate type that they are found in.
    [Show full text]
  • Shropshire-Entomology-Issue-8.Pdf
    Shropshire Entomology – April 2013 (No.7) A bi-annual newsletter focussing upon the study of insects and other invertebrates in the county of Shropshire (V.C. 40) March 2014 (Vol. 8) Editor: Pete Boardman [email protected] ~ Welcome ~ Welcome to the 8th edition of the Shropshire Entomology newsletter. As ever I hope you enjoy it and it inspires you to submit your own articles relating to any aspect of entomology relevant to Shropshire or Shropshire entomologists. It is sometime since we published the last edition but hopefully there will be the same appetite for entomological news as ever. In the last newsletter we detailed a number of new County Recorders and within this edition are some of the fruits of their labours from 2013, which I feel are particularly valuable. Edition 9 will be due at the beginning of October with the cut off date for contributions being Friday 19th September. Hopefully the summer will bring plenty of entomological experiences that can be shared amongst Shropshire’s entomologists whether they are accounts of new species or just interesting sightings, all are welcomed. If anyone would like to catalogue all of the articles in this and the previous 7 newsletters as a volunteer activity I’d be pleased to hear from you. Note – past newsletters are available for download as PDF’s from www.invertebrate-challenge.org.uk/newsletters-and- resources.aspx ~ Contents ~ Invertebrate Survey of the Rea Brook Valley, Shrewsbury: Pete Boardman The Shropshire Invertebrate Exchange Scheme: Pete Boardman Two landscapes
    [Show full text]